Social Network Analysis: Lecture 3-Network Characteristics

Donglei Du (ddu@unb.ca)

Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton E3B 9Y2

Table of contents

- Network characteristics
 - Degree Distribution
 - Path distance Distribution
 - Clustering coefficient distribution
 - Giant component
 - Community structure
 - Assortative mixing: birds of similar feathers flock together
- The Poisson Random network: a benchmark
 - Erdös-Rényi Random Network (Publ. Math. Debrecen 6, 290 (1959)
- 3 Network characteristics in real networks
 - Appendix A: Phase transition, giant component and small components in ER network: bond percolation

Network characteristics

- Degree distribution
- Path distribution
- Clustering coefficient distribution
- Size of the giant component
- Community structure
- Assortative mixing (a.k.a., homophily or Heterophily in social network)

Degree distribution for undirected graph

- Degree distribution: A frequency count of the occurrence of each degree.
- First the degrees are listed below:

node	degree
1	2
2	3
3	2
4	3
5	3
6	1

Degree distribution for undirected graph

• The degree distribution therefore is:

degree	frequency
1	1/6
2	2/6
3	3/6

• Average degree: let N = |V| be the number of nodes, and L = |E| be the number of edges:

$$\langle K \rangle = \frac{\sum\limits_{i=1}^{n} deg(i)}{N} = \frac{2L}{N}$$

• $\langle k \rangle = 2(7)/6 = 7/3$ for the above graph.

R code based on package igraph: Degree distribution

```
rm(list=ls())# clear memory
library(igraph) # load package igraph
#Generate undirected graph object from adjacency matrix
adjm_u<-matrix(
  c(0. 1, 0, 0, 1, 0,
1. 0. 1. 0. 1. 0.
0, 1, 0, 1, 0, 0,
0, 0, 1, 0, 1, 1,
1, 1, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0), # the data elements
  nrow=6, # number of rows
  ncol=6,
               # number of columns
  byrow = TRUE) # fill matrix by rows
g_adj_u <- graph.adjacency(adjm_u, mode="undirected")</pre>
# calculate the degree and degree distribution
degree.distribution(g_adj_u)
```

```
degree(g_adj_u,loops = FALSE)
```

Degree and degree distribution for directed graph

- Indegree of any node *i*: the number of nodes destined to *i*.
- Outdegree of any node *i*: the number of nodes originated at *i*.
 - Every loop adds one degree to each of the indegree and outdegree of a node.

node	indegree	outdegree
1	0	1
2	2	3
3	2	0
4	2	2
5	1	1

Degree and degree distribution for directed graph

• Degree distribution: A frequency count of the occurrence of each degree

indegree	frequency	outdegree	frequency
0	1/5	0	1/5
1	1/5	1	2/5
2	3/5	2	1/5
		3	1/5

• Average degree: let $N = \left| V \right|$ be the number of nodes, and $L = \left| E \right|$ be the number of arcs:

$$\langle K^{in} \rangle = \frac{\sum_{i=1}^{n} deg_{in}(i)}{N} = \frac{\sum_{i=1}^{n} deg_{out}(i)}{N} = \frac{L}{N}$$

• $\langle K^{in} \rangle = \langle K^{out} \rangle = 7/5$ for the above graph.

R code based on package igraph: degree

```
rm(list=ls())# clear memory
library(igraph)# load package igraph
#Generate directed graph object from adjacency matrix
adjm_d<-matrix(
  c(0, 1, 0, 0, 0,
0, 0, 1, 1, 1,
0, 0, 0, 0, 0,
0, 1, 1, 0, 0,
0, 0, 0, 1, 0), # the data elements
  nrow=5. # number of rows
  ncol=5.
               # number of columns
  byrow = TRUE) # fill matrix by rows
g_adj_d <- graph.adjacency(adjm_d, mode="directed")</pre>
# calculate the indegree and outdegree distribution
degree.distribution(g_adj_d, mode="in")
degree.distribution(g_adj_d, mode="out")
degree(g_adj_d,mode="in",loops = FALSE)
degree(g_adj_d,mode="out",loops = FALSE)
```

