Social Network Analysis: Lecture 3-Network Characteristics

Donglei Du
(ddu@unb.ca)

Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton
E3B 9Y2

Table of contents

(1) Network characteristics

- Degree Distribution
- Path distance Distribution
- Clustering coefficient distribution
- Giant component
- Community structure
- Assortative mixing: birds of similar feathers flock together
(2) The Poisson Random network: a benchmark
- Erdös-Rényi Random Network (Publ. Math. Debrecen 6, 290 (1959)
(3) Network characteristics in real networks

4. Appendix A: Phase transition, giant component and small components in ER network: bond percolation

Network characteristics

- Degree distribution
- Path distribution
- Clustering coefficient distribution
- Size of the giant component
- Community structure
- Assortative mixing (a.k.a., homophily or Heterophily in social network)

Degree distribution for undirected graph

- Degree distribution: A frequency count of the occurrence of each degree.
- First the degrees are listed below:

node	degree
1	2
2	3
3	2
4	3
5	3
6	1

Degree distribution for undirected graph

- The degree distribution therefore is:

degree	frequency
1	$1 / 6$
2	$2 / 6$
3	$3 / 6$

- Average degree: let $N=|V|$ be the number of nodes, and $L=|E|$ be the number of edges:

$$
\langle K\rangle=\frac{\sum_{i=1}^{n} \operatorname{deg}(i)}{N}=\frac{2 L}{N}
$$

- $\langle k\rangle=2(7) / 6=7 / 3$ for the above graph.

R code based on package igraph: Degree distribution

```
rm(list=ls())# clear memory
library(igraph) # load package igraph
#########################################################################################
#Generate undirected graph object from adjacency matrix
#######################################################################################
adjm_u<-matrix(
    c(0, 1, 0, 0, 1, 0,
1, 0, 1, 0, 1, 0,
0, 1, 0, 1, 0, 0,
0, 0, 1, 0, 1, 1,
1, 1, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0), # the data elements
    nrow=6, # number of rows
    ncol=6, # number of columns
    byrow = TRUE) # fill matrix by rows
g_adj_u <- graph.adjacency(adjm_u, mode="undirected")
# calculate the degree and degree distribution
degree.distribution(g_adj_u)
degree(g_adj_u,loops = FALSE)
```


Degree and degree distribution for directed graph

- Indegree of any node i : the number of nodes destined to i.
- Outdegree of any node i : the number of nodes originated at i.
- Every loop adds one degree to each of the indegree and outdegree of a node.

node	indegree	outdegree
1	0	1
2	2	3
3	2	0
4	2	2
5	1	1

Degree and degree distribution for directed graph

- Degree distribution: A frequency count of the occurrence of each degree

indegree	frequency	outdegree	frequency
0	$1 / 5$	0	$1 / 5$
1	$1 / 5$	1	$2 / 5$
2	$3 / 5$	2	$1 / 5$
		3	$1 / 5$

- Average degree: let $N=|V|$ be the number of nodes, and $L=|E|$ be the number of arcs:

$$
\left\langle K^{i n}\right\rangle=\frac{\sum_{i=1}^{n} \operatorname{deg}_{i n}(i)}{N}=\frac{\sum_{i=1}^{n} d e g_{\text {out }}(i)}{N}=\frac{L}{N}
$$

- $\left\langle K^{\text {in }}\right\rangle=\left\langle K^{o u t}\right\rangle=7 / 5$ for the above graph.

R code based on package igraph: degree

```
rm(list=ls())# clear memory
library(igraph)# load package igraph
################################################################################
#Generate directed graph object from adjacency matrix
#################################################################################
adjm_d<-matrix(
    c(0, 1, 0, 0, 0,
0, 0, 1, 1, 1,
0, 0, 0, 0, 0,
0, 1, 1, 0, 0,
0, 0, 0, 1, 0), # the data elements
    nrow=5, # number of rows
    ncol=5, # number of columns
    byrow = TRUE) # fill matrix by rows
g_adj_d <- graph.adjacency(adjm_d, mode="directed")
# calculate the indegree and outdegree distribution
degree.distribution(g_adj_d, mode="in")
degree.distribution(g_adj_d, mode="out")
degree(g_adj_d,mode="in",loops = FALSE)
degree(g_adj_d,mode="out",loops = FALSE)
```


Why do we care about degree?

