On the one-endedness of graphs of groups

Nicholas Touikan

April 24 2014 Stevens Institute of Technology

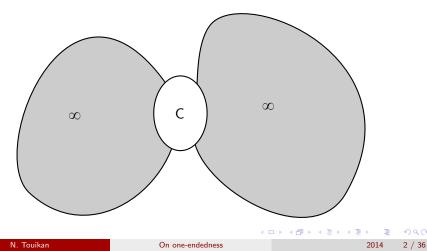
N. Touikan

2014 1 / 36

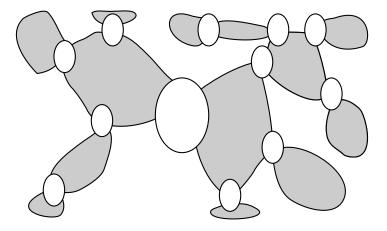
< 3 > < 3 >

Ends

Let $G = \langle S \rangle$ be generated by the finite set S. We say G is many ended if its Cayley graph Cay(G, S) can be separated into at least two infinite connected components by the removal of a finite set C.



Stallings's Theorem

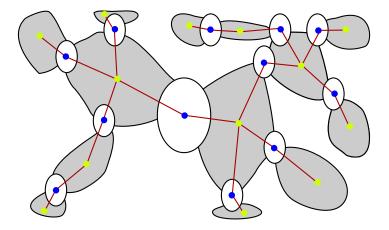


2014 3 / 36

3

・ロト ・四ト ・ヨト ・ヨト

Stallings's Theorem



Stallings's theorem tells us that the finite cut set C can be chosen to give a G-tree. In particular this tree has finite edge stabilizers.

Bass-Serre theory

Bass-Serre theory establishes the correspondence between *G*-trees and splittings of *G* as (the fundamental groups of) graphs of groups. The fundamental examples; let $G \sim T$:

イロト イポト イヨト イヨト

Bass-Serre theory

Bass-Serre theory establishes the correspondence between *G*-trees and splittings of *G* as (the fundamental groups of) graphs of groups. The fundamental examples; let $G \sim T$:

1 If

$$G \setminus T = \bullet$$

then *G* is an HNN extension, i.e. $G = \langle A, t | t^{-1}at = \phi(a); a \in C \rangle$ where $C, C' \leq A$ and $\phi : C \xrightarrow{\sim} C'$. We also write $G = A *_C^t$.

イロト イポト イヨト イヨト 二日

Bass-Serre theory

Bass-Serre theory establishes the correspondence between *G*-trees and splittings of *G* as (the fundamental groups of) graphs of groups. The fundamental examples; let $G \sim T$:

1 If

$$G \setminus T = \bullet$$

then G is an HNN extension, i.e. $G = \langle A, t | t^{-1}at = \phi(a); a \in C \rangle$ where $C, C' \leq A$ and $\phi : C \xrightarrow{\sim} C'$. We also write $G = A *_C^t$. 2 If

$$G \setminus T = \bullet \frown \circ$$

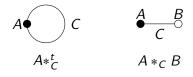
then G is an amalgamated free product, i.e. $G = A *_C B$ where $A \ge C \le B$.

2014 4 / 36

イロト 不得 トイヨト イヨト 二日

Terminology

In the previous examples the groups A, B are called *vertex groups* and the groups C are called *edge groups*. We will sometimes label the vertices and edges of $G \setminus T$ by the corresponding groups.



イロト 不得下 イヨト イヨト

A working definition

We say G is one ended if it does not split as an amalgamated free product or an HNN extension with finite edge group.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A working definition

We say G is one ended if it does not split as an amalgamated free product or an HNN extension with finite edge group.

Let $H \leq G$. We say G is one ended relative to H if it is impossible to decompose G non-trivially as a graph of groups (and in particular an a.f.p. or HNN extension) with finite edge groups such that H is conjugate into one of the vertex groups.

イロト イポト イヨト イヨト

Let $H = \langle [a, b] \rangle \leq \mathbb{F}(a, b)$, where $[a, b] = a^{-1}b^{-1}ab$. We will show that $\mathbb{F}(a, b)$ is one ended relative to H.

Let $H = \langle [a, b] \rangle \leq \mathbb{F}(a, b)$, where $[a, b] = a^{-1}b^{-1}ab$. We will show that $\mathbb{F}(a, b)$ is one ended relative to H.

First note that, free groups only have trivial finite subgroups, and for all free products with amalgamation (=free product) and HNN extensions we have

$$\underbrace{\mathbb{F}(a,b) \quad \mathbb{F}(c,d)}_{\{1\}} \approx \mathbb{F}(a,b,c,d)$$

$$\mathbb{F}(a,b) \bullet \qquad \{1\} \quad \approx \langle a,b,t \mid \underline{t^{-1}} + \underline{t} = 1 \rangle = \mathbb{F}(a,b,t)$$

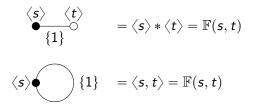
イロト 不得下 イヨト イヨト 二日

It follows that the only non-trivial splittings of $\mathbb{F}(a, b)$ as an a.f.p. or an HNN extension with finite edge group are



イロト イ団ト イヨト イヨト 三日

It follows that the only non-trivial splittings of $\mathbb{F}(a, b)$ as an a.f.p. or an HNN extension with finite edge group are



So if $\mathbb{F}(a, b)$ is not one-ended relative to H we have w.l.o.g. that $[a, b] = s^n \in \langle s \rangle$ for some $n \neq 0$.

