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1 Sets

1.1 How does mathematics grow?

In the logical development of any branch of mathematics, each definition of a concept involves
other concepts or relations. Thus, the only way to avoid a vicious circle is to accept certain
primitive concepts or relations as undefined. Likewise, the proof of each proposition (or
theorem) uses other propositions. Hence, to again avoid a vicious circle we must accept
certain fundamental propositions — called azioms or postulates— as true but unproved. (Here
[ have paraphrased a particularly nice description due to H. S. M. Coxeter.)

It is useful to keep these guiding principles in mind when reading or when engaged in a
mathematical conversation, as in this course. Although we won’t be pursue axiomatics very
much, we will attempt to prove things with a seriousness that is appropriate to the context.

Perhaps more importantly, precision in our own thinking is crucial if we are to communicate
with a computer on a mathematical level. The high speed electronic moron does not tolerate
fuzzy human thinking.

1.2 Sets: ideas and notation

Although the starting point for the axiomatic process described above is somewhat arbitrary,
most modern mathematicians begin with set theory and build up from there'. Keeping in
mind the vicious circle, we realize that there is no point giving a formal definition of set.
Instead, at the beginning, we can only discuss informal but sensible ways of thinking about
sets?. Thus a set A is any collection of objects z, called elements of the set®. We write

re A

(and say ‘z belongs to A’ or ‘z is an element of the set A) if indeed x is one of the objects
in A. Intuitively, if z € A, then  and A have ‘different levels of organization’.

'In practice, we aren’t deterred by 20th century discoveries, due to Godel and other logicians, that the
axiomatic method has inevitable and surprising limitations. For example, any mathematics which accepts
the legitimacy of the natural numbers 1, 2, 3, ... must contain theorems (i.e., true statements) which cannot
be proved!

2The American mathematician Paul Halmos has written an excellent book ‘Naive Set Theory’, as an
introduction to the foundations of mathematics for working mathematicians.

3To repeat: this is a way of thinking, not a precise definition.



If the object y is not in A we write

y & A.

Example.

= one of your classes last term
x = you (or one of your classmates)

= Steven Harper

sor €A, y & A. Again, intuitively, the class A has a ‘higher level of organization’. Now
imagine that students drop the class one by one. The class A changes to B, then C, etc. as
enrolment drops. We say B is a subset of A, C'is a subset of B, indeed C' is a subset of A:

CCBCA.

The sets A, B, C,... are different but still have the ‘same level of organization’. We can
image that everyone drops the class, so it makes sense to allow an empty class F, still
satisfying

E C A

If we try to make a census of all elements x of A, we might ask “Which of you were born in
Fredericton?” or ‘Which of you are Math. majors?” or “‘Which of you have blond hair?’, etc.
We wouldn’t count twice a person who answered yes to two or more questions. Thus, as is
reasonable, we shall agree that:

‘order and repetition are irrelevant when
assessing elements in a set’.

(If order and repetition are important, we instead employ a list, which is really a function,
which is really a very special kind of set! See below.)

Definitions. Suppose A, B, etc. are sets.

1. Ais a subset of B, written A C B, if every element of A is an element of B:

rc A=z c B.

2. A equals B, written A= B, if AC B and B C A:

r€A = x€B
r€E€B = zxze€A

In brief, € B if and only if € A. Intuitively, A and B have the same elements.

3. An empty set E has no elements.



1.3 We don’t worry much about the axioms for set theory

This isn’t a course in set theory, so we won’t say much. Instead, a sensible approach is to
learn the material informally through examples and by proving simple theorems, more or
less ignoring the axioms.

However, we do note that in order to avoid paradoxes we must insist that

rex

is a meaningless statement for any mathematical object x. Intuitively, x cannot be an
element of itself, because it would then simultaneously have two different levels of organiza-
tion. However,

x € {z}

is always true; and
rCux

is also perfectly okay, so long as x itself is a set.
Theorem. The empty set is unique: if £ and E’ are empty sets, then £ = E.
Proof. Convince yourself. O

Notation. When an interesting object is shown to be uniquely specified, it often deserves
a special notation. The empty set is denoted

Exercise. For any set A whatsoever, prove that

DCA.
More Definitions.

