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According to Cornelia Drutu and Misha Kapovich, at least

according to their manuscript Geometric Group Theory, the

fundamental questions are:

Question

If G and G ′ are quasiisometric groups, to what extent to G and G ′

share the same algebraic properties?

Question

If a group G is quasiisometric to a metric space X , what geometric

properties (or structures) on X translate to interesting properties

of G



Given G one can always obtain a quasi-isometric G ′ by either

attaching a finite subgroup, e.g. G ′ = G ⊕ F , or passing to a finite

index subgroup.

We say that G and G ′ are (abstractly) commensurable if there are

finite subgroups F / G ,F / G ′ finite such that there are isomorphic

finite index subgroups

G/F
f.i.
≥ H ≈ H ′

f.i.
≤ G ′/F ′.

Note: if G ,G ′ are virtually torsion-free (e.g. residually finite

hyperbolic) we can ignore the finite groups F ,F ′.



A class X of groups is quasi-isometrically rigid if any group

quasi-isometric to some G ∈ X is in X .

A group G is quasi-isometrically rigid (q.i. rigid) if

H q.i. to G ⇒ H commensurable with G .

Generally quasi-isometry classes of groups split into finer

commensurability classes.



From R.J. Spatzier’s An Invitation to Rigidity Theory the following

combination of the works of Casson, Chow, Drutu, Eskin, Farb,

Gabai, Gromov, Jungreis, Kleiner, Leep, Pansu, Schwartz, Sullivan

and Tukia, which itself builds on decades of (Lie group) rigidity

theory gives starting with work of Selberg, Mostow, and other

famous people:

Theorem

If a finitely generated group Γ is quasi-isometric to an irreducible

lattice in a semisimple Lie group G , then it is commensurable with

a (possibly different) lattice in G .



Gromov’s celebrated polynomial growth theorem implies that the

class of finitely generated nilpotent groups is q.i. rigid. f.g.

nilpotent groups have a finite index torsion-free subgroup. If N is a

torsion-free f.g. nilpotent group then its Mal’cev Q-completion

NQ ≤ UT (nN ,Q) classifies its commensurability class.

If N,M are t.f.f.g. nilpotent groups with isometric Mal’cev

R-completions NR ≈ MR then they are q.i. but it is known that

NR ≈ MR 6⇒ NQ ≈ MQ;

so nilpotent groups are not q.i. rigid in general. Some subclasses,

however, such as {Zn} are rigid.



In the transition from nilpotent to solvable we have:

Theorem (Farb-Mosher)

If n ≥ 2 then every BS(1, n) is q.i. rigid.

. . . so the the commensurability classification within a q.i. class of

groups is an active field of investigation.

Tomorrow Alexander Zakharov will discuss the commensurability

classification of a q.i. rigid class within the class of partially

commutative groups (or raags).



By definition, the class of hyperbolic groups is q.i. rigid. Q.i.

hyperbolic groups have homeomorphic boundaries. The converse is

not true, but well understood by work of Paulin. Here is a selection

of results.

f.g. free groups (Stallings). One commensurability class.

Boundary is a Cantor set.

Closed surface groups (Gabai, Casson-Jungreis). One

commensurability class. Boundary is a circle.

Convex-cocompact Kleinian groups, i.e. the fundamental

group of a hyperbolic 3-manifold possibly with essential

boundary (Hassinsky). Many commensurability classes.



Theorem (Hassinsky)

Let G be hyperbolic and assume ∂G doesn’t contain a subset

homeomorphic to a Sierpinski carpet. Then G is virtually a

convex-cocompact Kleinian group.

In fact these convex-cocompact Kleinian groups are rather specific:

the antepenultimate terms in the cyclic Haken hierarchy are

geometric amalgams of surface or free (handlebody groups.)





Whyte’s example:



Stark thesis:

Q.i. but not commensurable.



Recent and substantial progress by Pallavi Dani, Emily Stark, and

Anne Thomas has been made towards the commensurability

classification of geometric amalgams of free groups.



A collection {γi} of geodesic closed curves in a closed hyperbolic

surface Σ is filling if every component of Σ \ (
⋃
γi ) is a simply

connected polygon.





Theorem (Taam-T)

Let X be obtained by taking a finite collection of closed surfaces

and attaching them together by cylinders. If the attaching maps of

the cylinders form a filling collection of closed curves in each

surface and if π1(X ) is hyperbolic, then it is q.i. rigid.

