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Introduction

Ends

Let G “ xSy be generated by the finite set S . We say G is many ended if
its Cayley graph Cay pG ,Sq can be separated into at least two infinite
connected components by the removal of a finite set C .

C8
8
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Introduction

Stallings’s Theorem

Stallings’s theorem tells us that the finite cut set C can be chosen to give
a G -tree. In particular this tree has finite edge stabilizers.
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Introduction

Bass-Serre theory

Bass-Serre theory establishes the correspondence between G -trees and
splittings of G as (the fundamental groups of) graphs of groups. The
fundamental examples; let G ñ T :

1 If

GzT “

then G is an HNN extension, i.e. G “ xA, t | t´1at “ φpaq; a P Cy
where C ,C 1 ď A and φ : C

„
Ñ C 1. We also write G “ A˚tC .

2 If
GzT “

then G is an amalgamated free product, i.e. G “ A ˚C B where
A ě C ď B.
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Introduction

Terminology

In the previous examples the groups A,B are called vertex groups and the
groups C are called edge groups. We will sometimes label the vertices and
edges of GzT by the corresponding groups.

A C

A˚tC

A

C

B

A ˚C B
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Introduction

A working definition

We say G is one ended if it does not split as an amalgamated free product
or an HNN extension with finite edge group.

Let H ď G . We say G is one ended relative to H if it is impossible to
decompose G non-trivially as a graph of groups (and in particular an a.f.p.
or HNN extension) with finite edge groups such that H is conjugate into
one of the vertex groups.
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Introduction

Relative one-endedness, an example

Let H “ xra, bsy ď Fpa, bq, where ra, bs “ a´1b´1ab. We will show that
Fpa, bq is one ended relative to H.

First note that, free groups only have trivial finite subgroups, and for all
free products with amalgamation (=free product) and HNN extensions we
have

Fpa, bq

t1u

Fpc , dq
« Fpa, b, c, dq

Fpa, bq t1u « xa, b, t |(((((
t´11t “ 1y “ Fpa, b, tq
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Introduction

Relative one-endedness, an example

It follows that the only non-trivial splittings of Fpa, bq as an a.f.p. or an
HNN extension with finite edge group are

xsy

t1u

xty
“ xsy ˚ xty “ Fps, tq

xsy t1u “ xs, ty “ Fps, tq

So if Fpa, bq is not one-ended relative to H we have w.l.o.g. that
ra, bs “ sn P xsy for some n ‰ 0.
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Introduction

Relative one-endedness, an example

Since s P Fpa, bq is a basis element it is mapped to a basis element via the
abelianization ab : Fpa, bq� Fpa, bq{rFpa, bq,Fpa, bqs « Z2. It therefore
follows that abpsq ‰ ~0.

Now, abpra, bsq “ abpsnq “ n ¨ abpsq ‰ ~0, which is absurd since the
commutator ra, bs “ a´1b´1ab must vanish.

It follows that H cannot be conjugated into a vertex group of a non-trivial
splitting of Fpa, bq with finite edge groups, i.e. Fpa, bq is one-ended
relative to H.
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The main result

A recipe to make one-ended groups

A group is virtually cyclic if it has a finite index subgroup isomorphic to Z.
These groups are also called two-ended.

Theorem (T, Main corollary)

If G1 is one ended relative to the subgroup C1 ď G1, and G2 is one ended
relative to the subgroup C2 ď G2 with C1 « C2 virtually cyclic groups,
then any free product with amalgamation of the form

G1 ˚C1“C2 G2

is one ended.

Answers a question asked privately by John MacKay and Alessandro Sisto.
A more general result about the one-endedness of arbitrary graphs of
groups will be given later (it is more technical.)
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The main result

The theorem in action

π1pΣq “ Fpa, bq ˚ra,bs Fpa, bq

Σ “

and π1pΣq is one ended . . .
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The main result

because Caypπ1pΣqq looks like rΣ, which looks like . . .
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The main result

Known Corollaries

Theorem (Schenitzer, Stallings, Swarup)

If a free group decomposes as F “ A ˚C B with C infinite cyclic, then C is
a free factor of A or B.