4. The union of two sets A, B is the set of all objects in either A or B (or both):
AUB={z:x€ A or z € B}.

5. The intersection of sets A, B is the set of all objects in both A and B:
ANB={z:x€ A and 2z € B}.

6. Sets A and B are disjoint if AN B = ().



Remark. There are similar definitions for any finite family of sets

A1U...UAk or Alﬂ...ﬁAk,

or even any indexed family of sets A;, where ¢t € Z. The indexing set Z could be infinite. In
general then, we write

U At or ﬂ At.
tel teZ

KKk

Sometimes we can explicitly enumerate the elements of a set, as in

A={5,6,7},
or even in
Sq=1{1,4,9,16,...}.
(The use of “...” assumes the pattern is clear.) Maybe an explicit description is better as in

Sq={ne€N: n=a? forsome ac N}

Thus Sq is a subset of the natural numbers N. Now is a good time to establish some

Standard Notation for Important Sets

e N = {natural numbers} = {1,2,3,...}

7 = {all integers} ={...,—2,-1,0,1,2,...}

Q = {rational numbers} = {@ :m,n € Z,n #0}
n

R = {real numbers}

C = {complex numbers} = {z +w : z,y € R}

The complex numbers thus provide an alternate way to look at the Fuclidean plane.



Of course, we also can identify the plane in the usual way with

o R?={(z,y) : 7,y €R}

A typical element of R? is therefore an ordered pair (x,y) (more on that below). By
‘usual way’, we mean that we set up our coordinates after first chosing an origin, then
rectangular axes with unit points.

Sometimes we want to interpret R? as a vector space. We commonly use square brackets
as a visual reminder that the ordered pair [z,y] is to be treated as a vector.

Likewise we may describe ordinary Euclidean space by ordered triples:
o R® = { (21,23, x3) : 21,22, 73 € R}

We may even have a look at the unit sphere:
o S?={(71,29,73) ER3 : 2+ 22 +22=1}

Thus S? is a subset of R3.

Exercises.

1. Let A= {2 {1}}, B={{0,{3}}}.

(a) What are the elements of A?
(b) What is the cardinality of A (number of distinct elements)?
(¢) What are the distinct elements of B? What is its cardinality?

a) What is cardinality of ()7
b) Of {0}
(c) Of {0, {0}}7

3. Weknow ) C N C Z> CZ C Q C R C C. How many subset relations of the form
A C B are there between these sets?



4. Let

A = {5,6,7}

{5, 7}
C = {6,6,57,57}

S
Il

True or False:

A = B
A= C
C C A
C C B
B C A
B # A
B € A
A C A
{6} ¢ A
{6} € A
6 C A
6 € A
p C A
P € A

5. Is it possible that
reA and zCA

are both true?

6. Find out what the subset lattice of a set A is and sketch it, when A = {1, 2, 3}.



1.4 Bulk operations on sets

Definitions. If a set A comes with an operation, say “+”, then we can ‘add’ subsets of A.
Suppose B C A and C' C A (two subsets of A). Then by definition

B+C:={r+y:x€B and ye C}.

This means add elements from B and C' in that order and in all possible ways .

The sets B, C could be finite or infinite. In particular, B could be a singleton (cardinality
1), say

B = {b}.

Then instead of {b} + C we write b + C for more pleasant reading.

43 7

Similarly, if set A comes equipped with a multiplication “x”, we might suppress the opera-
tion:

BC = {azy:zx€ B and ye C}
bC = {by:yeC}.

Exercises (Continued).

6. Describe, say by a ‘clearly understood’ listing, these subsets of the integers 7Z.

(a) 3Z

(b) 1+2Z

(¢) 12Z +21Z

(d) For specific positive integers a, b, what is aZ + bZ in general?

7. Describe these subsets of the reals R:

(a) V27
(b) ZN(V27).



8. An example from Euclidean Geometry.

A typical triangle will be denoted AABC'. For simplicity, let A, B, C' denote the angles
and let a, b, ¢ be the lengths of the opposite edges. Let

U = {AABC:C =90°}
V = {AABC:a*+b* =%}

In fact U = V.

(a) Rephrase U C V as a geometrical theorem. What is its conventional name?
(b) Restate V' C U as such a theorem. (This is the converse to the theorem in (a).)