Theorem (Taam-T)

If Γ is a hyperbolic groups whose JSJ decomposition has only

rigid-type vertex groups all of which are closed surface groups,

then Γ is q.i. rigid.



Corollary

The amalgamated free product

〈a, b, c , d | a−1b−1abc−1d−1cd〉∗w=u〈α, β, γ, δ | α−1β−1αβγ−1δ−1γδ〉

is probably∗ going to be rigid if w = w(a, b, c , d) and

u = u(α, β, γ, δ) are long enough and picked at random.





Proposition

If Γ is a graph of rigid surface groups (a grsg-group) and H is q.i.

to Γ then both groups virtually act by automorphisms on �∗(Γ). In

particular, if G = Aut(�∗(Γ)), then

Γ,H ≤ G .



Consider the group of automorphisms G = Aut(T4) of a 4-regular

tree:



Consider the group of automorphisms G = Aut(T4) of a 4-regular

tree:



• G is uncountable.

• G is a topological group. An element g is close to 1 if it

leaves a large ball centered at 1 fixed and does all its flipping

outside. h, k are close if hk−1 are close to 1.

• G is a totally disconnected locally compact group. Point

stabilizers are profinite (so homeomorphic to Cantor sets) and

open in G .



The automorphism group of any reasonable∗ CW complex Y (e.g.

a Cayley complex) is a t.d.l.c. and there is a dichotomy:

topologically interesting: G is a topological group with

cardinality 2ℵ0 .

topologically boring: discrete topology. E.g. Y = CayS(G )

and maybe Aut(Y ) = G . Then G is f.p.

Such an automorphism group will be discrete if the stabilizer of a

sufficiently large ball is trivial: the singleton containing the identity

is an open set.









Slogan: being able to flip stuff around independently leads to

uncountability and is therefore the enemy of discreteness.



Proposition (Taam-T)

Let � be the Sageev cubing of (Σ,L) a surface equipped with a

collection of filling curves, i.e. a waffle. Aut(�) is discrete if and

only if L is filling.





Proposition

If �∗(Γ) doesn’t admit churro flips or waffle reflections (it is

asymmetrical) then Γ is q.i. rigid.

Proof.

G = Aut(�∗(Γ)) is discrete, which means that it is f.g. and acts

properly discontinuously and cocompactly (geometrically) on

�∗(Γ). Since (passing to f.i. subgroups, if necessary) Γ and H also

act geometrically on �∗(Γ) and are subgroups of G they are both

finite index in G . Since everything is really crowded and stuff we

have

[Γ : H ∩ Γ], [H : H ∩ Γ] ≤ [G : Γ][G : H].



Conjecture (Probably true)

Given a fixed graph with a fixed collection of closed surfaces. A

random grsg-group obtained by randomly picking words defining

the incident cyclic edge groups will probably be q.i. rigid because

the churro waffle space will be asymmetrical.

There therefore (should be) an abundance of such groups.



If G = Aut(�∗(Γ)) is topologically interesting, although H, Γ act

cocompactly on �∗(Γ) it is unlikely that they even have non-trivial

intersection.

Although we moved away from linear groups, it turns out that the

correct perspective is actually to view G as a topological group and

to view Γ and H as uniform lattices.













The infinite product . . . g3g2g1 actually converges in the topology

on G = Aut(T4) giving gΓg−1 =G H.



Theorem (Leighton)

Let X ,Y be finite graphs with the same universal cover, then they

have a common finite cover Z .

In particular this produces a common finite index subgroup π1(Z )

of π1(X ) and π1(Y ).



Let G � X and consider the quotient X � G\X . We say ∆ is a

grouping of X � G\X if the quotient map x 7→ ∆ · x realizes the

quotient X � G\X .

In particular this is a way to define an orbifold structure on G\X .



Let T be a well-behaved (e.g. regular) tree.

Theorem (Bass, Covering theory for graphs of groups)

Let G � T without inversions and let it be maximal w.r.t

groupings of T � G\T . Let ∆ ≤ G be another grouping of

T � G\T (i.e. ∆ has the same orbits as G ). Let Γ act freely on

T , then there is some g ∈ G such that Γg ≤ ∆.

The proof uses a lot of machinery, but referee of the paper gives a

really pleasant 1/2 page self contained proof of this.



