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The isomorphism problem

Given two finite presentations

〈x1, . . . , xn | r1, . . . rm〉; 〈y1, . . . , yp | s1, . . . , sq〉

is it possible to decide if they represent isomorphic groups?

In general no (Adian, Rabin late 1950s.)

That being said this is still a reasonnable question to ask if the
presentation are known to lie a restricted class of groups. For
example if both presentations are known to be of abelian groups,
then we can straightforwardly decide if these two presentations
give isomorphic groups.
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Previous results

I Grunewald and Segal solve the isomorphism problem for f.g.
nilpotent groups (1980).

I Segal solves the isomorphism problem for polycyclic-by-finite
groups (1990).

I Sela solves the isomorphism problem for rigid torsion-free
hyperbolic groups (1995).

I Bumagin, Kharlampovich, and Miasnikov solve the
isomorphism problem for f.g. fully residually free, or limit,
groups (2007).

I Dahamni and Groves solve the isomorphism problem for toral
relatively hyperbolic groups (2008), this class includes
torsion-free hyperbolic groups and limit groups.

I Dahmani and Guirardel solve the isomorphism problem for all
hyperbolic groups; even those with torsion (2011).
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A new result

Theorem (Dahmani-T)

There is an algorithm which given two presentations

〈x1, . . . , xn | r1, . . . rm〉; 〈y1, . . . , yp | s1, . . . , sq〉

of torsion-free groups that are known to be hyperbolic relative to
nilpotent groups, will decide if they are isomorphic.



Some terminology: Peripheral structures and relative
hyperbolicity

Let G be a group, a peripheral structure P on G is a (possibly
empty) union of finitely many conjugacy classes:

P = [P1] ∪ · · · ∪ [Ps ]

where [Pi ] = {g−1Pig | g ∈ G}.

Each subgroup H of some P ∈ P
is called parabolic, in particular P is the set of maximal parabolic
subgroups.

A relatively hyperbolic group is a pair (G ,P) which, informally,
looks like a hyperbolic group “outside” the parabolic subgroups.
For example:

(Z2 ∗ Z2,P)

where P is the set of maximal non-cyclic abelian subgroups is a
relatively hyperbolic group.
We also say that G is hyperbolic relative to P.
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Some terminology: Elementary splittings

An elementary splitting of (G ,P) is an (essential) decomposition
of G as the fundamental group of a graph of groups such that:

I Edge groups are parabolic, virtually cyclic, or finite,

I Each P ∈ P is conjugate into a vertex groups

For example:
G = A ∗C B; G = A ∗ B ∗ D

where C is parabolic and each P ∈ P is conjugate into A,B,D.

We say that a relatively hyperbolic group (G ,P) is rigid if it is not
virtually cyclic and it admits no elementary splittings.
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The general strategy for the isomorphism problem
Let (G ,P) and (H,Q) (given by presentations) be relatively
hyperbolic (possibly with P,Q = ∅).

I Step 1: If (G ,P) and (H,Q) are one-ended∗ (relative to
P,Q) construct canonical elementary JSJ splittings for (G ,P)
and (H,Q).

So now we check if the graphs of groups “look” the same. I.e.
if the underlying graphs are isomorphic.
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The general strategy for the isomorphism problem

I Step 2: The black vertex groups are either periperal or
virtually cyclic. We enlarge the peripheral structures
P ⊂ P̂,Q ⊂ Q̂ so that the black vertex groups are peripheral.
The white vertex groups are either QH (or surface type) or
(w.r.t. the natural induced rel. hyp. structure) rigid.
We now solve the isomorphism problem for the vertex groups∗.

I Step 3: If the previous steps went though, see if the graphs of
groups assemble to give isomorphic groups.
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The isomorphism problem: the rigid case

We give a sketch of Sela’s algorithm to solve the isomorphism
problem for rigid hyperbolic groups (i.e. P = ∅).

Let

Γ ≈ 〈x1, . . . , xn | r1, . . . rm〉; ∆ ≈ 〈y1, . . . , yp | s1, . . . , sq〉

be rigid hyperbolic groups. The theory of actions on R-trees tells
us that either:

I There are monomorphisms Γ ↪→ ∆ and ∆ ↪→ Γ, which by
co-Hopficity, implies that ∆ ≈ Γ; or

I W.l.o.g. there is some finite set F ⊂ Γ such that for every
f ∈ Hom(Γ,∆) f |F is not injective. We call such a set an
obstruction from Γ to ∆.
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The isomorphism problem: the rigid case
We now have two processes.