- Degree is interesting for several reasons.
 - the simplest, yet very illuminating centrality measure in a network:
 - In a social network, the ones who have connections to many others might have more influence, more access to information, or more prestige than those who have fewer connections.
 - The degree is the immediate risk of a node for catching whatever is flowing through the network (such as a virus, or some information)

Path distance distribution for undirected graph

- Path distribution: A frequency count of the occurrence of each path distance.
- First the path distances are listed below:

	1	2	3	4	5	6
1	0	1	2	2	1	3
2	1	0	1	2	1	3
3	2	1	0	1	2	2
4	2	2	1	0	1	1
5	1	1	2	1	0	2
6	3	3	2	1	2	0

Path distance distribution for undirected graph

• The path distance distribution D therefore is:

distance	frequency
1	7/15
2	6/15
3	2/15

• Average path distance: let N = |V| be the number of nodes:

$$\langle D \rangle = \frac{\sum_{i=1}^{n} dist(i,j)}{\binom{N}{2}}$$

• $\langle D \rangle = \mathbb{E}[D] = 5/3$ for the above graph.

R code based on package igraph: Path distribution

```
rm(list=ls())# clear memory
library(igraph) # load package igraph
#Generate undirected graph object from adjacency matrix
adjm_u<-matrix(
  c(0, 1, 0, 0, 1, 0,
1, 0, 1, 0, 1, 0,
0. 1. 0. 1. 0. 0.
0. 0. 1. 0. 1. 1.
1, 1, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0), # the data elements
  nrow=6, # number of rows
  ncol=6.
               # number of columns
  byrow = TRUE)  # fill matrix by rows
g_adj_u <- graph.adjacency(adjm_u, mode="undirected")</pre>
# calculate the path distribution
shortest.paths(g_adj_u)
average.path.length(g_adj_u)
path.length.hist(g_adj_u) # $res is the histogram of distances,
 # $unconnected is the number of pairs for which the first vertex is not
 # reachable from the second.
```

Path distance distribution for directed graph

- Path distribution: A frequency count of the occurrence of each path distance.
- First the path distances are listed below:

	1	2	3	4	5
1	0	1	2	2	2
2	Inf	0	1	1	1
3	Inf	Inf	0	Inf	Inf
3 4	Inf Inf	Inf 1	0 1	Inf 0	Inf 2

Path distance distribution for directed graph

• The path distance distribution D therefore is:

Distance	Frequency
1	7/13
2	6/13

• Average path distance: let $N = \left| V \right|$ be the number of nodes:

$$\langle D \rangle = \frac{\sum\limits_{i < 1} dist(i, j)}{\binom{N}{2}}$$

• $\langle D \rangle = \mathbb{E}[D] = 19/13$ for the above graph.

R code based on package igraph: degree

```
rm(list=ls())# clear memory
library(igraph)# load package igraph
#Generate directed graph object from adjacency matrix
adjm_d<-matrix(
  c(0, 1, 0, 0, 0,
0, 0, 1, 1, 1,
0, 0, 0, 0, 0,
0. 1. 1. 0. 0.
0, 0, 0, 1, 0), # the data elements
  nrow=5, # number of rows
  ncol=5.
               # number of columns
  byrow = TRUE) # fill matrix by rows
g_adj_d <- graph.adjacency(adjm_d, mode="directed")</pre>
shortest.paths(g_adj_d, mode="out")
shortest.paths(g_adj_d, mode="in")
average.path.length(g_adj_d)
path.length.hist (g_adj_d) # $res is the histogram of distances,
 # $unconnected is the number of pairs for which the first vertex is not
 # reachable from the second.
```

Why do we care about path?