Let G+ ≤ G = Aut(T4) act without inversions. The quotient is

the circle with one vertex. Now consider the HNN extension

∆ = 〈a | a4〉∗t{1} = 〈a, t | a4〉 . . .



with this action



This gives a grouping of T4 � G+\T4, but it is a discrete group.

It therefore gives a discrete grouping!

Discrete groupings are small enough so that cocompact subgroups

are finite index and have to have large intersection, but big enough

to easily conjugate free lattices into them.



proof of Leightons’s Theorem, à la Bass-Kulkarni.

Let Γ,H act freely cocompactly and without inversions on T4.

They sit in G+. Let ∆ be a discrete grouping of T4 � G+\T4. By

Bass’s conjugacy theorem there is g , h ∈ G+ such that

Γg ,Hh
f.i.
≤ ∆, since they act cocompactly and ∆ is discrete,

therefore finitely generated. Γg ,Hh being crowded together must

have finite index intersection.



We were able to adapt the referee’s proof of the Bass conjugacy

theorem to churro waffle spaces, but then we found this which

works great:

Theorem (Lim-Thomas)

Let G � X be an inversion-free action on a polyhedral complex

and let it be maximal w.r.t groupings of X � G\X . Let ∆ ≤ G be

another grouping of X � G\X (i.e. ∆ has the same orbits as G ).

Let Γ act freely on X , then there is some g ∈ G such that Γg ≤ ∆.

In particular we can use the exact same scheme as for Bass and

Kulkarni’s proof of Leighton’s theorem. All we need are discrete

groupings!



We already saw that the isometry groups of waffles are discrete.

For churros we have, e.g.



�∗(Γ) is a tree of spaces so G\�∗(Γ) is a graph of spaces. In fact

it is a graph of actions:

• Each vertex comes equipped with a group and a space (a

waffle or a churro) and an action on that space.

• Each edge comes equipped with an identification map gluing

the edge of a flap to a strand in a churro and an identification

of the stabilizers of those spaces.

We want to build a new grouping starting from these discrete

discrete actions on individual churros an waffles.









This prevents independent flipping!



Proposition

If Γ is a grsg-group whose JSJ has a simply connected underlying

graph, then Γ is q.i. rigid.









Once you augment through e the stabilizers for f should already

be isomorphic!



Γ acts cleanly on �∗(Γ) if it is torsion-free and if any g that

stabilizes a churro stabilizes it pointwise. In particular G\�∗(Γ)

must have a clean and good orbifold cover. In particular every

churro should be adjacent to the full number of flaps.





In particular n = m. So the existence of a clean cover and a degree

argument put constraints on the cardinalities of flap families, and

therefore on the stabilizers.



In particular n = m. So the existence of a clean cover and a degree

argument put constraints on the cardinalities of flap families, and

therefore on the stabilizers.



In the general case a detailed examination of orbifold coverings,

point preimages, and some basic finite group theory is need to

make everything match up.

The isometry groups of churros and waffles still need to be

examined closely and produce unexpected difficulties.



Lemma

Let W = Aut(�) be the automorphism group of a waffle. Denote

by Wx the stabilizer of x . Let σ ⊂ � be a strand. Then the

function x 7→ |Wx | is either 1 or 2 on some dense open set U ⊂ σ.

To prove this we need to use the local properties of CAT(0)

geometry, as well as the fact that � comes from a line pattern in

H2. Here is a calculation in the proof used to contradict that a

curve is geodesic:

`(ε) =
√
ε2 + L +

√
(d2 − ε)2 + M

⇒ `′(ε) =
ε√

ε2 + L
+

ε− d2√
(d2 − ε)2 + M

⇒ `′(0) =
−d2√
d2

2 + M
6= 0⇒ ε = 0 not critical



Thank you!



Questions:

• Are random cyclic graphs of surface groups q.i.-rigid?

• Is there an analogous result when we replace surface groups

with free groups? See Cashen-Macura,

Haissinsky-Paoluzzi-Walsh and Dani-Stark-Thomas. It’s so

hard we could only do it for surface groups!

• Is there a sensible criterion for when a hyperbolic constructible

group is q.i. rigid?

• Are there other contexts where cubulations can be used to

obtain quasi-isometric rigidity?

• Are churro waffle spaces CAT(0)?

• Do you have a hobby and, if so, what is it?