Chris Cashen recently generalized this result to virtually free groups with a
virtually cyclic splitting. Swarup, and Diao-Feighn, obtained a more
technical statement describing all splittings of free groups as HNN
extensions and amalgamated free products. Using our new machinery we
can generalize this to splittings of virtually free groups.

Theorem (Baumslag)

Let xh1, . . . , hny “ H ď F. If there is some word wph1, . . . , hnq which is
not a proper power and not primitive but such that g “ wph1, . . . , hnq P F
is a proper power, then the set th1, . . . , hnu is not a basis for H ď F; i.e.
rkpHq ă n.

N. Touikan On one-endedness 2014 13 / 36



The main result

Known Corollaries

Theorem (Schenitzer, Stallings, Swarup)

If a free group decomposes as F “ A ˚C B with C infinite cyclic, then C is
a free factor of A or B.

Chris Cashen recently generalized this result to virtually free groups with a
virtually cyclic splitting. Swarup, and Diao-Feighn, obtained a more
technical statement describing all splittings of free groups as HNN
extensions and amalgamated free products. Using our new machinery we
can generalize this to splittings of virtually free groups.

Theorem (Baumslag)

Let xh1, . . . , hny “ H ď F. If there is some word wph1, . . . , hnq which is
not a proper power and not primitive but such that g “ wph1, . . . , hnq P F
is a proper power, then the set th1, . . . , hnu is not a basis for H ď F; i.e.
rkpHq ă n.

N. Touikan On one-endedness 2014 13 / 36



The main result

Known Corollaries

Theorem (Schenitzer, Stallings, Swarup)

If a free group decomposes as F “ A ˚C B with C infinite cyclic, then C is
a free factor of A or B.

Chris Cashen recently generalized this result to virtually free groups with a
virtually cyclic splitting. Swarup, and Diao-Feighn, obtained a more
technical statement describing all splittings of free groups as HNN
extensions and amalgamated free products. Using our new machinery we
can generalize this to splittings of virtually free groups.

Theorem (Baumslag)

Let xh1, . . . , hny “ H ď F. If there is some word wph1, . . . , hnq which is
not a proper power and not primitive but such that g “ wph1, . . . , hnq P F
is a proper power, then the set th1, . . . , hnu is not a basis for H ď F; i.e.
rkpHq ă n.

N. Touikan On one-endedness 2014 13 / 36



The main result

Novelties

The main Corollary was folklorically known to be true for torsion-free
groups and is proved using graph of spaces methods. We use a more
abstract structure, namely Guirardel’s cocompact core, which can deal
with torsion.

Swarup used advanced homological methods which only work without
torsion. The proof we will give is elementary, modulo Bass-Serre theory
and Guirardel’s compact core theorem.
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Preliminaries

Strategy of proof of the Main Corollary

We have a group G that splits as G “ G1 ˚C G2 with C virtually cyclic;
this splitting corresponds to an action on a tree T8. Suppose that G also
splits as G “ A ˚F B with F finite; and corresponding tree TF .

By analyzing the actions of G on T8 and TF simultaneously we will show
that, say, G1 splits non-trivially as a graph of groups with finite edge
groups in which C ď G1 is conjugate into a vertex group.
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Preliminaries

Group actions

Let X be some G -complex (e.g. a graph, a square complex). If S Ă X
then we write

Gs “ tg P G | gS “ Su

i.e. GS is the subgroup that maps S Ă X to itself.

An action G ñ X is called without inversion if whenever σ Ă ρ are cells
then we have the reverse inclusion of stabilizers Gσ ě Gρ. E.g. if in a tree
we have:

u
e

v

Gu ě Ge ď Gv

All our action will be without inversions.
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Preliminaries

Cocompact and minimal actions, regular subsets

An action G ñ X is said to be cocompact if the quotient GzX is compact.

G ñ X is said to be minimal if there is no proper connected subcomplex
Y Ă X such that GY “ Y .