(c) Restate U =V using ‘if and only if’ lingo. Using ‘necessary and sufficient’ lingo.

9. In a vector space, like
R?={u=[r,y]: 7 €R, y€eR}

we have two operations:

U +ux = (@1, %] + [, ¥2) = (21 + 22,1 + Yol
tu = tlzr,y| = [tz ty]

(component-wise addition and scalar multiplication, for scalars ¢t € R). We will often
use bold type to distinguish vectors, as in u. In class I may use arrows, as in .

Give geometrical descriptions for

(a) R[2,1] (strictly speaking, we here mean R{[2,1]})
(b) [-1,1] +R[2,1]
(¢) Z[1,0]+ Z|0,1]

1 V3
(d) Z[1,0]+ Z —5,7]

(e) {[z,y]:x€Z and y e Z}
(f) {lz,y]:x€ZoryelZ}




1.5 The Cartesian Product of Sets

Definition. For any two sets A, B, the (Cartesian ) product A x B is the set of all ordered
pairs (a, b) such that a € A and b € B:

Ax B:={(a,b):a€ Abe B} .

Example.
{0, 1} x{z,y, 2} = {(0,2),(0,9), (0, 2), (1,2), (1,y), (L, 2)} .
Similarly,
A x -+ x A,
is the set of all ordered n-tuples (ay,...,a,) with a; € A;, 1 < j < n. In the special case
that all sets are the same, say A = A; = ... = A,,, we often write A" instead.
Example.

]R2 :{[1'1,1'2] X1, 29 GR} .

(Recall once more that the square brackets are commonly used as a visual reminder that the
ordered pair is to be treated as a vector.) Of course, R? is a very infinite set. But our ideas
extend to sets of any cardinality.

1.6 Relations

Definition. A relation R from a set A to a set B is merely any subset of A x B:
RCAXxB

To indicate that (a,b) € R we write
aRb .

As we shall see below, a function f: A — B is a very special sort of relation.

Very often we have A = B; some extremely useful relations in this case are called equivalence
relations and partial orders on A.

Exercises

1. If there are a distinct elements in set A, b elements in B, ¢ elements in set C', then
how many distinct elements are there in A x B x C7

2. If n is a positive integer and there are a elements in the set A, then how many elements
are there in A"?

Kokok



Using the rather abstract point of view from above, analyze the following familiar
relations.

. The usual total order ‘<’ on the reals R can be defined as follows:
< = {(x,y) € R* : y — x is positive.}

(Presumably in constructing the reals we have somewhere been told which of them are
‘positive’). Sketch < as a subset of R?.

. On the positive integers N define the usual divisibility relation ‘|” by alb if a divides b
(without remainder).

Sketch | as a subset of N? (itself a subset of R?).

How can you tell from your sketch that a number b is prime?

10



2 Functions

2.1 Motion and Symmetry - Thinking about Functions

Recall that we let R? denote (the set of points in) the Fuclidean plane. In fact, many of our
results will extend to Euclidean spaces of higher dimension.

Let us try to make mathematical sense of motions and symmetry.
1. Think about motion of a figure in the plane. Freeze a couple of positions.

Earlier (freeze)

‘R ‘\ P!

e
Later (freeze)
e 'O’
Or consider symmetry or congruence:
: A 3 B

In all these examples, the geometrical operation gives a function f mapping P to P, A
to A’, etc. The function preserves shape; specifically, it preserves the distance between
pairs of points in the figure:

PQ — P/Q/
for all points P, ) in the figure. Since the distance between constituent points is
inwvariant, the shape as a whole is unchanged.

A function like this which is respectful of distance is called an isometry.

Every motion or symmetry can be reversed: just reverse the arrows and map P’ to P,
A" to A, etc. We get the function f~!. It too will be respectful of distance; so f~! is
also an isometry (closely related to f, of course).

11



2. The idea of similarity is much like this, except that every distance now is rescaled by
a constant real factor A # 0. In the picture that follows, A ~ 1.84.

A3 B

e 10 ( C

This magnifying function f alters distance, but in a uniform way, so that ‘shape’ is
preserved in some sense. We say f is a similarity. It, too, is a nice function. Note that

f~1is also a similarity, whose magnifying factor is 3 ~ 0.54.