Process 1: Enumerate via Tietze transformations all presentations
isomorphic to 〈x1, . . . , xn | r1, . . . rm〉. If our presentation
〈y1, . . . , yp | s1, . . . , sq〉 of ∆ appear stop and output “Γ ≈ ∆”.

Process 2: Look for obstructions from ∆ to Γ and vice versa.
Take F1 ⊂ F2 ⊂ . . ., E1 ⊂ E2 ⊂ . . . finite exhaustions (group
elements represented as words) of Γ \ {1},∆ \ {1} and check the
truth of the first order sentences∗

Γ |= ∃y1, . . . , yp

( q∧
i=1

si (y1, . . . , yp) = 1
)
∧
( ∧

f ∈Ek

f (y1, . . . , yp) 6= 1
)

∆ |= ∃x1, . . . , xn

( m∧
i=1

ri (x1, . . . , xn) = 1
)
∧
( ∧

e∈Fk

e(x1, . . . , xn) 6= 1
)



The isomorphism problem: the rigid case
We now have two processes.

Process 1: Enumerate via Tietze transformations all presentations
isomorphic to 〈x1, . . . , xn | r1, . . . rm〉. If our presentation
〈y1, . . . , yp | s1, . . . , sq〉 of ∆ appear stop and output “Γ ≈ ∆”.

Process 2: Look for obstructions from ∆ to Γ and vice versa.
Take F1 ⊂ F2 ⊂ . . ., E1 ⊂ E2 ⊂ . . . finite exhaustions (group
elements represented as words) of Γ \ {1},∆ \ {1} and check the
truth of the first order sentences∗

Γ |= ∃y1, . . . , yp

( q∧
i=1

si (y1, . . . , yp) = 1
)
∧
( ∧

f ∈Ek

f (y1, . . . , yp) 6= 1
)

∆ |= ∃x1, . . . , xn

( m∧
i=1

ri (x1, . . . , xn) = 1
)
∧
( ∧

e∈Fk

e(x1, . . . , xn) 6= 1
)



The isomorphism problem: the rigid case
We now have two processes.

Process 1: Enumerate via Tietze transformations all presentations
isomorphic to 〈x1, . . . , xn | r1, . . . rm〉. If our presentation
〈y1, . . . , yp | s1, . . . , sq〉 of ∆ appear stop and output “Γ ≈ ∆”.

Process 2: Look for obstructions from ∆ to Γ and vice versa.
Take F1 ⊂ F2 ⊂ . . ., E1 ⊂ E2 ⊂ . . . finite exhaustions (group
elements represented as words) of Γ \ {1},∆ \ {1} and check the
truth of the first order sentences∗

Γ |= ∃y1, . . . , yp

( q∧
i=1

si (y1, . . . , yp) = 1
)
∧
( ∧

f ∈Ek

f (y1, . . . , yp) 6= 1
)

∆ |= ∃x1, . . . , xn

( m∧
i=1

ri (x1, . . . , xn) = 1
)
∧
( ∧

e∈Fk

e(x1, . . . , xn) 6= 1
)



The isomorphism problem: the rigid case

Process 2 ends if one of these sentences is false, in which case we
have found an obstruction and conclude “Γ 6≈ ∆”.

Process 2 is doable because by results Makanin, Rips-Sela, and Sela
the existential theory of torsion free hyperbolic groups is decidable.

Dahmani showed that the universal theory of a torsion free
relatively hyperbolic groups is decidable provided the existential
theory is decidable in the parabolic subgroups.

Dahmani and Guirardel then showed that this is decidable for
virtually free groups and used this for the case of arbitrary
hyperbolic groups.
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The isomorphism problem: an existential crisis

Theorem (Roman’kov 1979)

The existential theory of nilpotent groups is undecidable.

Theorem (Truss 1995)

Let G a free nilpotent group of rank 2 and class 3. Then the
problem of determining the solubility of general systems of
euqations in G is undecidable.

To make things worse Step 1 in the previous methods (compute
the JSJ) also heavily makes use of equationnal methods.
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Dehn fillings.

Let (G ,P) and (H,Q) relatively hyperbolic groups with
P = [P1] ∪ · · · ∪ [Ps ],Q = [Q1] ∪ · · · ∪ [Qs ]. With Q,P collections
of residually finite groups∗.