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Since $s \in \mathbb{F}(a, b)$ is a basis element it is mapped to a basis element via the abelianization $ab : \mathbb{F}(a, b) \twoheadrightarrow \mathbb{F}(a, b) / [\mathbb{F}(a, b), \mathbb{F}(a, b)] \approx \mathbb{Z}^2$. It therefore follows that $ab(s) \neq \vec{0}$.

Since $s \in \mathbb{F}(a, b)$ is a basis element it is mapped to a basis element via the abelianization $ab : \mathbb{F}(a, b) \twoheadrightarrow \mathbb{F}(a, b) / [\mathbb{F}(a, b), \mathbb{F}(a, b)] \approx \mathbb{Z}^2$. It therefore follows that $ab(s) \neq \vec{0}$.

Now, $ab([a, b]) = ab(s^n) = n \cdot ab(s) \neq \vec{0}$, which is absurd since the commutator $[a, b] = a^{-1}b^{-1}ab$ must vanish.

Since $s \in \mathbb{F}(a, b)$ is a basis element it is mapped to a basis element via the abelianization $ab : \mathbb{F}(a, b) \twoheadrightarrow \mathbb{F}(a, b) / [\mathbb{F}(a, b), \mathbb{F}(a, b)] \approx \mathbb{Z}^2$. It therefore follows that $ab(s) \neq \vec{0}$.

Now, $ab([a, b]) = ab(s^n) = n \cdot ab(s) \neq \vec{0}$, which is absurd since the commutator $[a, b] = a^{-1}b^{-1}ab$ must vanish.

It follows that H cannot be conjugated into a vertex group of a non-trivial splitting of $\mathbb{F}(a, b)$ with finite edge groups, i.e. $\mathbb{F}(a, b)$ is one-ended relative to H.

イロト 不得下 イヨト イヨト 二日

A group is *virtually cyclic* if it has a finite index subgroup isomorphic to \mathbb{Z} . These groups are also called *two-ended*.

→ < ∃ > < ∃ >

A group is *virtually cyclic* if it has a finite index subgroup isomorphic to \mathbb{Z} . These groups are also called *two-ended*.

Theorem (T, Main corollary)

If G_1 is one ended relative to the subgroup $C_1 \leq G_1$, and G_2 is one ended relative to the subgroup $C_2 \leq G_2$ with $C_1 \approx C_2$ virtually cyclic groups, then any free product with amalgamation of the form

$$G_1 *_{C_1 = C_2} G_2$$

is one ended.

A group is *virtually cyclic* if it has a finite index subgroup isomorphic to \mathbb{Z} . These groups are also called *two-ended*.

Theorem (T, Main corollary)

If G_1 is one ended relative to the subgroup $C_1 \leq G_1$, and G_2 is one ended relative to the subgroup $C_2 \leq G_2$ with $C_1 \approx C_2$ virtually cyclic groups, then any free product with amalgamation of the form

$$G_1 *_{C_1 = C_2} G_2$$

is one ended.

Answers a question asked privately by John MacKay and Alessandro Sisto.

A group is *virtually cyclic* if it has a finite index subgroup isomorphic to \mathbb{Z} . These groups are also called *two-ended*.

Theorem (T, Main corollary)

If G_1 is one ended relative to the subgroup $C_1 \leq G_1$, and G_2 is one ended relative to the subgroup $C_2 \leq G_2$ with $C_1 \approx C_2$ virtually cyclic groups, then any free product with amalgamation of the form

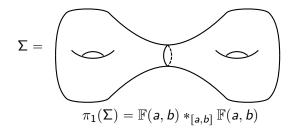
$$G_1 *_{C_1 = C_2} G_2$$

is one ended.

Answers a question asked privately by John MacKay and Alessandro Sisto. A more general result about the one-endedness of arbitrary graphs of groups will be given later (it is more technical.)

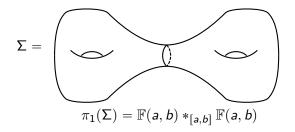
イロト イポト イヨト イヨト

The theorem in action



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

The theorem in action

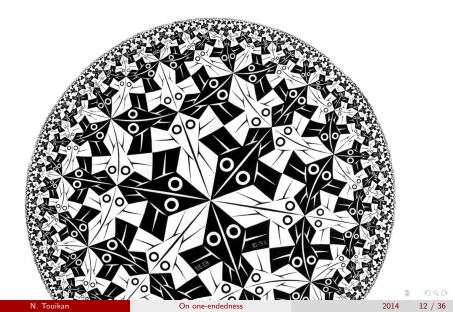


and $\pi_1(\Sigma)$ is one ended . . .

イロト イヨト イヨト イヨト

The main result

because $\operatorname{Cay}(\pi_1(\Sigma))$ looks like $\widetilde{\Sigma}$, which looks like ...



Known Corollaries

Theorem (Schenitzer, Stallings, Swarup)

If a free group decomposes as $\mathbb{F} = A *_C B$ with C infinite cyclic, then C is a free factor of A or B.

Known Corollaries

Theorem (Schenitzer, Stallings, Swarup)

If a free group decomposes as $\mathbb{F} = A *_C B$ with C infinite cyclic, then C is a free factor of A or B.

Chris Cashen recently generalized this result to virtually free groups with a virtually cyclic splitting. Swarup, and Diao-Feighn, obtained a more technical statement describing *all* splittings of free groups as HNN extensions and amalgamated free products. Using our new machinery we can generalize this to splittings of virtually free groups.