- Path is interesting for several reasons.
 - Path mean connectivity.
 - Path captures the indirect interactions in a network, and individual nodes benefit (or suffer) from indirect relationships because friends might provide access to favors from their friends and information might spread through the links of a network.
 - Path is closely related to small-world phenomenon.
 - Path is related to many centrality measures.
 - • •

Clustering coefficient Distribution for undirected graph

- · Recall the definition of local clustering coefficient:
 - $CC(A) = \mathbb{P}(B \in N(C)|B, C \in N(A))$
 - $= \mathbb{P}(\text{two randomly selected friends of } A \text{ are friends})$
 - P(fraction of pairs of A's friends that are linked to each other)
 - P(density of the neighboring subgraph).
- We can also define the global clustering coefficient based on the concept of triplets of nodes.
- A triplet consists of three nodes that are connected by either two (open triplet) or three (closed triplet) undirected ties.
 - A triangle consists of three closed triplets, one centered on each of the nodes.
- The global clustering coefficient is the number of closed triplets (or 3 x triangles) over the total number of triplets (both open and closed):

 $CC = \frac{3 \times \text{number of triangles}}{\text{number of triplets}} = \frac{\text{number of closed triplets}}{\text{number of triplets}}$

- Clustering coefficient distribution: A frequency count of the occurrence of each clustering coefficient.
- · First the clustering coefficient are listed below:

node	clustering coefficient
1	1
2	1/3
3	0
4	0
5	1/3
6	NaN

Clustering coefficient Distribution for undirected graph

• The Clustering coefficient Distribution therefore is:

Clustering coefficient C	Frequency
0	2/5
1/3	2/5
1	1/5

• Average Clustering coefficient: let N = |V| be the number of nodes:

$$\langle C \rangle = \frac{\sum\limits_{i=1}^{n} CC(I)}{N}$$

- $\langle C \rangle = \mathbb{E}[C] = 1/3$ for the above graph.
- The global clustering coefficient is 3/11 = 0.272727...
 - First count how many configurations of the form *ij*, *jk* there are in the network: 1:1; 2:3; 3:1; 4:3;5:3;6:0. So there are 1+3+1+3+3=11 such congurations in the network.
 - Second count how many triangles there are in the network: there is only one triangle, resulting three closed triplets..

Donglei Du (UNB)

Social Network Analysis

- For the previous example, the average clustering is 1/3 while the global clustering is 3/11.
- These two common measures of clustering can differ. Here the average clustering is higher than the overall clustering, it can also go the other way.
- Moreover, it is not hard to generate networks where the two measures can produce very different numbers for the same network.

R code based on package igraph: Clustering coefficient distribution

```
rm(list=ls())# clear memory
library(igraph) # load package igraph
*****
#Generate undirected graph object from adjacency matrix
adim u<-matrix(
  c(0, 1, 0, 0, 1, 0,
1. 0. 1. 0. 1. 0.
0, 1, 0, 1, 0, 0,
0. 0. 1. 0. 1. 1.
1. 1. 0. 1. 0. 0.
0, 0, 0, 1, 0, 0), # the data elements
  nrow=6, # number of rows
  ncol=6,
                  # number of columns
  byrow = TRUE) # fill matrix by rows
g_adj_u <- graph.adjacency(adjm_u, mode="undirected")</pre>
# Calculate the clustering coefficient
transitivity(g_adj_u, type="local")# local clustering
transitivity(g_adj_u, type="average") #average clustering
transitivity(g_adj_u)# global clustering: the ratio of the triangles
             # and the connected triples in the graph.
```

Why do we care about clustering coefficient? I

- Clustering is interesting for several reasons.
 - A clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together. Evidence suggests that in most real-world networks, and in particular social networks, nodes tend to create tightly knit groups characterized by a relatively high density of ties; this likelihood tends to be greater than the average probability of a tie randomly established between two nodes.
 - Empirically vertices with higher degree having a lower local clustering coefficient on average.
 - Local clustering can be used as a probe for the existence of so-called structural holes in a network, which are missing links between neighbors of a person.