A subset S Ă X is called G -regular if for every x , y P S there is g P G such
that gx “ y if and only if there is some h P GS such that hx “ y . This is a
necessary and sufficient condition for there to be a natural inclusion

GSzS ãÑ GzX .
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Preliminaries

Examples (cocompact, minimal)

T “ Cay pFpa, bq, ta, buq
G “ Fpa, bq

b

a

GzT “

�

N. Touikan On one-endedness 2014 18 / 36



Preliminaries

Examples (cocompact, minimal)

T “ Cay pFpa, bq, ta, buq
G “ xay

b

a

GzT “

�

N. Touikan On one-endedness 2014 18 / 36



Preliminaries

Examples (cocompact, minimal)

T “ T pxayq

G “ xay
b

a

GzT pxayq “

�
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Preliminaries

Examples (regular)

. . . . . .

S “

GS “ xay

xayzS “ ãÑ
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Preliminaries

Examples (regular)

. . . . . .

S “

GS “ xay

xayzS “ ãÑ

. . . . . .

U “

GU “ xay

xayzU “ ãÑ
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Preliminaries

Direct products of trees

To study G ñ T8 and G ñ TF simultaneously we can look at the action
G ñ T8 ˆ TF . This product of trees is what is known as a square
complex.
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Preliminaries

Direct products of trees

Given a product T8 ˆ TF we have natural G -equivariant projections onto
the factors

T8 ˆ TF T8

TF

p8

pF

which restrict naturally to G -invariant subsets S Ă T8 ˆ TF .

The fibers
of, say, p8 are copies of TF (and vice-versa).

N. Touikan On one-endedness 2014 21 / 36



Preliminaries

Direct products of trees

Given a product T8 ˆ TF we have natural G -equivariant projections onto
the factors

T8 ˆ TF T8

TF

p8

pF

which restrict naturally to G -invariant subsets S Ă T8 ˆ TF . The fibers
of, say, p8 are copies of TF (and vice-versa).

N. Touikan On one-endedness 2014 21 / 36



Preliminaries

The cocompact core

Theorem (Guirardel’s Core Theorem)

Let G ñ T1, G ñ T2 be two minimal actions of a finitely generated group
G on simplicial trees T1,T2 with finitely generated edge stabilizers. Then
there is a G -invariant subset C Ă T1 ˆ T2 called the core of the action
G ñ T1 ˆ T2 which satisfies the following properties:

1 The fibres of the projections pi |C : C � Ti are connected.

2 GzC is compact
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Preliminaries

Induced trees

v
τv

Ti C

N. Touikan On one-endedness 2014 23 / 36



Preliminaries

Induced trees

v
τv

Ti C

me τe

N. Touikan On one-endedness 2014 23 / 36



Preliminaries

Induced trees

v
τv

Ti C

me τe

”Hypercarrier”
H pτeq “ τe ˆ r´1, 1s
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Induced trees

v
τv
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me τe

u
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Preliminaries

Induced trees

v
τv

Ti C

me τe

u

τu

w τw
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Preliminaries

Induced trees

For v P Vertices pTi q and e P Edges pTi q the preimages τv , τe in C are
connected by (1) of the Core Theorem, so they are Gv ,Ge-trees
respectively.

By the cocompacity given by (2) of the Core Theorem. Because they are
fibers of G -equivariant projections, the subsets τv , τe Ă C are regular and
stabilized by Gv ,Ge , respectively.

GzC

compact

Gvzτv Gezτe

Therefore τv , τe are cocompact Gv ,Ge-trees.
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Preliminaries

Induced trees

For v P Vertices pTi q, the group Gv may act non-trivially on Tj (the other
tree)

v τv

Ti C

Tj

Pj |τv

Gv ñ

The Gv -tree τv projects injectively to a Gv -invariant subtree of Tj

N. Touikan On one-endedness 2014 25 / 36



Obtaining a splitting

What were we doing again?