- Degree is interesting for several reasons.
- the simplest, yet very illuminating centrality measure in a network:
- In a social network, the ones who have connections to many others might have more influence, more access to information, or more prestige than those who have fewer connections.
- The degree is the immediate risk of a node for catching whatever is flowing through the network (such as a virus, or some information)

Path distance distribution for undirected graph

- Path distribution: A frequency count of the occurrence of each path distance.
- First the path distances are listed below:

	1	2	3	4	5	6
1	0	1	2	2	1	3
2	1	0	1	2	1	3
3	2	1	0	1	2	2
4	2	2	1	0	1	1
5	1	1	2	1	0	2
6	3	3	2	1	2	0

Path distance distribution for undirected graph

- The path distance distribution D therefore is:

distance	frequency
1	$7 / 15$
2	$6 / 15$
3	$2 / 15$

- Average path distance: let $N=|V|$ be the number of nodes:

$$
\langle D\rangle=\frac{\sum_{i=1}^{n} \operatorname{dist}(i, j)}{\binom{N}{2}}
$$

- $\langle D\rangle=\mathbb{E}[D]=5 / 3$ for the above graph.

R code based on package igraph: Path distribution

```
rm(list=ls())# clear memory
library(igraph) # load package igraph
#######################################################################################
#Generate undirected graph object from adjacency matrix
#######################################################################################
adjm_u<-matrix(
    c(0, 1, 0, 0, 1, 0,
1, 0, 1, 0, 1, 0,
0, 1, 0, 1, 0, 0,
0, 0, 1, 0, 1, 1,
1, 1, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0), # the data elements
    nrow=6, # number of rows
    ncol=6, # number of columns
    byrow = TRUE) # fill matrix by rows
g_adj_u <- graph.adjacency(adjm_u, mode="undirected")
# calculate the path distribution
shortest.paths(g_adj_u)
average.path.length(g_adj_u)
path.length.hist(g_adj_u) # $res is the histogram of distances,
    # $unconnected is the number of pairs for which the first vertex is not
    # reachable from the second.
```


Path distance distribution for directed graph

- Path distribution: A frequency count of the occurrence of each path distance.
- First the path distances are listed below:

	1	2	3	4	5
1	0	1	2	2	2
2	lnf	0	1	1	1
3	lnf	lnf	0	lnf	lnf
4	lnf	1	1	0	2
5	lnf	2	2	1	0

Path distance distribution for directed graph

- The path distance distribution D therefore is:

Distance	Frequency
1	$7 / 13$
2	$6 / 13$

- Average path distance: let $N=|V|$ be the number of nodes:

$$
\langle D\rangle=\frac{\sum_{i<1} \operatorname{dist}(i, j)}{\binom{N}{2}}
$$

- $\langle D\rangle=\mathbb{E}[D]=19 / 13$ for the above graph.

R code based on package igraph: degree

```
rm(list=ls())# clear memory
library(igraph)# load package igraph
###################################################################################
#Generate directed graph object from adjacency matrix
####################################################################################
adjm_d<-matrix(
    c(0, 1, 0, 0, 0,
0, 0, 1, 1, 1,
0, 0, 0, 0, 0,
0, 1, 1, 0, 0,
0, 0, 0, 1, 0), # the data elements
    nrow=5, # number of rows
    ncol=5, # number of columns
    byrow = TRUE) # fill matrix by rows
g_adj_d <- graph.adjacency(adjm_d, mode="directed")
shortest.paths(g_adj_d, mode="out")
shortest.paths(g_adj_d, mode="in")
average.path.length(g_adj_d)
path.length.hist (g_adj_d) # $res is the histogram of distances,
    # $unconnected is the number of pairs for which the first vertex is not
    # reachable from the second.
```


Why do we care about path?

- Path is interesting for several reasons.
- Path mean connectivity.
- Path captures the indirect interactions in a network, and individual nodes benefit (or suffer) from indirect relationships because friends might provide access to favors from their friends and information might spread through the links of a network.
- Path is closely related to small-world phenomenon.
- Path is related to many centrality measures.
- ...

