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Network characteristics

Degree distribution

Path distribution

Clustering coefficient distribution

Size of the giant component

Community structure

Assortative mixing (a.k.a., homophily or Heterophily in social
network)
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Degree distribution for undirected graph
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Degree distribution: A frequency count of the occurrence of each degree.
First the degrees are listed below:

node degree
1 2
2 3
3 2
4 3
5 3
6 1
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Degree distribution for undirected graph

The degree distribution therefore is:

degree frequency
1 1/6
2 2/6
3 3/6

Average degree: let N = |V | be the number of nodes, and L = |E| be
the number of edges:

〈K〉 =

n∑
i=1

deg(i)

N
=

2L

N

〈k〉 = 2(7)/6 = 7/3 for the above graph.
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R code based on package igraph: Degree

distribution

rm(list=ls())# clear memory

library(igraph) # load package igraph

#######################################################################################

#Generate undirected graph object from adjacency matrix

#######################################################################################

adjm_u<-matrix(

c(0, 1, 0, 0, 1, 0,

1, 0, 1, 0, 1, 0,

0, 1, 0, 1, 0, 0,

0, 0, 1, 0, 1, 1,

1, 1, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0), # the data elements

nrow=6, # number of rows

ncol=6, # number of columns

byrow = TRUE) # fill matrix by rows

g_adj_u <- graph.adjacency(adjm_u, mode="undirected")

# calculate the degree and degree distribution

degree.distribution(g_adj_u)

degree(g_adj_u,loops = FALSE)
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Degree and degree distribution for directed graph

1

2

3

4

5

Indegree of any node i: the number of nodes destined to i.
Outdegree of any node i: the number of nodes originated at i.

Every loop adds one degree to each of the indegree and outdegree of a node.

node indegree outdegree
1 0 1
2 2 3
3 2 0
4 2 2
5 1 1
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Degree and degree distribution for directed graph

Degree distribution: A frequency count of the occurrence of each degree

indegree frequency outdegree frequency
0 1/5 0 1/5
1 1/5 1 2/5
2 3/5 2 1/5

3 1/5

Average degree: let N = |V | be the number of nodes, and L = |E| be
the number of arcs:

〈Kin〉 =

n∑
i=1

degin(i)

N
=

n∑
i=1

degout(i)

N
=
L

N

〈Kin〉 = 〈Kout〉 = 7/5 for the above graph.
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R code based on package igraph: degree

rm(list=ls())# clear memory

library(igraph)# load package igraph

#######################################################################################

#Generate directed graph object from adjacency matrix

#######################################################################################

adjm_d<-matrix(

c(0, 1, 0, 0, 0,

0, 0, 1, 1, 1,

0, 0, 0, 0, 0,

0, 1, 1, 0, 0,

0, 0, 0, 1, 0), # the data elements

nrow=5, # number of rows

ncol=5, # number of columns

byrow = TRUE) # fill matrix by rows

g_adj_d <- graph.adjacency(adjm_d, mode="directed")

# calculate the indegree and outdegree distribution

degree.distribution(g_adj_d, mode="in")

degree.distribution(g_adj_d, mode="out")

degree(g_adj_d,mode="in",loops = FALSE)

degree(g_adj_d,mode="out",loops = FALSE)
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Why do we care about degree?

Degree is interesting for several reasons.
the simplest, yet very illuminating centrality measure in a
network:

In a social network, the ones who have connections to many
others might have more influence, more access to information,
or more prestige than those who have fewer connections.

The degree is the immediate risk of a node for catching
whatever is flowing through the network (such as a virus, or
some information)
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Path distance distribution for undirected graph

1

2

3

4

5

6

Path distribution: A frequency count of the
occurrence of each path distance.
First the path distances are listed below:

1 2 3 4 5 6
1 0 1 2 2 1 3
2 1 0 1 2 1 3
3 2 1 0 1 2 2
4 2 2 1 0 1 1
5 1 1 2 1 0 2
6 3 3 2 1 2 0
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Path distance distribution for undirected graph

The path distance distribution D therefore is:

distance frequency
1 7/15
2 6/15
3 2/15

Average path distance: let N = |V | be the number of nodes:

〈D〉 =

n∑
i=1

dist(i, j)(
N
2

)
〈D〉 = E[D] = 5/3 for the above graph.
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R code based on package igraph: Path distribution

rm(list=ls())# clear memory

library(igraph) # load package igraph

#######################################################################################