Why do we care about clustering coefficient? II

- Structural holes can be bad when are interested in efficient spread of information or other traffic around a network because they reduce the number of alternative routes information can take through the network.
- Structural holes can be good thing for the central vertex whose friends lack connections because they give *i* power over information flow between those friends.
- The local clustering coefficient measures how influential *i* is in this sense, taking lower values the more structural holes there are in the network around *i*.
- Local clustering can be regarded as a type of centrality measure, albeit one that takes small values for powerful individuals rather than large ones.

The sizes of giant components

- A giant component is a connected component (strongly connected component for directed network) in a large network, when its size is a constant fraction of the entire graph.
- Formally, let N_1 be the size of a connected component C in a network of size N, then C is a giant component if

$$\lim_{N \to \infty} \frac{N_1}{N} = c > 0.$$

Community structure

- Network nodes are joined together in tightly knit groups, between which there are only looser connections.
- Refs: (Girvan and Newman, 2002)

Assortative mixing

• Assortative mixing (a.k.a., homophily or Heterophily in social network): the tendency of vertices to connect to others that are alike.

Erdös-Rényi Random Network

- The Erdös-Rényi network (a.k.a. Poisson Metwork) is a random graph G(N,p) with N labeled nodes where each pair of nodes is connected by a preset probability p:
 - Fix node number N.
 - Among all possible edges $\binom{N}{2}$, include each edge with probability p independently.
- N and p do not uniquely define the network: there are $2^{\binom{N}{2}}$ different realizations of it.
- Although the random graph is certainly not a realistic model of most networks, but simple models of networks like this can give us a feel for how more complicated real-world systems should behave in general.
- Let us see some simulation through NetLogo:
 - http://ccl.northwestern.edu/netlogo/
 - Go to File/Model Library/Networks: Erdös-Réni Random Model (choose Giant Component)

R code base don package igraph: generating the Erdös-Rényi Random Network

>library(igraph)

- > g <- erdos.renyi.game(100, 1/100)
- > tkplot(g) # interactive plot

Simulation of the Erdös-Rényi Random Network through NetLogo

- http://ccl.northwestern.edu/netlogo/
- Go to File/Model Library/Networks/Giant Component

Number of edges distribution for the Erdös-Rényi Random Network I

• If we randomly selected one random graph among all the possible networks: then the probability to have exactly ℓ links in a network of N nodes and probability p:

$$P(L=\ell) = \binom{\binom{N}{2}}{\ell} p^{\ell} (1-p)^{\binom{N}{2}-\ell}.$$

• So the average density is

$$\frac{p\binom{N}{2}}{\binom{N}{2}} = p$$

Number of edges distribution for the Erdös-Rényi Random Network II

- The parameter p in this model can be thought of as a weighting function.
- As p increases from 0 to 1, the model becomes more and more likely to include graphs with more edges and less and less likely to include graphs with fewer edges.
- In particular, the case p = 0.5 corresponds to the case where all $2^{\binom{N}{2}}$ graphs on N vertices are chosen with equal probability.

Degree Distribution for the Erdös-Rényi Random Network

Binomial ↓ Approximately Poisson ↓ Approximately Normal

Degree Distribution for the Erdös-Rényi Random Network is Binomial

 Binomial: let K be the degree of a random chosen node, then it can be connected to any of the remaining node independently with probability p, and hence K ∼ B(N − 1, p):

$$P(K = k) = C_{N-1}^{k} p^{k} (1-p)^{N-1-k}$$

with mean and variance

Degree Distribution for the Erdös-Rényi Random Network is approximately Poisson

• Approximately **Poisson**: $B(N-1,p) \approx P(\lambda)$ with $\lambda = p(N-1) = \langle K \rangle$, for large N and small p (say $N \ge 100$ and $Np \le 10$)

$$P(K = k) \approx e^{-\langle K \rangle} \frac{\langle K \rangle^k}{k!}$$
, for large N and small p.

with mean and variance all equal to λ .

Degree Distribution for the Erdös-Rényi Random Network is approximately Normal

Approximately Normal: = N(λ, λ) ≈ P(λ), for sufficiently large values of λ, (say λ > 1000; for smaller λ, the continuity correction should be performed):

$$P(K = k) \approx N(\langle K \rangle, \langle K \rangle)$$
 for large $\langle K \rangle$.