Clustering coefficient Distribution for undirected graph

- Recall the definition of local clustering coefficient:

$$
\begin{aligned}
C C(A) & =\mathbb{P}(B \in N(C) \mid B, C \in N(A)) \\
& =\mathbb{P} \text { (two randomly selected friends of } A \text { are friends) } \\
& =\mathbb{P}(\text { fraction of pairs of } A \text { 's friends that are linked to each other }) \\
& =\mathbb{P}(\text { density of the neighboring subgraph }) .
\end{aligned}
$$

- We can also define the global clustering coefficient based on the concept of triplets of nodes.
- A triplet consists of three nodes that are connected by either two (open triplet) or three (closed triplet) undirected ties.
- A triangle consists of three closed triplets, one centered on each of the nodes.
- The global clustering coefficient is the number of closed triplets (or $3 \times$ triangles) over the total number of triplets (both open and closed):

$$
C C=\frac{3 \times \text { number of triangles }}{\text { number of triplets }}=\frac{\text { number of closed triplets }}{\text { number of triplets }} .
$$

- Clustering coefficient distribution: A frequency count of the occurrence of each clustering coefficient.
- First the clustering coefficient are listed below:

node	clustering coefficient
1	1
2	$1 / 3$
3	0
4	0
5	$1 / 3$
6	NaN

Clustering coefficient Distribution for undirected graph

- The Clustering coefficient Distribution therefore is:

Clustering coefficient C	Frequency
0	$2 / 5$
$1 / 3$	$2 / 5$
1	$1 / 5$

- Average Clustering coefficient: let $N=|V|$ be the number of nodes:

$$
\langle C\rangle=\frac{\sum_{i=1}^{n} C C(I)}{N}
$$

- $\langle C\rangle=\mathbb{E}[C]=1 / 3$ for the above graph.
- The global clustering coefficient is $3 / 11=0.272727 \ldots$
- First count how many configurations of the form $i j, j k$ there are in the network: $1: 1 ; 2: 3 ; 3: 1 ; 4: 3 ; 5: 3 ; 6: 0$. So there are $1+3+1+3+3=11$ such congurations in the network.
- Second count how many triangles there are in the network: there is only one triangle, resulting three closed triplets..

Differences in Clustering Measures

- For the previous example, the average clustering is $1 / 3$ while the global clustering is $3 / 11$.
- These two common measures of clustering can differ. Here the average clustering is higher than the overall clustering, it can also go the other way.
- Moreover, it is not hard to generate networks where the two measures can produce very different numbers for the same network.

R code based on package igraph: Clustering coefficient distribution

```
rm(list=ls())# clear memory
library(igraph) # load package igraph
########################################################################################
#Generate undirected graph object from adjacency matrix
#######################################################################################
adjm_u<-matrix(
    c(0, 1, 0, 0, 1, 0,
1, 0, 1, 0, 1, 0,
0, 1, 0, 1, 0, 0,
0, 0, 1, 0, 1, 1,
1, 1, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0), # the data elements
    nrow=6, # number of rows
    ncol=6, # number of columns
    byrow = TRUE) # fill matrix by rows
g_adj_u <- graph.adjacency(adjm_u, mode="undirected")
# Calculate the clustering coefficient
transitivity(g_adj_u, type="local")# local clustering
transitivity(g_adj_u, type="average") #average clustering
transitivity(g_adj_u)# global clustering: the ratio of the triangles
# and the connected triples in the graph.
```


Why do we care about clustering coefficient?

- Clustering is interesting for several reasons.
- A clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together. Evidence suggests that in most real-world networks, and in particular social networks, nodes tend to create tightly knit groups characterized by a relatively high density of ties; this likelihood tends to be greater than the average probability of a tie randomly established between two nodes.
- Empirically vertices with higher degree having a lower local clustering coefficient on average.
- Local clustering can be used as a probe for the existence of so-called structural holes in a network, which are missing links between neighbors of a person.

Why do we care about clustering coefficient? II

- Structural holes can be bad when are interested in efficient spread of information or other traffic around a network because they reduce the number of alternative routes information can take through the network.
- Structural holes can be good thing for the central vertex whose friends lack connections because they give i power over information flow between those friends.
- The local clustering coefficient measures how influential i is in this sense, taking lower values the more structural holes there are in the network around i.
- Local clustering can be regarded as a type of centrality measure, albeit one that takes small values for powerful individuals rather than large ones.

The sizes of giant components

- A giant component is a connected component (strongly connected component for directed network) in a large network, when its size is a constant fraction of the entire graph.
- Formally, let N_{1} be the size of a connected component C in a network of size N, then C is a giant component if

$$
\lim _{N \rightarrow \infty} \frac{N_{1}}{N}=c>0
$$

Community structure

- Network nodes are joined together in tightly knit groups, between which there are only looser connections.
- Refs: (Girvan and Newman, 2002)

Assortative mixing

- Assortative mixing (a.k.a., homophily or Heterophily in social network): the tendency of vertices to connect to others that are alike.