#Generate undirected graph object from adjacency matrix

#######################################################################################

adjm_u<-matrix(

c(0, 1, 0, 0, 1, 0,

1, 0, 1, 0, 1, 0,

0, 1, 0, 1, 0, 0,

0, 0, 1, 0, 1, 1,

1, 1, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0), # the data elements

nrow=6, # number of rows

ncol=6, # number of columns

byrow = TRUE) # fill matrix by rows

g_adj_u <- graph.adjacency(adjm_u, mode="undirected")

# calculate the path distribution

shortest.paths(g_adj_u)

average.path.length(g_adj_u)

path.length.hist(g_adj_u) # $res is the histogram of distances,

# $unconnected is the number of pairs for which the first vertex is not

# reachable from the second.
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Path distance distribution for directed graph

1

2

3

4

5 Path distribution: A frequency count of the
occurrence of each path distance.
First the path distances are listed below:

1 2 3 4 5
1 0 1 2 2 2
2 Inf 0 1 1 1
3 Inf Inf 0 Inf Inf
4 Inf 1 1 0 2
5 Inf 2 2 1 0
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Path distance distribution for directed graph

The path distance distribution D therefore is:

Distance Frequency
1 7/13
2 6/13

Average path distance: let N = |V | be the number of nodes:

〈D〉 =

∑
i<1

dist(i, j)(
N
2

)
〈D〉 = E[D] = 19/13 for the above graph.
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R code based on package igraph: degree

rm(list=ls())# clear memory

library(igraph)# load package igraph

#######################################################################################

#Generate directed graph object from adjacency matrix

#######################################################################################

adjm_d<-matrix(

c(0, 1, 0, 0, 0,

0, 0, 1, 1, 1,

0, 0, 0, 0, 0,

0, 1, 1, 0, 0,

0, 0, 0, 1, 0), # the data elements

nrow=5, # number of rows

ncol=5, # number of columns

byrow = TRUE) # fill matrix by rows

g_adj_d <- graph.adjacency(adjm_d, mode="directed")

shortest.paths(g_adj_d, mode="out")

shortest.paths(g_adj_d, mode="in")

average.path.length(g_adj_d)

path.length.hist (g_adj_d) # $res is the histogram of distances,

# $unconnected is the number of pairs for which the first vertex is not

# reachable from the second.
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Why do we care about path?

Path is interesting for several reasons.

Path mean connectivity.
Path captures the indirect interactions in a network, and
individual nodes benefit (or suffer) from indirect relationships
because friends might provide access to favors from their friends
and information might spread through the links of a network.
Path is closely related to small-world phenomenon.
Path is related to many centrality measures.
· · ·

Donglei Du (UNB) Social Network Analysis 18 / 61



Clustering coefficient Distribution for undirected

graph

1

2

3

4

5

6

Recall the definition of local clustering coefficient:

CC(A) = P(B ∈ N(C)|B,C ∈ N(A))

= P(two randomly selected friends of A are friends)

= P(fraction of pairs of A’s friends that are linked to each other)

= P(density of the neighboring subgraph).

We can also define the global clustering coefficient based on the concept of triplets of
nodes.
A triplet consists of three nodes that are connected by either two (open triplet) or three
(closed triplet) undirected ties.

A triangle consists of three closed triplets, one centered on each of the nodes.

The global clustering coefficient is the number of closed triplets (or 3 x triangles) over
the total number of triplets (both open and closed):

CC =
3× number of triangles

number of triplets
=

number of closed triplets

number of triplets
.

Clustering coefficient distribution: A frequency count of the occurrence of each
clustering coefficient.
First the clustering coefficient are listed below:

node clustering coefficient
1 1
2 1/3
3 0
4 0
5 1/3
6 NaN
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Clustering coefficient Distribution for undirected

graph

The Clustering coefficient Distribution therefore is:

Clustering coefficient C Frequency
0 2/5

1/3 2/5
1 1/5

Average Clustering coefficient: let N = |V | be the number of nodes:

〈C〉 =

n∑
i=1

CC(I)

N

〈C〉 = E[C] = 1/3 for the above graph.
The global clustering coefficient is 3/11 = 0.272727 . . .

First count how many configurations of the form ij, jk there are in the network:
1:1; 2:3; 3:1; 4:3;5:3;6:0. So there are 1+3+1+3+3=11 such congurations in the
network.
Second count how many triangles there are in the network: there is only one
triangle, resulting three closed triplets..
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Differences in Clustering Measures

For the previous example, the average clustering is 1/3 while the
global clustering is 3/11.

These two common measures of clustering can differ. Here the
average clustering is higher than the overall clustering, it can
also go the other way.