Let

Kn = 〈〈P(n)
1 , . . . ,P

(n)
s 〉〉 C G where P

(n)
i =

⋂
[Pi :H]≤n

H

and define Ln C H similarly.
We call G/Kn the nth characteristic Dehn filling. For n >> 0
G/Kn is hyperbolic relative to

Pn =
s⋃

i=1

[Pi/(Pi ∩ Kn)] and Pi/Kn ≈ Pi/P
(n)
i .

This is due to Osin and Groves-Manning.
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Dahmani and Guirardel’s approach to rigid case.

Dahmani and Guirardel have announced the following: Let (G ,P)
(H,Q) be f.p. rigid relatively hyperbolic groups with residually
finite peripheral subgroups.

Then if there exist α1, α2, . . . such
that for all 0 << n < m
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Dahmani and Guirardel’s approach to rigid case.

This essentially enables Dahmani and Guirardel to reduce the
isomorphism problem for rigid relatively hyperbolic groups (with
r.f. parabolics, and some other technical criteria) to the
isomorphism problem for hyperbolic groups with torsion.



Finding the JSJ

With Nicholas’ track finding algorithm∗ (arXiv 2011)

it is possible to decide whether a torsion free relatively hyperbolic
group (G ,P) admits an essential elementary splitting without
having to resort to solving equations, provided P belongs to a class
of algorithmically tractable groups.
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Finding the JSJ

Following Guirardel and Levitt we chose our canonical JSJ
decomposition to be dual to a (G ,P)-tree T c which is obtained as
the tree of cyclinders for co-elementarity of some tree (G ,P)-tree
T living in the (G ,P) JSJ deformation space.

Their (arXiv 2010) result that T c is also maximal universally
compatible, combined with Nicholas’ result gives a relatively
straightforward algorithm∗ to compute the canonical JSJ
decomposition.

Theorem (Dahmani-T)

If (G ,P) is relatively hyperbolic with P algorithmically tractable
and effectively coherent, then we can compute the canonical JSJ
decomposition of (G ,P).
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Then the map X ′ → X given by x ′ 7→ x is induced by an
isomorphism π1(X)
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Putting things together: outer automorphisms

Let (G ,P) relatively hyperbolic with P = [P1] ∪ · · · ∪ [Ps ],
clasically we have Out(G ) = Aut(G )/Inn(G )

we further define

Out(G ,P) = {[α] ∈ Out(G ) | ∃g1, . . . , gs ∈ G , α(Pi ) = g−1i Pig}.

Fact 1: For each Pi (since these are self-normalized) there is a
well defined “restriction”

Out(G ,P)→ Out(Pi )

Fact 2: If (G ,P) is rigid then Out(G ,P) is finite..
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Putting things together: the relatively hyperbolic case
Each white vertex groups Γv comes equipped with an induced rel.
hyp. structure (Γv ,Pv ) in which the images of the edge groups are
parabolic subgroups.∗ and such that (Γv ,Pv ) is rigid.

So for any
tuple of generators S = (s1, . . . , sn) its images
S ′αv ,ge+

= g−1e+ ψv ◦ αv (S)ge+
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Take on only finitely many possible values up to conjugacy in Γe
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Putting things together: the relatively hyperbolic case

So let T be defined as:
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We need to find αT ,S ′ , gT ,S ′ so that adGT ,S′ ◦ αT ,S ′(T ) = S ′.
Things get more complicated because black vertex groups can have
multiple incident edge groups.∗.
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Putting things together: the mixed Whitehead problem

Let (S1, . . . ,Sn), (T1, . . . ,Tn) be a tuple of tuples of elements in G
the mixed Whitehead problem (MWHP) asks whether there exists
some α ∈ Aut(G ) and g1, . . . , gn ∈ G such that g−1i α(Si )gi = Ti .

Theorem (Dahmani-T)

The MWHP is solvable in the class of f.g. nilpotent groups.

The proof heavily relies on the algorithmic methods developped by
Grunewald and Segal to solve orbit problems for rational actions of
arithmetic groups.
Bogopolski and Ventura also proved the MWHP (and coined the
term) for t.f. hyperbolic groups.
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Putting things together: reduction to the mixed Whitehead
problem

Suppose it was possible for every white vertex v group to construct
the finite list of images S ′αv ,ge+

= g−1e+ αv ◦ ψv (S)ge+ up to
conjugacy in Γu.
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Then the isomorphism problem can be reduced to finitely many
instances of the MWHP in the black vertex groups.