Known Corollaries

Theorem (Schenitzer, Stallings, Swarup)

If a free group decomposes as $\mathbb{F} = A *_C B$ with C infinite cyclic, then C is a free factor of A or B.

Chris Cashen recently generalized this result to virtually free groups with a virtually cyclic splitting. Swarup, and Diao-Feighn, obtained a more technical statement describing *all* splittings of free groups as HNN extensions and amalgamated free products. Using our new machinery we can generalize this to splittings of virtually free groups.

Theorem (Baumslag)

Let $\langle h_1, \ldots, h_n \rangle = H \leq \mathbb{F}$. If there is some word $w(h_1, \ldots, h_n)$ which is not a proper power and not primitive but such that $g = w(h_1, \ldots, h_n) \in \mathbb{F}$ is a proper power, then the set $\{h_1, \ldots, h_n\}$ is not a basis for $H \leq \mathbb{F}$; i.e. $\operatorname{rk}(H) < n$.

> < 同 > < 三 > < 三</p>

Novelties

The main Corollary was folklorically known to be true for torsion-free groups and is proved using graph of spaces methods. We use a more abstract structure, namely Guirardel's cocompact core, which can deal with torsion.

Swarup used advanced homological methods which only work without torsion. The proof we will give is elementary, modulo Bass-Serre theory and Guirardel's compact core theorem.

イロト 不得下 イヨト イヨト

Strategy of proof of the Main Corollary

We have a group G that splits as $G = G_1 *_C G_2$ with C virtually cyclic; this splitting corresponds to an action on a tree T_{∞} . Suppose that G also splits as $G = A *_F B$ with F finite; and corresponding tree T_F .

Strategy of proof of the Main Corollary

We have a group G that splits as $G = G_1 *_C G_2$ with C virtually cyclic; this splitting corresponds to an action on a tree T_{∞} . Suppose that G also splits as $G = A *_F B$ with F finite; and corresponding tree T_F .

By analyzing the actions of G on T_{∞} and $T_{\mathcal{F}}$ simultaneously we will show that, say, G_1 splits non-trivially as a graph of groups with *finite* edge groups in which $C \leq G_1$ is conjugate into a vertex group.

イロト 不得下 イヨト イヨト 二日

Group actions

Let X be some G-complex (e.g. a graph, a square complex). If $S \subset X$ then we write

$$G_s = \{g \in G \mid gS = S\}$$

i.e. G_S is the subgroup that maps $S \subset X$ to itself.

(日) (同) (三) (三)

Group actions

Let X be some G-complex (e.g. a graph, a square complex). If $S \subset X$ then we write

$$G_s = \{g \in G \mid gS = S\}$$

i.e. G_S is the subgroup that maps $S \subset X$ to itself.

An action $G \rightharpoonup X$ is called *without inversion* if whenever $\sigma \subset \rho$ are cells then we have the reverse inclusion of stabilizers $G_{\sigma} \ge G_{\rho}$. E.g. if in a tree we have:

 $G_u \geqslant G_e \leqslant G_v$

All our action will be without inversions.

イロト 不得下 イヨト イヨト 二日

An action $G \rightharpoonup X$ is said to be *cocompact* if the quotient $G \setminus X$ is compact.

(日) (周) (三) (三)

An action $G \rightharpoonup X$ is said to be *cocompact* if the quotient $G \setminus X$ is compact.

 $G \curvearrowright X$ is said to be *minimal* if there is no proper *connected* subcomplex $Y \subset X$ such that $G_Y = Y$.

(日) (同) (日) (日) (日)

An action $G \rightharpoonup X$ is said to be *cocompact* if the quotient $G \setminus X$ is compact.

 $G \curvearrowright X$ is said to be *minimal* if there is no proper *connected* subcomplex $Y \subset X$ such that $G_Y = Y$.

A subset $S \subset X$ is called *G*-regular if for every $x, y \in S$ there is $g \in G$ such that gx = y if and only if there is some $h \in G_S$ such that hx = y.

イロト イポト イヨト イヨト 二日

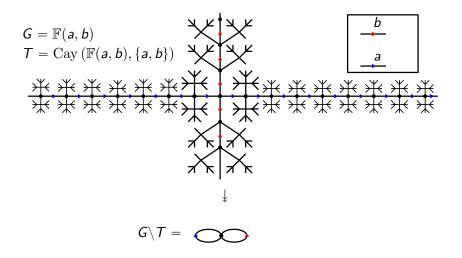
An action $G \rightharpoonup X$ is said to be *cocompact* if the quotient $G \setminus X$ is compact.

 $G \curvearrowright X$ is said to be *minimal* if there is no proper *connected* subcomplex $Y \subset X$ such that $G_Y = Y$.