Path distance distribution for the Erdös-Rényi Random Network

- Path distance distribution is hard to find. So we focus on the expectation.
- The average path distance in the random network is approximately

$$\langle L \rangle \approx \frac{\log n}{\log \langle K \rangle}$$

• Idea: Average number of friends at distance d:

$$N_d = \langle K \rangle^d$$

implying that

$$n = \langle K \rangle + \langle K \rangle^1 + \ldots + \langle K \rangle^d \approx \langle K \rangle^d$$

Clustering coefficient distribution for the Erdös-Rényi Random Network

- Clustering coefficient distribution is hard to find. So we focus on the expectation.
- The average Clustering coefficient in the random network is approximately

$$\langle C \rangle \approx \frac{\langle K \rangle}{n}$$

• Randomly select a node i, there are k_i friends, leading to $k_i(k_i - 1)/2$ maximum possible edges, and each will appear with probability p. So the average

$$\langle C \rangle = p \approx \frac{\langle K \rangle}{n}$$

Phase transition of the size of the giant component in the Erdös-Rényi Random Network

- The largest component in the ER random graph has constant size 1 when p = 0 and extensive size n when p = 1.
- An interesting question to ask is how the transition between these two extremes occurs if we construct random graphs with gradually increasing values of *p*, starting at 0 and ending up at 1—this is bond percolation!
- It turns out that the size of the largest component undergoes a sudden change, or phase transition, from constant size to extensive size at one particular special value of p = 1/n.

The size of the giant component in the Erdös-Rényi Random Network (Bollobás et al., 2001)

- If $p < \frac{1}{n}$
 - with high probability, there is no giant component, with all connected components of the graph having size $O(\log n)$.
- If $p > \frac{1}{n}$
 - with high probability, there is a single giant component, with all other components having size $O(\log n)$.
- If $p = \frac{1}{n}$
 - with high probability, the number of vertices in the largest component of the graph is proportional to $n^{2/3}$.
- See Appendix for an asymptotic analysis <

Community structure in the Erdös-Rényi Random Network

Nope!

Assortative mixing in the Erdös-Rényi Random Network

• Nope!

Characteristics of the random network: summary and illustration in Netlogo

- Sparsity: Average density = p.
- Degree distribution: Poisson distribution

$$P(K = k) = \binom{n}{k-1} p^k (1-p)^{n-k}$$
$$\approx e^{-\langle K \rangle} \frac{\langle K \rangle^k}{k!}.$$

• Average path: small world

$$\langle D \rangle \approx \frac{\log n}{\log \langle K \rangle}$$

• Average clustering coefficient: low for large network

$$\langle C \rangle = p \approx \frac{\langle K \rangle}{n}$$

• The threshold for the emergence of the giant component is

$$p = \frac{1}{n} \text{ or } \langle K \rangle \approx 1$$

- No community structure
- No assortative mixing

Network characteristics for real network

- Sparsity: |E| = O(n) edges.
- Degree distribution: Power distribution (scale-free)
- Average path: $O(\log n)$, small world
- Average clustering coefficient: high for large network (compared to random network)
- Giant component: common
- Community structures: common
- Assortative mixing: common