Erdös-Rényi Random Network

- The Erdös-Rényi network (a.k.a. Poisson Metwork) is a random graph $G(N, p)$ with N labeled nodes where each pair of nodes is connected by a preset probability p :
- Fix node number N.
- Among all possible edges $\binom{N}{2}$, include each edge with probability p independently.
- N and p do not uniquely define the network: there are $2^{\binom{N}{2}}$ different realizations of it.
- Although the random graph is certainly not a realistic model of most networks, but simple models of networks like this can give us a feel for how more complicated real-world systems should behave in general.
- Let us see some simulation through NetLogo:
- http://ccl.northwestern.edu/netlogo/
- Go to File/Model Library/Networks: Erdös-Réni Random Model (choose Giant Component)

R code base don package igraph: generating the Erdös-Rényi Random Network

>library(igraph)
> g <- erdos.renyi.game(100, 1/100)
> tkplot(g) \# interactive plot

Simulation of the Erdös-Rényi Random Network through NetLogo

- http://ccl.northwestern.edu/netlogo/
- Go to File/Model Library/Networks/Giant Component

Number of edges distribution for the Erdös-Rényi Random Network I

- If we randomly selected one random graph among all the possible networks: then the probability to have exactly ℓ links in a network of N nodes and probability p :

$$
P(L=\ell)=\binom{\binom{N}{2}}{\ell} p^{\ell}(1-p)^{\binom{N}{2}-\ell}
$$

- So the average density is

$$
\frac{p\binom{N}{2}}{\binom{N}{2}}=p
$$

Number of edges distribution for the Erdös-Rényi Random Network II

- The parameter p in this model can be thought of as a weighting function.
- As p increases from 0 to 1 , the model becomes more and more likely to include graphs with more edges and less and less likely to include graphs with fewer edges.
- In particular, the case $p=0.5$ corresponds to the case where all $2^{\binom{N}{2}}$ graphs on N vertices are chosen with equal probability.

Degree Distribution for the Erdös-Rényi Random Network

Binomial

\Downarrow
Approximately Poisson
\Downarrow
Approximately Normal

Degree Distribution for the Erdös-Rényi Random Network is Binomial

- Binomial: let K be the degree of a random chosen node, then it can be connected to any of the remaining node independently with probability p, and hence $K \sim B(N-1, p)$:

$$
P(K=k)=C_{N-1}^{k} p^{k}(1-p)^{N-1-k}
$$

with mean and variance

$$
\begin{aligned}
\langle K\rangle & =\mathbb{E}[K]=(N-1) p \\
\sigma^{2} & =(N-1) p(1-p)
\end{aligned}
$$

Degree Distribution for the Erdös-Rényi Random Network is approximately Poisson

- Approximately Poisson: $B(N-1, p) \approx P(\lambda)$ with $\lambda=p(N-1)=\langle K\rangle$, for large N and small p (say $N \geq 100$ and $N p \leq 10)$

$$
P(K=k) \approx e^{-\langle K\rangle} \frac{\langle K\rangle^{k}}{k!}, \text { for large } N \text { and small } p
$$

with mean and variance all equal to λ.

Degree Distribution for the Erdös-Rényi Random Network is approximately Normal

- Approximately Normal: $=N(\lambda, \lambda) \approx P(\lambda)$, for sufficiently large values of λ, (say $\lambda>1000$; for smaller λ, the continuity correction should be performed):

$$
P(K=k) \approx N(\langle K\rangle,\langle K\rangle) \text { for large }\langle K\rangle
$$

Path distance distribution for the Erdös-Rényi Random Network

- Path distance distribution is hard to find. So we focus on the expectation.
- The average path distance in the random network is approximately

$$
\langle L\rangle \approx \frac{\log n}{\log \langle K\rangle}
$$

- Idea: Average number of friends at distance d :

$$
N_{d}=\langle K\rangle^{d}
$$

implying that

$$
n=\langle K\rangle+\langle K\rangle^{1}+\ldots+\langle K\rangle^{d} \approx\langle K\rangle^{d}
$$

Clustering coefficient distribution for the Erdös-Rényi Random Network

- Clustering coefficient distribution is hard to find. So we focus on the expectation.
- The average Clustering coefficient in the random network is approximately

$$
\langle C\rangle \approx \frac{\langle K\rangle}{n}
$$

- Randomly select a node i, there are k_{i} friends, leading to $k_{i}\left(k_{i}-1\right) / 2$ maximum possible edges, and each will appear with probability p. So the average

$$
\langle C\rangle=p \approx \frac{\langle K\rangle}{n}
$$

Phase transition of the size of the giant component in the Erdös-Rényi Random Network