A subset $S \subset X$ is called *G*-regular if for every $x, y \in S$ there is $g \in G$ such that gx = y if and only if there is some $h \in G_S$ such that hx = y. This is a necessary and sufficient condition for there to be a natural inclusion

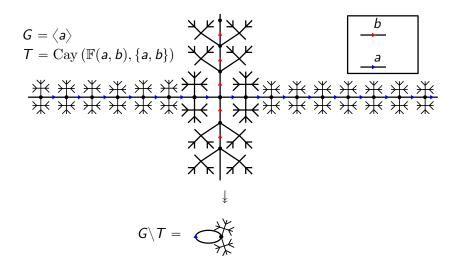
$$G_S \setminus S \hookrightarrow G \setminus X.$$

Examples (cocompact, minimal)



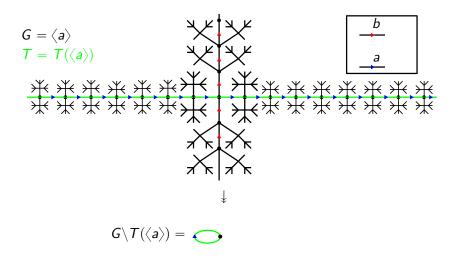
(日) (同) (三) (三)

Examples (cocompact, minimal)



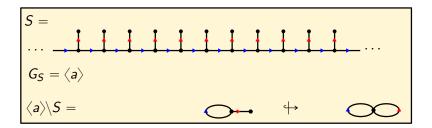
(日) (同) (三) (三)

Examples (cocompact, minimal)



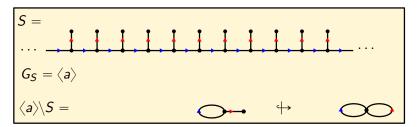
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

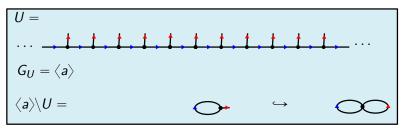
Examples (regular)



<ロ> (日) (日) (日) (日) (日)

Examples (regular)





≥ ৩৫৫ 2014 19/36

イロト イヨト イヨト イヨト

Direct products of trees

To study $G \rightharpoonup T_{\infty}$ and $G \rightharpoonup T_{\mathcal{F}}$ simultaneously we can look at the action $G \rightharpoonup T_{\infty} \times T_{\mathcal{F}}$. This product of trees is what is known as a *square complex*.

(日) (周) (三) (三)

Direct products of trees

Given a product $\mathcal{T}_\infty\times\mathcal{T}_\mathcal{F}$ we have natural G -equivariant projections onto the factors

$$\begin{array}{c} T_{\infty} \times T_{\mathcal{F}} \xrightarrow{\rho_{\infty}} T_{\infty} \\ p_{\mathcal{F}} \\ \downarrow \\ T_{\mathcal{F}} \end{array}$$

which restrict naturally to *G*-invariant subsets $S \subset T_{\infty} \times T_{\mathcal{F}}$.

イロト 不得 トイヨト イヨト 二日

Direct products of trees

Given a product $\mathcal{T}_\infty\times\mathcal{T}_\mathcal{F}$ we have natural G -equivariant projections onto the factors

$$\begin{array}{c} T_{\infty} \times T_{\mathcal{F}} \xrightarrow{p_{\infty}} T_{\infty} \\ p_{\mathcal{F}} \\ \downarrow \\ T_{\mathcal{F}} \end{array}$$

which restrict naturally to *G*-invariant subsets $S \subset T_{\infty} \times T_{\mathcal{F}}$. The fibers of, say, p_{∞} are copies of $T_{\mathcal{F}}$ (and vice-versa).

イロト イポト イヨト イヨト 二日

The cocompact core

Theorem (Guirardel's Core Theorem)

Let $G \curvearrowright T_1$, $G \curvearrowright T_2$ be two minimal actions of a finitely generated group G on simplicial trees T_1 , T_2 with finitely generated edge stabilizers. Then there is a G-invariant subset $C \subset T_1 \times T_2$ called the core of the action $G \curvearrowright T_1 \times T_2$ which satisfies the following properties:

イロト イ理ト イヨト イヨト

The cocompact core

Theorem (Guirardel's Core Theorem)

Let $G \curvearrowright T_1$, $G \curvearrowright T_2$ be two minimal actions of a finitely generated group G on simplicial trees T_1 , T_2 with finitely generated edge stabilizers. Then there is a G-invariant subset $C \subset T_1 \times T_2$ called the core of the action $G \curvearrowright T_1 \times T_2$ which satisfies the following properties:

• The fibres of the projections $p_i | C : C \rightarrow T_i$ are connected.

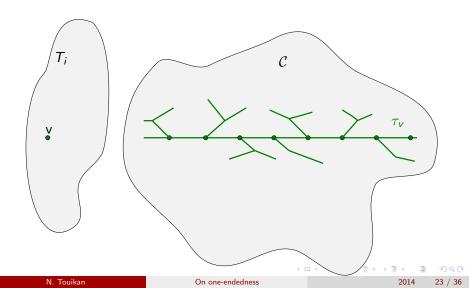
イロト イポト イヨト イヨト

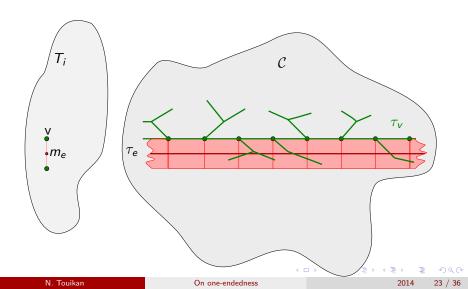
The cocompact core

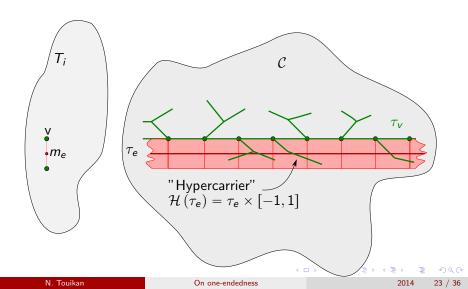
Theorem (Guirardel's Core Theorem)