The decomposition G “ G1 ˚C G2 with C virtually Z is dual to an action
G ñ T8 and the decomposition G “ A ˚F B with F finite is dual to an
action G ñ TF .

We will consider the tree T8 to be vertical and the tree TF to be
horizontal.

We want to use the splitting G “ A ˚F B to obtain a splitting of either G1

or G2 with finite edge groups in which C is conjugate into a vertex group.

We will assume that the edge group C acts non-trivially on TF , otherwise
one of the trees τv , v P Vertices pT8q automatically gives the desired
splitting.
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Obtaining a splitting

T8 is vertical TF is horizontal
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Vertical hypercarriers are finite
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Obtaining a splitting

Vertical hypercarriers are finite

T8

TF

f

Gf is finite and acts cocompactly

ñ τf is finite, so it has ”leaves”

on τf .
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Obtaining a splitting

Vertical hypercarriers are finite
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TF
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Obtaining a splitting

Shaving to minimal trees

If necessary, we may G -equivariantly remove squares from the core C to
obtain a connected G -complex Cs Ă C called the 8-minimal core. Which
has the property that for every v P Vertices pT8q, e P Edges pT8q, the
fibres τv , τe are minimal Gv ,Ge-trees, respectively.

For f P Edges pTF q, the fibres τf may not be connected anymore, but they
remain finite forests. The complex Cs therefore still has horizontal free
faces.
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Obtaining a splitting

Getting a splitting of a T8 vertex group

T8
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Obtaining a splitting

Getting a splitting of a T8 vertex group

v
e

ñ cyan and yellow vertex stabilizers are finite

thus green and purple edge have finite stabilizers

f

Minimal Gf -tree

Ge ,Gf are virtually cycllic
Minimal Ge-tree
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Obtaining a splitting

Getting a splitting of a T8 vertex group
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Obtaining a splitting

Getting a splitting of a T8 vertex group

v
e

Stabilizers of non-blue vertices of qTv are conjugate in G to C

and edge sabilizers are finite; thus Gv „ G1 or G2 is many ended rel. C .

qTv

This completes the proof.

f

Fixed by Gf

Fixed by Ge
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The general result

The general result

It turns out that the procedure that was just described will work for any
many ended graph of groups, even if we are working relative to a collection
of subgroups.

We write A ă B if A is the vertex group of a splitting of B with finite edge
groups. If B is torsion free then A ă B ô A is a free factor of B.
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The general result

The general result

If G is a many ended graph of groups. . .
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D

B
E

C

H J K

L

I

Where C1,C2 ă C and B1,B2 ă B.
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The general result

The general result

By Dunwoody/Linnell accessibility (which holds for large classes of groups)
we cannot have infinite chains

C ą C1 ą C2 ą . . .

so this gives really gives a splitting in terms of “simpler” groups.

A

D

E
C

H J K

L

C C1

C2

B1

B2

B

I

Repeatedly applying this operation will give a Dunwoody decomposition.
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Conclusion

Why?

1 It is a theorem of Bonk and Kleiner that the Cayley graph of a one
ended δ-hyperbolic group admits a quasi-isometrically embedded H2.
MacKay and Sisto generalized this to relatively hyperbolic groups.
There is interesting geometry at work.

2 To promote Guirardel Cores. These are used in my joint paper with
Lars Louder on strong accessibility, and were used by Fujiwara and
Papasoglu to construct QH subgroups in JSJ decompositions.

Related
structures (e.g. the core of the action of n trees) should be better
understood because they will shed more light on the ways groups split.

3 This is fundamental progress in dealing with torsion.
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Conclusion

Torsion has been problematic (for me.)

Theorem (T)

There is a procedure which takes as input a group presentation
G “ xX | Ry that is a finite and a solution to the word problem w.r.t. this
presentation and outputs whether or not G splits non-trivially as a free
product.

The output is only correct if G has no elements of order 2.

Furthermore, my Strong Accessibility result doesn’t work in the presence
of Z2 ˚ Z2-type edge groups.
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Thank you

Thank you!
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