- The largest component in the ER random graph has constant size 1 when $p=0$ and extensive size n when $p=1$.
- An interesting question to ask is how the transition between these two extremes occurs if we construct random graphs with gradually increasing values of p, starting at 0 and ending up at 1-this is bond percolation!
- It turns out that the size of the largest component undergoes a sudden change, or phase transition, from constant size to extensive size at one particular special value of $p=1 / n$.

The size of the giant component in the Erdös-Rényi Random Network (Bollobás et al., 2001)

- If $p<\frac{1}{n}$
- with high probability, there is no giant component, with all connected components of the graph having size $O(\log n)$.
- If $p>\frac{1}{n}$
- with high probability, there is a single giant component, with all other components having size $O(\log n)$.
- If $p=\frac{1}{n}$
- with high probability, the number of vertices in the largest component of the graph is proportional to $n^{2 / 3}$.
- See Appendix for an asymptotic analysis

Community structure in the Erdös-Rényi Random Network

- Nope!

Assortative mixing in the Erdös-Rényi Random Network

- Nope!

Characteristics of the random network: summary and illustration in Netlogo

- Sparsity: Average density $=p$.
- Degree distribution: Poisson distribution

$$
\begin{aligned}
P(K=k) & =\binom{n}{k-1} p^{k}(1-p)^{n-k} \\
& \approx e^{-\langle K\rangle} \frac{\langle K\rangle^{k}}{k!} .
\end{aligned}
$$

- Average path: small world

$$
\langle D\rangle \approx \frac{\log n}{\log \langle K\rangle}
$$

- Average clustering coefficient: low for large network

$$
\langle C\rangle=p \approx \frac{\langle K\rangle}{n}
$$

- The threshold for the emergence of the giant component is

$$
p=\frac{1}{n} \text { or }\langle K\rangle \approx 1
$$

- No community structure
- No assortative mixing

Network characteristics for real network

- Sparsity: $|E|=O(n)$ edges.
- Degree distribution: Power distribution (scale-free)
- Average path: $O(\log n)$, small world
- Average clustering coefficient: high for large network (compared to random network)
- Giant component: common
- Community structures: common
- Assortative mixing: common

Network characteristics for real networks

	Network	Type	n	m	c	S	ℓ	a	C

Figure: The above table is from (Newman, 2010)

The properties measured in the previous table

- type of network
- directed or undirected
- total number of vertices n
- total number of edges m
- mean degree c
- fraction of vertices in the largest component S (or the largest weakly connected component in the case of a directed network);
- mean geodesic distance between connected vertex pairs ℓ
- exponent α of the degree distribution if the distribution follows a power law (or - if not; in/out-degree exponents are given for directed graphs);
- local clustering coefficient C :
- Average local clustering coefficient over all nodes
- the degree correlation coefficient r

ER network vs real network

Characteristics	ER prediction	Real network
Density	$p \Longrightarrow$ Sparse	Sparse
Degree distribution	Poisson (or Normal)	Power-law
Clustering coefficient	$p \Longrightarrow$ Low	High
Average distance	Small world	Small world
Giant component	Yes	Yes
Community structure	No	Yes
Homophily	No	Yes

Case study: calculate the different measures for the Padgett Florentine families social network

```
rm(list=ls()) # clear memory
library(igraph) # load package igraph
load("padgett.RData") # read in the data
gb<-padgett$PADGB # The business network
#gm<-padgett$PADGM # the marriage network
################################################################################
#Calculate the different measures for the Business network
###############################################################################
# calculate the degree and degree distribution
degree.distribution(gb)
degree(gb,loops = FALSE)
# calculate the path distribution:
shortest.paths(gb)
average.path.length(gb)
path.length.hist(gb) # $res is the histogram of distances,
    # $unconnected is the number of pairs for which the first vertex is not
    # reachable from the second.
# Calculate the clustering coefficient
transitivity(gb, type="local")# individual clustering
transitivity(gb, type="average") #average clustering
transitivity(gb)# overal clustering: the ratio of the triangles
        # and the connected triples in the graph.
```