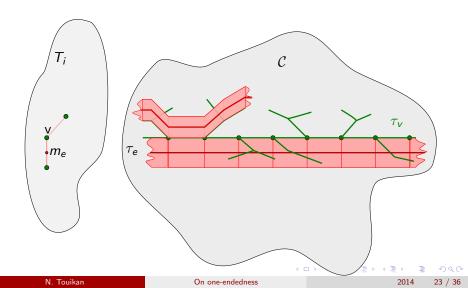
Let $G \curvearrowright T_1$, $G \curvearrowright T_2$ be two minimal actions of a finitely generated group G on simplicial trees T_1 , T_2 with finitely generated edge stabilizers. Then there is a G-invariant subset $C \subset T_1 \times T_2$ called the core of the action $G \curvearrowright T_1 \times T_2$ which satisfies the following properties:

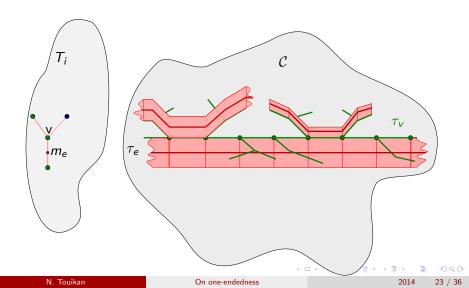
- **1** The fibres of the projections $p_i | C : C \rightarrow T_i$ are connected.
- **2** $G \setminus C$ is compact

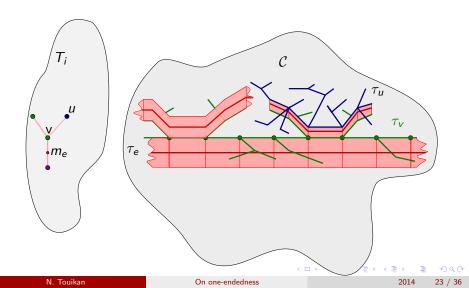


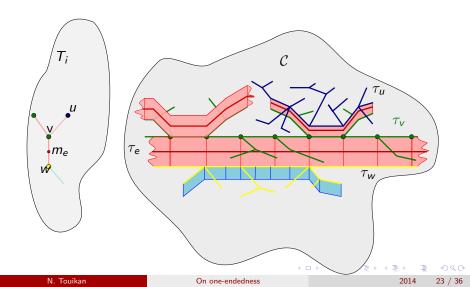












For $v \in \text{Vertices}(T_i)$ and $e \in \text{Edges}(T_i)$ the preimages τ_v, τ_e in C are connected by (1) of the Core Theorem, so they are G_v, G_e -trees respectively.

イロト 不得下 イヨト イヨト 二日

For $v \in \text{Vertices}(T_i)$ and $e \in \text{Edges}(T_i)$ the preimages τ_v, τ_e in C are connected by (1) of the Core Theorem, so they are G_v, G_e -trees respectively.

By the cocompacity given by (2) of the Core Theorem.

Ν.	To	

イロト イポト イヨト イヨト

For $v \in \text{Vertices}(T_i)$ and $e \in \text{Edges}(T_i)$ the preimages τ_v, τ_e in C are connected by (1) of the Core Theorem, so they are G_v, G_e -trees respectively.

By the cocompacity given by (2) of the Core Theorem. Because they are fibers of *G*-equivariant projections, the subsets $\tau_v, \tau_e \subset C$ are *regular* and stabilized by G_v, G_e , respectively.

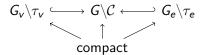
$$\mathcal{G}_{\boldsymbol{v}} \setminus \tau_{\boldsymbol{v}} \longleftrightarrow \mathcal{G} \setminus \mathcal{C} \longleftrightarrow \mathcal{G}_{\boldsymbol{e}} \setminus \tau_{\boldsymbol{e}}$$

$$\uparrow
 compact$$

イロト イポト イヨト イヨト 二日

For $v \in \text{Vertices}(T_i)$ and $e \in \text{Edges}(T_i)$ the preimages τ_v, τ_e in C are connected by (1) of the Core Theorem, so they are G_v, G_e -trees respectively.

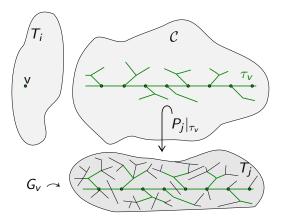
By the cocompacity given by (2) of the Core Theorem. Because they are fibers of *G*-equivariant projections, the subsets $\tau_v, \tau_e \subset C$ are *regular* and stabilized by G_v, G_e , respectively.



Therefore τ_v, τ_e are cocompact G_v, G_e -trees.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

For $v \in \text{Vertices}(T_i)$, the group G_v may act non-trivially on T_j (the other tree)



The G_v -tree τ_v projects injectively to a G_v -invariant subtree of T_j

The decomposition $G = G_1 *_C G_2$ with C virtually \mathbb{Z} is dual to an action $G \rightharpoonup T_{\infty}$ and the decomposition $G = A *_F B$ with F finite is dual to an action $G \rightharpoonup T_F$.

イロト 不得下 イヨト イヨト 二日

The decomposition $G = G_1 *_C G_2$ with C virtually \mathbb{Z} is dual to an action $G \rightharpoonup T_{\infty}$ and the decomposition $G = A *_F B$ with F finite is dual to an action $G \rightharpoonup T_F$.