Putting things together: reduction to the mixed Whitehead
problem

Suppose it was possible for every white vertex v group to construct
the finite list of images S ′αv ,ge+

= g−1e+ αv ◦ ψv (S)ge+ up to
conjugacy in Γu.

Γu

Γ′u

Γv

Γv ′Γe′

Γe

iete

ie′te′

Γu

ψu

Γv

ψv

Γv

αv

adge+

S

S ′αv ,ge+

Then the isomorphism problem can be reduced to finitely many
instances of the MWHP in the black vertex groups.



Putting things together: orbit computations

Let (G ,P) with P = [P1] ∪ · · · ∪ [Ps ] be relatively hyperbolic, the
we have the well defined “restriction” map Out(G ,P)→ Out(Pi ).

If (G ,P) is rigid then the image T = r(Out(G ,P)) of

r : Out(G ,P)→
n⊕

i=1

Out(Pi )

is finite.
For our purposes it is in fact sufficient to compute T , i.e. find a
set L = {α, . . . , αr} ⊂ Aut(G ,P) which give representatives of T ,
to construct the finite list of images needed for our reduction to
the MWHP.

By the way we do not know how to compute Out(G ,P) (all known
methods involve equationnal methods.)
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A digression:separating torsion in Out(P)

Let P be a group, we say that congruences of P separate the
torsion in Out(P) if there is some finite index characteristic
subgroup P0 C P such that in the natural map

πP0 : Out(P)→ Out(P/Po)

every finite order [α] ∈ Out(P) survives, equivalently the kernel of
πP0 is torsion free.

A celebrated example is for P = Zm, then every finite order
element of GL(m,Z) survives in GL(m,Z/nZ) for n sufficiently
large.
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A digression:separating torsion in Out(P)

We say that congruences of P effectively separate the torsion in
Out(P) if there is an algorithm which finds a finite index
characteristic subgroup P0 which is “deep enough” so that
ker(πP0) is torsion free.

Theorem (Segal, private communication)

If P polycyclic-by-finite then congruences of P separate the torsion
in Out(P).

Theorem (Dahmani-T)

There is a uniform algorithm for all f.g. nilpotent groups so that if
N is nilpotent then congruences of N effectively separate the
torsion in Out(N).
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Putting things together: orbit computations
So going back to our (G ,P) with P = [P1] ∪ · · · ∪ [Ps ] if
congruences in Pi effectively separate the torsion in Out(Pi ) then
we can pick N so large that for n ≥ N,

I The nth characteristic Dehn filling (G/Kn,Pn) is relatively
hyperbolic with Pn = [P1/Kn] ∪ · · · ∪ [Ps/Kn].

I The map

T →
n⊕

i=1

Out(Pi/Kn)

induced by

Out(G ,P)

Out(G/Kn,Pn)

Out(Pi )

Out(Pi/Kn)

is injective.
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I The map

T →
n⊕

i=1

Out(Pi/Kn)

induced by

Out(G ,P)

Out(G/Kn,Pn)

Out(Pi )

Out(Pi/Kn)

is injective.



Computing T

The computability of T now follows from an enumeration argument
that uses the Dahmani-Guirardel isomorphism lifting principle,

i.e.

(G ,P)

(G/Km,Pm)

(G/Kn,Pn)

(H,Q)

(H/Lm,Qm)

(H/Ln,Qn)

αm

≈

αn

≈

∃α
≈

and the fact that automorphisms of a group with solvable word
problem are enumerable.
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The criteria

A class C of groups is said to be algorithmically tractable if

I The finite presentation of the groups in C are recursively
enumerable.

I The conjugacy problem is uniformly solvable in C.

I The generation problem is uniformly solvable in C.

Limit groups, certain classes of small cancellation groups (i.e.
those with some type of effective coherence), and
polycyclic-by-finite groups lie in this class.
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Theorem (Dahmani-T)

There is an algorithm which takes explicit presentations of torsion
free relatively hyperbolic groups (G , [P1] ∪ · · · ∪ [Ps ]),
(H, [Q1] ∪ · · · ∪ [Qs ]) and provided the Pi ,Qj lie in a class C of
groups

1. that is algorithmically tractable,

2. that is uniformly effectively coherent,

3. in which we can solve the isomorphism problem,

4. in which the mixed Whitehead problem is uniformly solvable,
and

5. in which congruence effectively separate torsion;

then the algorithm decides whether or not the two groups

(G , [P1] ∪ · · · ∪ [Ps ]), (H, [Q1] ∪ · · · ∪ [Qs ])

are isomorphic.