Moreover, it is not hard to generate networks where the two
measures can produce very different numbers for the same
network.
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R code based on package igraph: Clustering

coefficient distribution

rm(list=ls())# clear memory

library(igraph) # load package igraph

#######################################################################################

#Generate undirected graph object from adjacency matrix

#######################################################################################

adjm_u<-matrix(

c(0, 1, 0, 0, 1, 0,

1, 0, 1, 0, 1, 0,

0, 1, 0, 1, 0, 0,

0, 0, 1, 0, 1, 1,

1, 1, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0), # the data elements

nrow=6, # number of rows

ncol=6, # number of columns

byrow = TRUE) # fill matrix by rows

g_adj_u <- graph.adjacency(adjm_u, mode="undirected")

# Calculate the clustering coefficient

transitivity(g_adj_u, type="local")# local clustering

transitivity(g_adj_u, type="average") #average clustering

transitivity(g_adj_u)# global clustering: the ratio of the triangles

# and the connected triples in the graph.
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Why do we care about clustering coefficient? I

Clustering is interesting for several reasons.

A clustering coefficient is a measure of the degree to which
nodes in a graph tend to cluster together. Evidence suggests
that in most real-world networks, and in particular social
networks, nodes tend to create tightly knit groups characterized
by a relatively high density of ties; this likelihood tends to be
greater than the average probability of a tie randomly
established between two nodes.

Empirically vertices with higher degree having a lower local
clustering coefficient on average.
Local clustering can be used as a probe for the existence of
so-called structural holes in a network, which are missing links
between neighbors of a person.

Donglei Du (UNB) Social Network Analysis 23 / 61



Why do we care about clustering coefficient? II

Structural holes can be bad when are interested in efficient
spread of information or other traffic around a network because
they reduce the number of alternative routes information can
take through the network.
Structural holes can be good thing for the central vertex whose
friends lack connections because they give i power over
information flow between those friends.
The local clustering coefficient measures how influential i is in
this sense, taking lower values the more structural holes there
are in the network around i.

Local clustering can be regarded as a type of centrality
measure, albeit one that takes small values for powerful
individuals rather than large ones.

Donglei Du (UNB) Social Network Analysis 24 / 61



The sizes of giant components

A giant component is a connected component (strongly
connected component for directed network) in a large network,
when its size is a constant fraction of the entire graph.

Formally, let N1 be the size of a connected component C in a
network of size N , then C is a giant component if

lim
N→∞

N1

N
= c > 0.
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Community structure

Network nodes are joined together in tightly knit groups,
between which there are only looser connections.

Refs: (Girvan and Newman, 2002)
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Assortative mixing

Assortative mixing (a.k.a., homophily or Heterophily in social
network): the tendency of vertices to connect to others that are
alike.
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Erdös-Rényi Random Network

The Erdös-Rényi network (a.k.a. Poisson Metwork) is a random graph
G(N, p) with N labeled nodes where each pair of nodes is connected by
a preset probability p:

Fix node number N .
Among all possible edges

(
N
2

)
, include each edge with probability p

independently.

N and p do not uniquely define the network: there are 2(N
2 ) different

realizations of it.
Although the random graph is certainly not a realistic model of most
networks, but simple models of networks like this can give us a feel for
how more complicated real-world systems should behave in general.
Let us see some simulation through NetLogo:

http://ccl.northwestern.edu/netlogo/

Go to File/Model Library/Networks: Erdös-Réni Random Model (choose
Giant Component)
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R code base don package igraph: generating the

Erdös-Rényi Random Network

>library(igraph)

> g <- erdos.renyi.game(100, 1/100)

> tkplot(g) # interactive plot
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Simulation of the Erdös-Rényi Random Network

through NetLogo

http://ccl.northwestern.edu/netlogo/

Go to File/Model Library/Networks/Giant Component
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Number of edges distribution for the Erdös-Rényi

Random Network I

If we randomly selected one random graph among all the
possible networks: then the probability to have exactly ` links in
a network of N nodes and probability p:

P (L = `) =

((N
2

)
`

)
p`(1− p)(

N
2 )−`.

So the average density is

p
(
N
2

)(
N
2

) = p
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Number of edges distribution for the Erdös-Rényi

Random Network II

The parameter p in this model can be thought of as a weighting
function.

As p increases from 0 to 1, the model becomes more and more
likely to include graphs with more edges and less and less likely
to include graphs with fewer edges.