We will consider the tree T_{∞} to be *vertical* and the tree $T_{\mathcal{F}}$ to be horizontal.

イロト 不得下 イヨト イヨト 二日

The decomposition $G = G_1 *_C G_2$ with C virtually \mathbb{Z} is dual to an action $G \rightharpoonup T_{\infty}$ and the decomposition $G = A *_F B$ with F finite is dual to an action $G \rightharpoonup T_F$.

We will consider the tree T_{∞} to be *vertical* and the tree $T_{\mathcal{F}}$ to be horizontal.

We want to use the splitting $G = A *_F B$ to obtain a splitting of either G_1 or G_2 with finite edge groups in which C is conjugate into a vertex group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

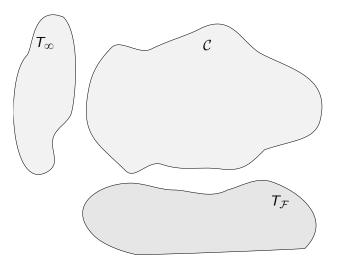
The decomposition $G = G_1 *_C G_2$ with C virtually \mathbb{Z} is dual to an action $G \rightharpoonup T_{\infty}$ and the decomposition $G = A *_F B$ with F finite is dual to an action $G \rightharpoonup T_{\mathcal{F}}$.

We will consider the tree T_{∞} to be *vertical* and the tree $T_{\mathcal{F}}$ to be horizontal.

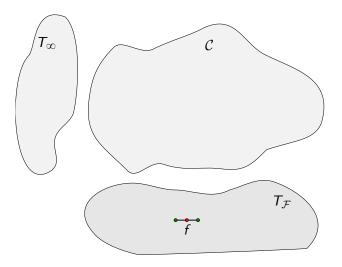
We want to use the splitting $G = A *_F B$ to obtain a splitting of either G_1 or G_2 with finite edge groups in which C is conjugate into a vertex group.

We will assume that the edge group C acts non-trivially on $T_{\mathcal{F}}$, otherwise one of the trees $\tau_v, v \in \text{Vertices}(T_{\infty})$ automatically gives the desired splitting.

T_{∞} is vertical $T_{\mathcal{F}}$ is horizontal

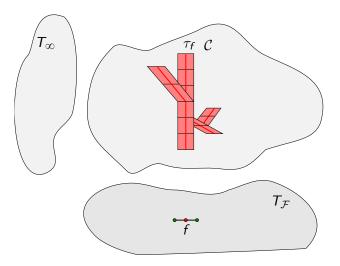


<ロ> (日) (日) (日) (日) (日)



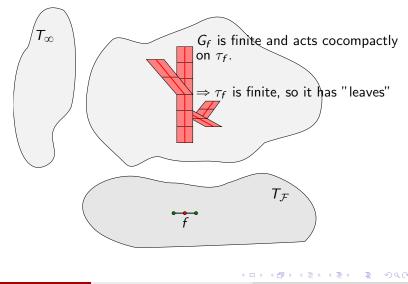
2014 28 / 36

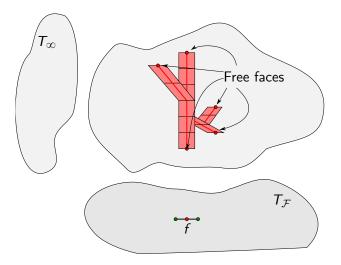
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・



2014 28 / 36

<ロ> (日) (日) (日) (日) (日)





2014 28 / 36

<ロ> (日) (日) (日) (日) (日)

Shaving to minimal trees

If necessary, we may *G*-equivariantly remove squares from the core *C* to obtain a connected *G*-complex $C_s \subset C$ called the ∞ -minimal core. Which has the property that for every $v \in \text{Vertices}(T_{\infty}), e \in \text{Edges}(T_{\infty})$, the fibres τ_v, τ_e are minimal G_v, G_e -trees, respectively.

イロト イポト イヨト イヨト

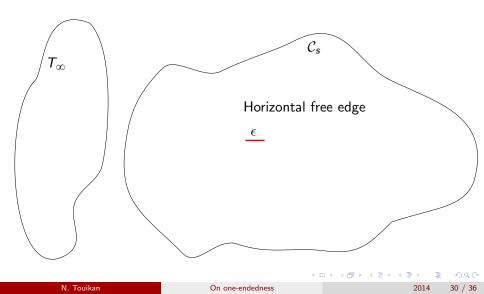
Shaving to minimal trees

If necessary, we may *G*-equivariantly remove squares from the core *C* to obtain a connected *G*-complex $C_s \subset C$ called the ∞ -minimal core. Which has the property that for every $v \in \text{Vertices}(T_{\infty}), e \in \text{Edges}(T_{\infty})$, the fibres τ_v, τ_e are *minimal* G_v, G_e -trees, respectively.

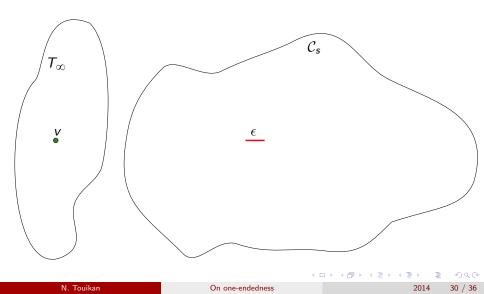
For $f \in \operatorname{Edges}(T_{\mathcal{F}})$, the fibres τ_f may not be connected anymore, but they remain finite forests. The complex C_s therefore still has horizontal free faces.