Network characteristics for real networks

	Network	Type	п	111	с	S	l	α	С	Cws	r
_	Film actors	Undirected	449 913	25 516 482	113.43	0.980	3.48	2.3	0.20	0.78	0.208
	Company directors	Undirected	7673	55 392	14.44	0.876	4.60	-	0.59	0.88	0.276
	Math coauthorship	Undirected	253 339	496 489	3.92	0.822	7.57	_	0.15	0.34	0.120
	Physics coauthorship	Undirected	52,909	245 300	9.27	0.838	6.19	-	0.45	0.56	0.363
ial	Biology coauthorship	Undirected	1520251	11 803 064	15.53	0.918	4.92	-	0.088	0.60	0.127
ŏ	Telephone call graph	Undirected	47 000 000	80 000 000	3.16			2.1			
u ,	Email messages	Directed	59812	86300	1.44	0.952	4.95	1.5/2.0		0.16	
	Email address books	Directed	16881	57 029	3.38	0.590	5.22	-	0.17	0.13	0.092
	Student dating	Undirected	573	477	1.66	0.503	16.01	-	0.005	0.001	-0.029
	Sexual contacts	Undirected	2810					3.2			
	WWW nd.edu	Directed	269 504	1 497 135	5.55	1.000	11.27	2.1/2.4	0.11	0.29	-0.067
tio	WWW AltaVista	Directed	203 549 046	1466 000 000	7.20	0.914	16.18	2.1/2.7			
ma	Citation network	Directed	783 339	6716198	8.57			3.0/-			
for	Roget's Thesaurus	Directed	1022	5103	4.99	0.977	4.87	-	0.13	0.15	0.157
5	Word co-occurrence	Undirected	460 902	16 100 000	66.96	1.000		2.7		0.44	
-	Internet	Undirected	10697	31 992	5.98	1.000	3.31	2.5	0.035	0.39	-0.189
a	Power grid	Undirected	4941	6594	2.67	1.000	18.99	-	0.10	0.080	-0.003
gic	Train routes	Undirected	587	19 603	66.79	1.000	2.16	-		0.69	-0.033
olo	Software packages	Directed	1439	1723	1.20	0.998	2.42	1.6/1.4	0.070	0.082	-0.016
chu	Software classes	Directed	1376	2 2 1 3	1.61	1.000	5.40	-	0.033	0.012	-0.119
e.	Electronic circuits	Undirected	24 097	53 248	4.34	1.000	11.05	3,0	0.010	0.030	-0.154
	Peer-to-peer network	Undirected	880	1296	1.47	0.805	4.28	2.1	0.012	0.011	-0.366
	Metabolic network	Undirected	765	3 686	9.64	0.996	2.56	2.2	0.090	0.67	-0.240
G	Protein interactions	Undirected	2115	2 2 4 0	2.12	0.689	6.80	2.4	0.072	0.071	-0.156
0g	Marine food web	Directed	134	598	4.46	1.000	2.05	-	0.16	0.23	-0.263
Siol	Freshwater food web	Directed	92	997	10.84	1.000	1.90	-	0.20	0.087	-0.326
	Neural network	Directed	307	2359	7.68	0.967	3.97	_	0.18	0.28	-0.226

Figure: The above table is from (Newman, 2010)

The properties measured in the previous table

- type of network
- directed or undirected
- $\bullet\,$ total number of vertices n
- ${\ensuremath{\,\circ\,}}$ total number of edges m
- $\bullet\,$ mean degree c
- fraction of vertices in the largest component S (or the largest weakly connected component in the case of a directed network);
- $\bullet\,$ mean geodesic distance between connected vertex pairs $\ell\,$
- exponent α of the degree distribution if the distribution follows a power law (or - if not; in/out-degree exponents are given for directed graphs);
- local clustering coefficient C:
- Average local clustering coefficient over all nodes
- the degree correlation coefficient r

ER network vs real network

Characteristics	ER prediction	Real network	
Density	$p \Longrightarrow Sparse$	Sparse	
Degree distribution	Poisson (or Normal)	Power-law	
Clustering coefficient	$p \Longrightarrow Low$	High	
Average distance	Small world	Small world	
Giant component	Yes	Yes	
Community structure	No	Yes	
Homophily	No	Yes	

Case study: calculate the different measures for the Padgett Florentine families social network

rm(list=ls()) # clear memory library(igraph) # load package igraph load("padgett.RData") # read in the data gb<-padgett\$PADGB # The business network #gm<-padgett\$PADGM # the marriage network #Calculate the different measures for the Business network # calculate the degree and degree distribution degree.distribution(gb) degree(gb,loops = FALSE) # calculate the path distribution: shortest.paths(gb) average.path.length(gb) path.length.hist(gb) # \$res is the histogram of distances, # \$unconnected is the number of pairs for which the first vertex is not # reachable from the second. # Calculate the clustering coefficient transitivity(gb, type="local")# individual clustering transitivity(gb, type="average") #average clustering transitivity(gb)# overal clustering: the ratio of the triangles # and the connected triples in the graph.