In particular, the case p = 0.5 corresponds to the case where all

2(N
2 ) graphs on N vertices are chosen with equal probability.
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Degree Distribution for the Erdös-Rényi Random

Network

Binomial
⇓

Approximately Poisson
⇓

Approximately Normal

Donglei Du (UNB) Social Network Analysis 34 / 61



Degree Distribution for the Erdös-Rényi Random

Network is Binomial

Binomial: let K be the degree of a random chosen node, then
it can be connected to any of the remaining node independently
with probability p, and hence K ∼ B(N − 1, p):

P (K = k) = Ck
N−1p

k(1− p)N−1−k.

with mean and variance

〈K〉 = E[K] = (N − 1)p;

σ2 = (N − 1)p(1− p).
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Degree Distribution for the Erdös-Rényi Random

Network is approximately Poisson

Approximately Poisson: B(N − 1, p) ≈ P (λ) with
λ = p(N − 1) = 〈K〉, for large N and small p (say N ≥ 100
and Np ≤ 10)

P (K = k) ≈ e−〈K〉
〈K〉k

k!
, for large N and small p.

with mean and variance all equal to λ.
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Degree Distribution for the Erdös-Rényi Random

Network is approximately Normal

Approximately Normal: = N(λ, λ) ≈ P (λ), for sufficiently large
values of λ, (say λ > 1000; for smaller λ, the continuity
correction should be performed):

P (K = k) ≈ N(〈K〉, 〈K〉) for large 〈K〉.
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Path distance distribution for the Erdös-Rényi

Random Network

Path distance distribution is hard to find. So we focus on the
expectation.

The average path distance in the random network is
approximately

〈L〉 ≈ log n

log〈K〉

Idea: Average number of friends at distance d:

Nd = 〈K〉d

implying that

n = 〈K〉+ 〈K〉1 + . . .+ 〈K〉d ≈ 〈K〉d
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Clustering coefficient distribution for the

Erdös-Rényi Random Network

Clustering coefficient distribution is hard to find. So we focus on
the expectation.

The average Clustering coefficient in the random network is
approximately

〈C〉 ≈ 〈K〉
n

Randomly select a node i, there are ki friends, leading to
ki(ki − 1)/2 maximum possible edges, and each will appear with
probability p. So the average

〈C〉 = p ≈ 〈K〉
n
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Phase transition of the size of the giant component

in the Erdös-Rényi Random Network

The largest component in the ER random graph has constant
size 1 when p = 0 and extensive size n when p = 1.

An interesting question to ask is how the transition between
these two extremes occurs if we construct random graphs with
gradually increasing values of p, starting at 0 and ending up at
1—this is bond percolation!

It turns out that the size of the largest component undergoes a
sudden change, or phase transition, from constant size to
extensive size at one particular special value of p = 1/n.
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The size of the giant component in the Erdös-Rényi

Random Network (Bollobás et al., 2001)

If p < 1
n

with high probability, there is no giant component, with all
connected components of the graph having size O(log n).

If p > 1
n

with high probability, there is a single giant component, with all
other components having size O(log n).

If p = 1
n

with high probability, the number of vertices in the largest
component of the graph is proportional to n2/3.

See Appendix for an asymptotic analysis Go
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Community structure in the Erdös-Rényi Random

Network

Nope!
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Assortative mixing in the Erdös-Rényi Random

Network

Nope!

Donglei Du (UNB) Social Network Analysis 43 / 61



Characteristics of the random network: summary

and illustration in Netlogo

Sparsity: Average density = p.
Degree distribution: Poisson distribution

P (K = k) =

(
n

k − 1

)
pk(1− p)n−k

≈ e−〈K〉
〈K〉k

k!
.

Average path: small world

〈D〉 ≈ log n

log〈K〉

Average clustering coefficient: low for large
network

〈C〉 = p ≈ 〈K〉
n

The threshold for the emergence of the giant
component is

p =
1

n
or 〈K〉 ≈ 1

No community structure
No assortative mixing
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Network characteristics for real network

Sparsity: |E| = O(n) edges.

Degree distribution: Power distribution (scale-free)

Average path: O(log n), small world

Average clustering coefficient: high for large network (compared
to random network)

Giant component: common

Community structures: common

Assortative mixing: common
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Network characteristics for real networks

Figure: The above table is from (Newman, 2010)
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The properties measured in the previous table

type of network
directed or undirected
total number of vertices n
total number of edges m
mean degree c
fraction of vertices in the largest component S (or the largest weakly
connected component in the case of a directed network);
mean geodesic distance between connected vertex pairs `
exponent α of the degree distribution if the distribution follows a power
law (or - if not; in/out-degree exponents are given for directed graphs);
local clustering coefficient C:
Average local clustering coefficient over all nodes
the degree correlation coefficient r
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ER network vs real network