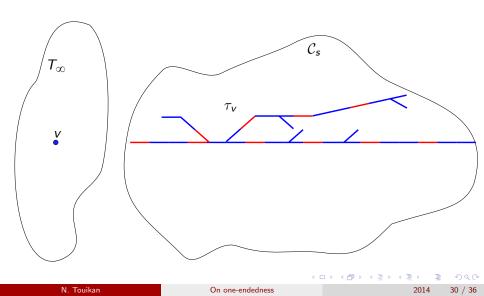
イロト 不得下 イヨト イヨト 二日

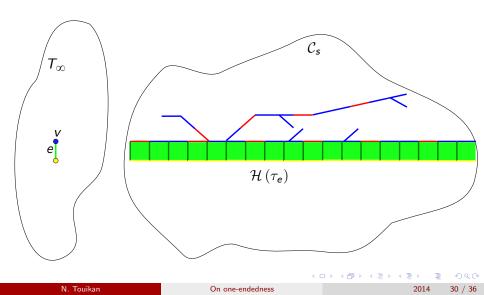
Getting a splitting of a T_{∞} vertex group

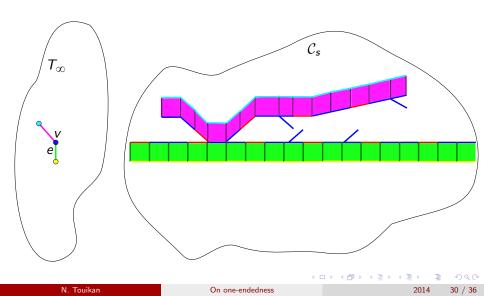


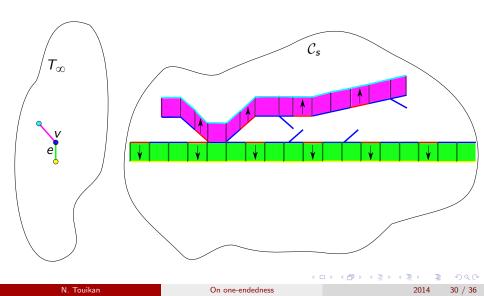
Getting a splitting of a \mathcal{T}_∞ vertex group

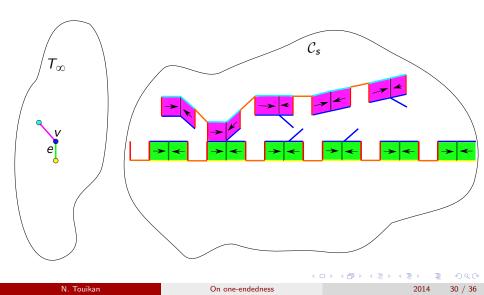


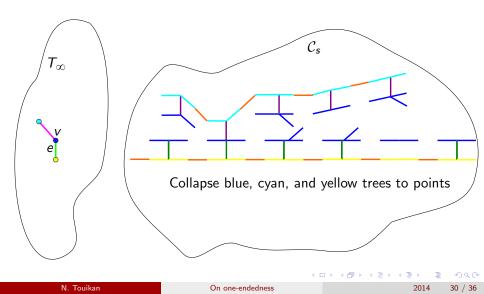


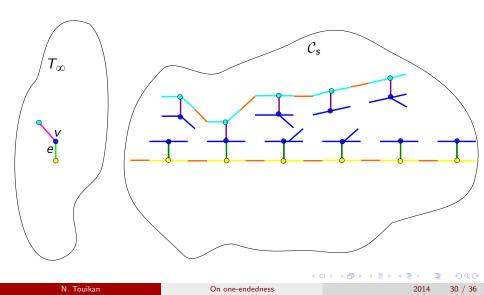






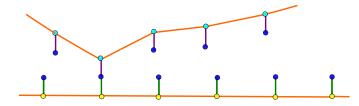






Obtaining a splitting

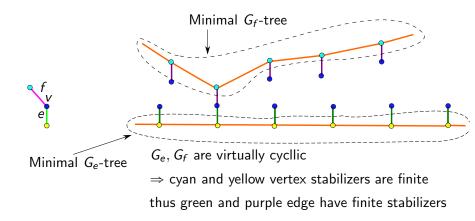
Getting a splitting of a \mathcal{T}_∞ vertex group



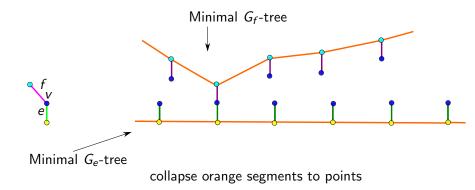
e e

2014 30 / 36

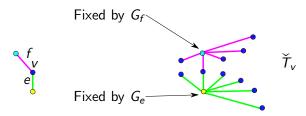
(日) (同) (三) (三)



2014 30 / 36



4 3 > 4 3



Stabilizers of non-blue vertices of \check{T}_v are conjugate in G to Cand edge sabilizers are finite; thus $G_v \sim G_1$ or G_2 is many ended rel. C. This completes the proof.

2014 30 / 36

It turns out that the procedure that was just described will work for any many ended graph of groups, even if we are working relative to a collection of subgroups.