3. A general function f might randomly rearrange points of the plane and so utterly
destroy structures in the plane. This would be of little use in geometry. Thus we will
want to study only ‘nice’ functions, where ‘nice’ will depend on our needs and will have
to be properly defined.

4. What we have then are certain nice functions mapping a subset of R? to another
(possibly the same) subset of R2. It is convenient to start with functions mapping all
of R? to R?, since we can then simply restrict our attention to any particular subset of
interest.

For example, a symmetry of the square is really descended from an isometry of the
whole plane; but it may suit us to ignore what that isometry does outside the square.

In the figure below, reflection in the line m preserves not only the whole plane, but
also a variety of figures, each of which is said to have bilateral symmetry.

subset 5

©

subset 1 subset 3

A e
i .

subset 2 subset 4

12



5. Reflections are key examples of nice geometrical functions. How, in fact, do we describe
a reflection as a function r : R? — R2?

Definition: the reflection r in a given line m

Let m be any line in the plane R?. For each point P € R? let P’ = (P)r be the mirror
image of P by reflection in m. More precisely, on the line which passes through P and
is perpendicular to m we locate P’ an equal distance from m on the opposite side:

L

y
X = (X)r =xr

Remarks. We check that r : R?2 — R? is well-defined. This means that our purely
geometric definition is unambiguous. For example, there can’t be two perpendiculars
to m through P, so we know exactly where to locate P’. (But consider the north pole
and equator on the sphere; something subtle is going on!).

It is easy to believe and not hard to prove that a reflection r is an isometry: reflections
preserve distances. For example, the distance from P to (Q equals the distance from P’

to @'. (In vector language we have | PQ || = || P'Q’" ||.) Of course, the same is true
for any pair of points in the plane. We therefore say that r is an isometry.

Exercise. Prove that r is an isometry.

We should note some important properties of reflections. First of all, we observe that
a point D is fized or invariant, in brief, (D)r = D, precisely when D lies on m. (Prove
that this really is what our definition for r says when D € m.)

We also note that r is an opposite (= orientation-reversing = sense-reversing) isometry.
The image of any anti-clockwise oriented triangle is a clockwise oriented triangle, and
vice-versa.

6. We hinted earlier that ‘most’ functions f : R? — R? will destroy desirable geometric
properties and hence would be of no use to us. Even some simple examples have their
faults:

Example. Fix any one point O, say, in the plane R2. Define a constant function
k:R? — R?

which maps every point P to O. Note that our definition, naturally enough, is geo-
metric, rather than being produced by an ‘algebraic formula’. Note also that the range
of the function is the one-point set {O}.

13



2.2

Intuitively, the whole plane is collapsed onto a single point, and we have no way of
recovering from this situation. We say that

k has no inverse.

The function is boring from a geometrical point of view. Of course, constant functions
are very useful in physics and calculus; for example, the acceleration due to gravity is
more or less constant near the the surface of the earth.

In class we shall take a closer look at the symmetries of a simple geometric obeject
like a square and use that discussion to motivate the more formal descriptions which
follow.

So what is a function?

. Definitions. Let X,Y be two sets, finite or infinite. A function f is any rule* which

associates to each input element z in X exactly one output element, traditionally
denoted f(x), in Y. In brief, we write
f: X—=Y .

The set X is the domain of f.

Note that the range
f(X) ={f(z)]z € X}

could be a proper subset of Y.
Definition. If in fact f(X) =Y, then we say f is onto or surjective.

New Notation Some arguments are easier to read if we write 2’ or y or some other
letter in place of of f(x). We could write

I
T =T
to indicate this. More radically, we will often use the ‘algebra-friendly’ notation

(x)f or more simply x f

instead of f(P).
Why is this ‘natural’?

4If you object to the somewhat vague term ‘rule’, you should note that it is quite possible to give a very
precise, but less intuitive definition: the function f is actually a subset of X x Y, with the property that
each x € X is the first entry in exactly one ordered pair (x,y) € f. In other words, f is a special sort of
relation from X to Y, so

FCXXY.

In fact, the set inclusion has to be proper here, unless Y has what cardinality?