Characteristics ER prediction Real network
Density p =⇒ Sparse Sparse

Degree distribution Poisson (or Normal) Power-law
Clustering coefficient p =⇒ Low High

Average distance Small world Small world
Giant component Yes Yes

Community structure No Yes
Homophily No Yes
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Case study: calculate the different measures for

the Padgett Florentine families social network

rm(list=ls()) # clear memory

library(igraph) # load package igraph

load("padgett.RData") # read in the data

gb<-padgett$PADGB # The business network

#gm<-padgett$PADGM # the marriage network

##############################################################################

#Calculate the different measures for the Business network

##############################################################################

# calculate the degree and degree distribution

degree.distribution(gb)

degree(gb,loops = FALSE)

# calculate the path distribution:

shortest.paths(gb)

average.path.length(gb)

path.length.hist(gb) # $res is the histogram of distances,

# $unconnected is the number of pairs for which the first vertex is not

# reachable from the second.

# Calculate the clustering coefficient

transitivity(gb, type="local")# individual clustering

transitivity(gb, type="average") #average clustering

transitivity(gb)# overal clustering: the ratio of the triangles

# and the connected triples in the graph.
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Donglei Du’s ego network on Facebook as of Sept

17, 2014
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The size of the giant component Newman

(2010)-Chapter 12

s = 1− u: the asymptotic (n→∞) fraction of vertices that are
in the giant component S:

s ≈ 1− e−〈k〉s (1)

u: the probability that a randomly chosen vertex in the graph
does not belong to the giant component S:

u ≈ e−〈k〉(1−u)
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u

For a randomly chosen node i, i /∈ S iff it is not connected to S via any
other n− 1 nodes.
For every other node j 6= i,

either: i is not connected to j with probability 1− p;
or: i is connected to j but j /∈ S with probability pu.

Therefore

u = (1− p+ up)n−1 =

(
1− 〈k〉

n− 1
(1− u)

)n−1

m

lnu = (n− 1) ln

(
1− 〈k〉

n− 1
(1− u)

)
≈︸︷︷︸

n→∞

−〈k〉(1− u)

m
u = e−〈k〉(1−u)
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Percolation threshold

There is a giant component

m
u < 1

m
s > 0

m
〈k〉 > 1
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Lambert W function

We need the following concept to solve
the equation (1).
The following equation’s solutions are
called the Lambert W functions:

yey = x⇐⇒ y = W (x) or y = W−1(x)

Figure: Lambert W function is defined only for
x ≥ −e−1, and is double-valued for
x ∈ (−e−1, 0). There are two solutions (1) W (x)
(green) refers to the principal branch satisfying
W (x) ≥ −1, and (2) W−1(x) (red) refers to the
branch satisfying w(x) < −1.
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Solution for (1) via Lambert W function

The solution for (1) can be expressed via the
Lambert W function:

s = 1− e−〈k〉s

m

0 ≥︸︷︷︸
s≤1

〈k〉(s− 1)e〈k〉(s−1) = −〈k〉e−〈k〉 ≥︸︷︷︸
〈k〉≥0

−e−1

The solution is:

s = 1 +
1

〈k〉
W (−〈k〉e−〈k〉) > 0⇐⇒ 〈k〉 > 1 Figure: Size of the giant component

s as a function of c = 〈k〉
Go Back
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There is only one giant component!!!

Suppose that there were two or more giant components in a
random graph.

Take any two giant components S1 and S2, with sizes s1n and
s2n respectively (s1, s2 ∈ [0, 1]).

S1 and S2 are separate iff there is no edge connecting them
together, which happens with probability q given by

q = (1− p)s1s2n2

=

(
1− c

n− 1

)s1s2n2

= Θ
(
e−cs1s2n

)
→︸︷︷︸

n→∞

0

The number of distinct pairs of vertices (i, j), where
i ∈ S1, j ∈ S2, is just s1s2n

2.
Each of these pairs is connected by an edge with probability p,
or not with probability 1− p.

Donglei Du (UNB) Social Network Analysis 58 / 61



The distribution of the sizes of the small

components

Let πk be the probability that a randomly chosen vertex belongs
to a small component of size exactly k vertices. Then

∞∑
k=0

πk = 1− s

Claim: the potability distribution of the sizes of the small
components in a random graph with mean degree c is given by

πk =
e−ck(ck)k−1

k!
, k = 0, 1 . . . .
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Albert-Lszl Barabsi at TEDMED 2012

http://www.youtube.com/watch?feature=player_

detailpage&v=10oQMHadGos
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