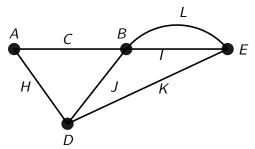
- 4 個 ト - 4 三 ト - 4 三 ト

It turns out that the procedure that was just described will work for any many ended graph of groups, even if we are working relative to a collection of subgroups.

We write A < B if A is the vertex group of a splitting of B with finite edge groups. If B is torsion free then $A < B \Leftrightarrow A$ is a free factor of B.

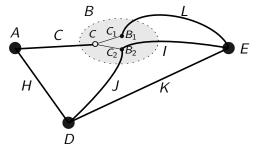
イロト 人間ト イヨト イヨト

If G is a many ended graph of groups...



(3)

If G is a many ended graph of groups...



Where $C_1, C_2 < C$ and $B_1, B_2 < B$.

- **∢** ∃=

By Dunwoody/Linnell accessibility (which holds for large classes of groups) we cannot have infinite chains

 $C > C_1 > C_2 > \ldots$

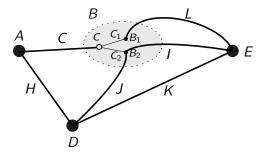
so this gives really gives a splitting in terms of "simpler" groups.

イロト 不得下 イヨト イヨト 二日

By Dunwoody/Linnell accessibility (which holds for large classes of groups) we cannot have infinite chains

 $C > C_1 > C_2 > \ldots$

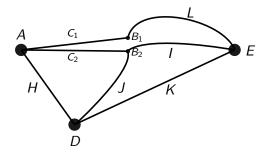
so this gives really gives a splitting in terms of "simpler" groups.



By Dunwoody/Linnell accessibility (which holds for large classes of groups) we cannot have infinite chains

 $C > C_1 > C_2 > \ldots$

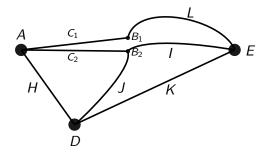
so this gives really gives a splitting in terms of "simpler" groups.



By Dunwoody/Linnell accessibility (which holds for large classes of groups) we cannot have infinite chains

 $C > C_1 > C_2 > \ldots$

so this gives really gives a splitting in terms of "simpler" groups.



Repeatedly applying this operation will give a Dunwoody decomposition.

2014 33 / 36

 It is a theorem of Bonk and Kleiner that the Cayley graph of a one ended δ-hyperbolic group admits a quasi-isometrically embedded H². MacKay and Sisto generalized this to relatively hyperbolic groups. There is interesting geometry at work.

- It is a theorem of Bonk and Kleiner that the Cayley graph of a one ended δ-hyperbolic group admits a quasi-isometrically embedded H². MacKay and Sisto generalized this to relatively hyperbolic groups. There is interesting geometry at work.
- To promote Guirardel Cores. These are used in my joint paper with Lars Louder on strong accessibility, and were used by Fujiwara and Papasoglu to construct QH subgroups in JSJ decompositions.

イロト 人間ト イヨト イヨト

- It is a theorem of Bonk and Kleiner that the Cayley graph of a one ended δ-hyperbolic group admits a quasi-isometrically embedded H². MacKay and Sisto generalized this to relatively hyperbolic groups. There is interesting geometry at work.
- To promote Guirardel Cores. These are used in my joint paper with Lars Louder on strong accessibility, and were used by Fujiwara and Papasoglu to construct QH subgroups in JSJ decompositions. Related structures (e.g. the core of the action of *n* trees) should be better understood because they will shed more light on the ways groups split.

イロト イポト イヨト イヨト

- It is a theorem of Bonk and Kleiner that the Cayley graph of a one ended δ-hyperbolic group admits a quasi-isometrically embedded H². MacKay and Sisto generalized this to relatively hyperbolic groups. There is interesting geometry at work.
- To promote Guirardel Cores. These are used in my joint paper with Lars Louder on strong accessibility, and were used by Fujiwara and Papasoglu to construct QH subgroups in JSJ decompositions. Related structures (e.g. the core of the action of *n* trees) should be better understood because they will shed more light on the ways groups split.
- This is fundamental progress in dealing with torsion.

イロト 不得 トイヨト イヨト

Torsion has been problematic (for me.)

Theorem (T)

There is a procedure which takes as input a group presentation $G = \langle X \mid R \rangle$ that is a finite and a solution to the word problem w.r.t. this presentation and outputs whether or not G splits non-trivially as a free product.

- 4 週 ト - 4 三 ト - 4 三 ト

Torsion has been problematic (for me.)

Theorem (T)

There is a procedure which takes as input a group presentation $G = \langle X \mid R \rangle$ that is a finite and a solution to the word problem w.r.t. this presentation and outputs whether or not G splits non-trivially as a free product. The output is only correct if G has no elements of order 2.

- 4 週 ト - 4 三 ト - 4 三 ト

Torsion has been problematic (for me.)

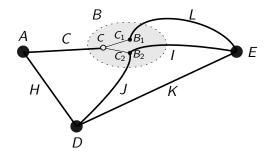
Theorem (T)

There is a procedure which takes as input a group presentation $G = \langle X \mid R \rangle$ that is a finite and a solution to the word problem w.r.t. this presentation and outputs whether or not G splits non-trivially as a free product. The output is only correct if G has no elements of order 2.

Furthermore, my Strong Accessibility result doesn't work in the presence of $\mathbb{Z}_2 * \mathbb{Z}_2$ -type edge groups.

Thank you

Thank you!



2014 36 / 36

<ロ> (日) (日) (日) (日) (日)