14



Example from basic algebra. Suppose X = R=% = {z € R : x > 0} is the set of
non-negative real numbers. In fact, we will take ¥ = X, too. Now let f be the ‘rule’
which takes a non-negative real number x as input and outputs the unique non-negative
real whose square equals . What function is this?

(Answer: we have described the square root without using a formula.) Thus

(4)f =2

or

25f=5.

Can you rewrite the statement (ab)f = (af)(bf) in traditional notation?

. We could use the symmetries of geometrical objects to motivate the next idea. Instead,
let us think about a more whimsical

Example. Consider the airplane booking function f from the passenger set X on a
particular flight to the seat set Y on the airplane: (z)f = xf is the seat occupied by
person x, for each passenger x € X. Thus, f onto means that every seat is filled. On
the other hand, we don’t want the flight to be stupidly booked: no two people should
be assigned the same seat! A function with this sensible property is said to be 1 — 1.
Clearly, if f is both 1—1 and onto, then there is exactly one seat for each passenger; in
other words, the number of seats is the same as the number of passengers. Note that
you could ‘see this’ by simply looking at the cabin, without counting or knowing the
number of passengers or seats. These considerations motivate the following definitions
and observations.

. Definitions. If f maps distinct inputs to distinct outputs, i.e.

T F = f £Faof,

then we say that f is 1—1 (or injective). In contrapositive fashion, we could equivalently
say that
l’lf:l’gf:>l'1:l'2 .

A function f: X — Y is bijective if it is both 1 — 1 and onto.

JIf f X — Y is a bijection, then the domain X and range Y must have the same
cardinality, even if both are infinite. Put otherwise, f defines a 1-1 correpondence
between the elements of X and the elements of Y. In this manner, by construction of
suitable functions, we can assess whether certain infinite sets have or do not have the
same ‘number’ of elements.

15



Examples

e N and Z have the same cardinality.

e N and Q have the same cardinality. Thus we can count the rational numbers even
though they seem to fill out an ordinary line.

e Q and R do not have the same cardinality: the reals have a ‘higher order of
infinity’; they are uncountable.

Remark. This definitely hampers our ability to represent ‘generic’ real numbers
on the computer. Typically, with the aid of floating point arithmetic, we make
do with finite (but perhaps rather good!) approximations. This avenue is more
appropriate to a course in numerical analysis.

6. Exercises

(a) Exhibit a bijection from the open real interval (0,1) ={z € R: 0 <z <1} toR
itself.

(b) Exhibit a bijection between the the set N (of all natural numbers) and the proper
subset Y ={2,4,6,8,...} of just the even natural numbers.

(c¢) If X is finite, say with n elements, how many bijections f : X — X are there?
(Think: given n people in n chairs, how many ways can they rearrange them-
selves?)

7. Every geometric object has at least one symmetry, namely that in which we leave the
object alone. After all, if no point moves, then the object will look the same before
as after! This motivates the next definition, which applies to any set X, not just to
geometrical figures.

Definition. The identity function
1: X—-X

satisfies ()1 = z for all z € X. We write 1y if we need to emphasize the domain X.

Remarks. Identity functions are modest but very useful; they play the same role in
symmetry that the number ‘1’ does for the multiplication of real numbers, or that the
number ‘0" does in addition.

Here we must be careful - the symbol 1 = 1x will often not have a numerical meaning.
Instead, it will frequently indicate a trivial symmetry. Thus we must always be aware
of our algebraic context.

Exercises.

(a) Graph the function 1k in the usual way of first-year calculus.
(b) Prove that 1x : X — X is a bijection.
Think about this before you peak at the

Solution. We must show that 1y is 1-1 and onto. Let ¢ be any element of the
receiving set X. Then ¢ also belongs to the input set (the same X), and (¢)1x = t,
by definition. Thus 1x is onto.

The proof that 1x is 1-1 is just as easy. U

16



8. We have observed that a plane reflection can be regarded as a function
r:R? — R?.
We use reflections in the next motivational example.

9. Problem - perpendicular mirrors. What happens when a light beam bounces
successively off two perpendicular mirrors? In other words, what is the net effect of
reflections r; and 7y in two perpendicular mirrors m; and my?

Out ray

In ray

mq

Consider any light ray hitting (and bouncing from) m; at angle x. The two equal
angles at mo are o = 90° — %, so that

a+p = a+[180° — 2x]
= a+2[90° — ]
= a+2o0
= 180°.