Donglei Du's ego network on Facebook as of Sept

17, 2014

The size of the giant component Newman (2010)-Chapter 12

 s = 1 − u: the asymptotic (n → ∞) fraction of vertices that are in the giant component S:

$$s \approx 1 - e^{-\langle k \rangle s} \tag{1}$$

• *u*: the probability that a randomly chosen vertex in the graph does not belong to the giant component *S*:

$$u \approx e^{-\langle k \rangle (1-u)}$$

- For a randomly chosen node i, i ∉ S iff it is not connected to S via any other n − 1 nodes.
- For every other node $j \neq i$,
 - either: i is not connected to j with probability 1 p;
 - or: *i* is connected to *j* but $j \notin S$ with probability *pu*.

Therefore

$$u = (1 - p + up)^{n-1} = \left(1 - \frac{\langle k \rangle}{n-1}(1 - u)\right)^{n-1}$$

$$\Leftrightarrow$$

$$\ln u = (n-1)\ln\left(1 - \frac{\langle k \rangle}{n-1}(1 - u)\right) \underset{n \to \infty}{\approx} - \langle k \rangle(1 - u)$$

$$\Leftrightarrow$$

$$u = e^{-\langle k \rangle(1 - u)}$$

Percolation threshold

Lambert W function

- We need the following concept to solve the equation (1).
- The following equation's solutions are called the Lambert W functions:

$$ye^y = x \iff y = W(x) \text{ or } y = W_{-1}(x)$$

Figure: Lambert W function is defined only for $x \ge -e^{-1}$, and is double-valued for $x \in (-e^{-1}, 0)$. There are two solutions (1) W(x) (green) refers to the principal branch satisfying $W(x) \ge -1$, and (2) $W_{-1}(x)$ (red) refers to the branch satisfying w(x) < -1.

Solution for (1) via Lambert W function

There is only one giant component!!!

- Suppose that there were two or more giant components in a random graph.
- Take any two giant components S_1 and S_2 , with sizes s_1n and s_2n respectively $(s_1, s_2 \in [0, 1])$.
- S_1 and S_2 are separate iff there is no edge connecting them together, which happens with probability q given by

$$q = (1-p)^{s_1 s_2 n^2} = \left(1 - \frac{c}{n-1}\right)^{s_1 s_2 n^2} = \Theta\left(e^{-c s_1 s_2 n}\right) \underset{n \to \infty}{\longrightarrow} 0$$

- The number of distinct pairs of vertices (i, j), where $i \in S_1, j \in S_2$, is just $s_1 s_2 n^2$.
- Each of these pairs is connected by an edge with probability p, or not with probability 1 p.

Donglei Du (UNB)

The distribution of the sizes of the small components

 Let π_k be the probability that a randomly chosen vertex belongs to a small component of size exactly k vertices. Then

$$\sum_{k=0}^{\infty} \pi_k = 1 - s$$

• Claim: the potability distribution of the sizes of the small components in a random graph with mean degree *c* is given by

$$\pi_k = \frac{e^{-ck}(ck)^{k-1}}{k!}, k = 0, 1 \dots$$

Albert-Lszl Barabsi at TEDMED 2012

• http://www.youtube.com/watch?feature=player_ detailpage&v=10oQMHadGos

Donglei Du (UNB)

- Bollobás, B., FULTON, W., KATOK, A., KIRWAN, F., and SARNAK, P. (2001). Cambridge studies in advanced mathematics. In *Random graphs*. Cambridge University Press New York.
- Girvan, M. and Newman, M. E. (2002). Community structure in social and biological networks. *Proceedings of the National Academy of Sciences*, 99(12):7821–7826.
- Newman, M. (2010). *Networks: an introduction*. Oxford University Press.