Donglei Du's ego network on Facebook as of Sept

17, 2014

The size of the giant component Newman (2010)-Chapter 12

- $s=1-u$: the asymptotic $(n \rightarrow \infty)$ fraction of vertices that are in the giant component S :

$$
\begin{equation*}
s \approx 1-e^{-\langle k\rangle s} \tag{1}
\end{equation*}
$$

- u : the probability that a randomly chosen vertex in the graph does not belong to the giant component S :

$$
u \approx e^{-\langle k\rangle(1-u)}
$$

- For a randomly chosen node $i, i \notin S$ iff it is not connected to S via any other $n-1$ nodes.
- For every other node $j \neq i$,
- either: i is not connected to j with probability $1-p$;
- or: i is connected to j but $j \notin S$ with probability $p u$.
- Therefore

$$
\begin{aligned}
u & =(1-p+u p)^{n-1}=\left(1-\frac{\langle k\rangle}{n-1}(1-u)\right)^{n-1} \\
& \Uparrow \\
\ln u & =(n-1) \ln \left(1-\frac{\langle k\rangle}{n-1}(1-u)\right) \underbrace{\approx}_{n \rightarrow \infty}-\langle k\rangle(1-u) \\
& \Uparrow \\
u & =e^{-\langle k\rangle(1-u)}
\end{aligned}
$$

Percolation threshold

There is a giant component

Lambert W function

- We need the following concept to solve the equation (1).
- The following equation's solutions are called the Lambert W functions:
$y e^{y}=x \Longleftrightarrow y=W(x)$ or $y=W_{-1}(x)$
Figure: Lambert W function is defined only for $x \geq-e^{-1}$, and is double-valued for $x \in\left(-e^{-1}, 0\right)$. There are two solutions (1) $W(x)$ (green) refers to the principal branch satisfying $W(x) \geq-1$, and (2) $W_{-1}(x)$ (red) refers to the branch satisfying $w(x)<-1$.

Solution for (1) via Lambert W function

- The solution for (1) can be expressed via the Lambert W function:

$$
\begin{gathered}
\frac{s=1-e^{-\langle k\rangle s}}{\Uparrow} \\
0 \underbrace{\geq}_{s \leq 1} \underbrace{\langle k\rangle(s-1) e^{\langle k\rangle(s-1)}=-\langle k\rangle e^{-\langle k\rangle}}_{\langle k\rangle \geq 0} \underbrace{\geq}-e^{-1}
\end{gathered}
$$

$$
s=1+\frac{1}{\langle k\rangle} W\left(-\langle k\rangle e^{-\langle k\rangle}\right)>0 \Longleftrightarrow\langle k\rangle>1
$$

Figure: Size of the giant component s as a function of $c=\langle k\rangle$

There is only one giant component!!!

- Suppose that there were two or more giant components in a random graph.
- Take any two giant components S_{1} and S_{2}, with sizes $s_{1} n$ and $s_{2} n$ respectively $\left(s_{1}, s_{2} \in[0,1]\right)$.
- S_{1} and S_{2} are separate iff there is no edge connecting them together, which happens with probability q given by

$$
q=(1-p)^{s_{1} s_{2} n^{2}}=\left(1-\frac{c}{n-1}\right)^{s_{1} s_{2} n^{2}}=\Theta\left(e^{-c s_{1} s_{2} n}\right) \underbrace{\rightarrow}_{n \rightarrow \infty} 0
$$

- The number of distinct pairs of vertices (i, j), where $i \in S_{1}, j \in S_{2}$, is just $s_{1} s_{2} n^{2}$.
- Each of these pairs is connected by an edge with probability p, or not with probability $1-p$.

The distribution of the sizes of the small

components

- Let π_{k} be the probability that a randomly chosen vertex belongs to a small component of size exactly k vertices. Then

$$
\sum_{k=0}^{\infty} \pi_{k}=1-s
$$

- Claim: the potability distribution of the sizes of the small components in a random graph with mean degree c is given by

$$
\pi_{k}=\frac{e^{-c k}(c k)^{k-1}}{k!}, k=0,1 \ldots
$$

Albert-Lszl Barabsi at TEDMED 2012

- http://www. youtube.com/watch?feature=player_ detailpage\&v=10oQMHadGos

References I

Bollobás, B., FULTON, W., KATOK, A., KIRWAN, F., and SARNAK, P. (2001). Cambridge studies in advanced mathematics. In Random graphs. Cambridge University Press New York.
Girvan, M. and Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12):7821-7826.
Newman, M. (2010). Networks: an introduction. Oxford University Press.