Hence, the in- and out- rays are parallel. In other words, the light beam returns to its
source regardless of how that source is positioned relative to the mirrors. A configura-
tion of mirrors similar to this is used in conjunction with lasers to measure distances
very accurately. For example, this is how the distance to the moon is computed accu-
rate to a few meters.

17



10. Kaleidoscopic symmetry. Two mirrors like this form a simple kaleidoscope. The

11.

following plane figure is symmetrical by reflection in precisely two perpendicular mir-
TOTS.

Using the orbifold notation of J. H. Conway, et al, we would say that the figure has
*2e

symmetry, which we read as ‘star two point’ symmetry. The * is meant to suggest
the various mirrors of symmetry; the 2 indicates the number of such mirrors; the e
indicates the point at which such mirrors cross.

Important: this point common to the mirrors is fixed by reflection in each mirror,
indeed is fixed by all symmetries of the figure. We would not use a e for a pattern with
no point fixed by all symmetries (example: the bricks of a typical infinite wall).

Products of Functions The previous discussion suggests that it is worthwhile study-
ing the net effect of two functions.

Definition. Suppose f: X — Y and g : Y — Z are any two functions in which the
target set Y for f equals the domain of g. Then the product

fg: X =27

is the function obtained by first applying f then g (as we read left to right). More
precisely, for all points x € X,

z(fg)=(zf)g .

Diagramatically we have

xf
[ )

18



12. Remarks and examples

(a) This is just composition in left-to-right notation. Compare the standard descrip-
tion
go f(x) =g(f(x))
Recall ‘g o f7 traditionally means ‘first f then ¢g’; we are writing this as fg.

(b) Note that for fg to be defined, the target set for f should be a subset of the
domain set for g. Here, for convenience, we take both equal Y; this is a harmless
restriction.

Typically we shall be concerned with the special case that X =Y = Z. Then
domain issues subside and the product (i.e. composition) is always defined.

(c) Example Say r : R* — R? is reflection in the line m. Note that reflecting twice
in succession returns each point to its original position. Put more precisely, this
means that

((P)r)yr=P=P1

for each point P € R2. (Here, of course, 1 denotes the identity 12 on R2.)

Thus, 77 = r? has the same effect on every point in the plane as the identity 1.
On these grounds we naturally write

r2=1.

A mapping like  which has period 2 is called an involution; we also say that a
reflection has period 2.

13. Definition. An function f : X — X has period n if f* = 1, for some integer n > 0,
where in fact n is the smallest such positive integer. Here f™ means multiply (i.e.
compose) f n times in succession.

14. Exercises.

(a) What is the period of any identity function 1: X — X7
(b) If r is a reflection, what does 723 equal? What about 712687
(c) Suppose

g:R — R

[L”—>ZI§'2

(a familar function from Calculus). Does g even have a period?

(d) Suppose f: X — X satisfies f™ = 1, for some integer m > 0. Prove that f is a
bijection. (Note that by context 1 here indicates the identity function on X.)

19



15. Properties of Multiplication (Composition) of Functions. Suppose f, g, h etc.
are functions for which the compositions indicated below are defined. Then we have

(a) Associativity: If f: X =Y, g:Y — Z and h: Z — W, then always
(fg)h = f(gh) .
(b) Possible failure of commutativity: usually fg # gf, even in the familiar case when

both f,g: X — X.
(c¢) Well-behaved identities: For any f: X — Y,

fly =f=1xf.
Remark: we might write f1 = f = 1f, but then the symbol 1 means two different
things if X #Y.
(d) If f,g are both 1-1, so is fg.
(e) If f,g are both onto, so is fg.
(f) If f, g are both bijective, then so is fg.

Proof. This is routine. The associativity comes from carefully looking at

xf

f y h
S g = i)

/

X / g h
~_ 0\

o x(fg) = (xNg

The straight arrow shows why
f(gh) = (fg)h

Now consider part (e), assuming that both f : X — Y and g : Y — Z are onto.
Then fg:— Z is certainly defined. To prove that this function is onto, we must work
backward. So consider any z € Z. Since g is onto, there exists y € Y with yg = 2.
And since f is onto, there exists x € X with zf = y. Putting this all together, we get

x(fg) = (xf)g = yg = z. Thus fg is onto.
Part (d) concerning 1-1 is similar; and parts (d) and (e) immediately give part (f).
U
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16.

17.

An example: the product of two reflections. Let r; and ry be reflections in lines
my and my which intersect in the point C' at a 45° angle.

Since both reflections fix C, the two products riry and ror; also fix C'; they have that
much in common.

However, look at any other point like A. We see right away that
A" B and A D,

where B and D are different points. Hence, we already have that ryry 2 rory.

Exercise. Prove that C' is the midpoint of segment BD.

Inverses - getting in and out of trouble Our intuition tells us that ordinary
motions are reversible. Similarly, if an object has a symmetry which rearranges the
points of the object in a particular way (without altering the appearance or position of
the object), then that symmetry should likewise be reversible and should restore each
point to its original location.

These ideas motivate the idea of an inverse function. Suppose f : X — Y is some
function. Let us imagine what an inverse function should do for f. For any and all
elements z € X, if

f
r—1y,
then the inverse function, which we temporarily call g, should restore matters:

y .

Likewise, if a EN b, then b % a. Or consider a fixed point: if ¢ EN ¢, then ¢ % ¢, as
well. In other words, f and g restore one another:

oy =xf
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18.

19.

20.

21.

More technically every element is fixed by applying say f then g (or vice versa).

Definition. If f: X — Y, then an inverse for f is a function g : Y — X such that

fg=1x and gf =1y .

We say f is invertible if it has such an inverse.

Remark. In the special case that X =Y, i.e. domain and target set are the same, so
that
f[r9: X =X,

we have fg = 1x = gf. Thus, in this case, f and g do commute, which is unusual.

Theorem
(a) If f: X — Y has an inverse, then that inverse is unique.

(b) f is invertible if and only if it is 1 — 1 and onto (i.e. bijective = injective +
surjective).

Proof (part (a) only). Suppose g : Y — X is an inverse and that h : Y — X also
satisfies the inverse requirements:

fh=1x and hf=1y.

Then h = hlyxy = h(fg) = (hf)g = 1lyg = g. So the supposed inverses g and h are
really the same.

The equivalent conditions in part (b) may be familiar from Calculus or other classes;
the proof is routine. O
We have proved that the inverse of a function is unique. When this happens in math-
ematics, we are justified in assigning special

Notation. The inverse of f is denoted f~1.

2

Example. The inverse of a reflection r. Since r* = rr = 1, we see at once that

rt=r.
Thus every reflection equals its own inverse.
Think: to undo a reflection, reflect again.

Exercises

(a) Other kinds of plane isometries g : R? — R? have the property that g = 1. These
too are self-inverse: g~! = g. Can you characterize all such isometries? (Hint:
rotations through a special number of degrees.)

(b) Show that the function

f: R0 — R=2O

o /2
is bijective. What is its inverse?
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(¢) Do the same for

h:R — R

r — e’

22. Properties of Inverse Functions. Suppose f: X — Y and g : Y — Z. Then we
have

(a) The identity 1 = 1x has an inverse; indeed 171 = 1.
(b) If f is invertible, the so is f~!; indeed,

(fFH*t=r.
(c¢) If f and g are invertible, then so is their product fg; indeed,
(fo) ' =gt
Proof. These are routine calculations. U

Think: put on your socks, then your shoes: how do you reverse that? Are the
operations commutative?

23. Where are we? We have said quite a lot about products and inverses of functions
with generally different domain and range sets. But the algebraic applications are
much more harmonious when domain and range coincide (X = Y'). We turn to that
special case next and recapitulate what we have already observed above.

2.3 The symmetric group on a set X

Any bijection from X onto Y defines a 1 — 1 correspondence between the elements of X and
those of Y. These sets therefore have exactly the same cardinality, whether infinite or not.
The collection of all such bijections does have interesting algebraic properties. However, for
a truly rich theory we do need an identity and this forces X =Y.

1. Definition Let X be any non-empty set, finite or infinite. Let
Sx = {all bijections f : X — X},

equipped with composition fg as operation. We say that Sx is the symmetric group
on the set X.

We can study this object for any set X. Thus we have lots of groups of a particular
kind.
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. The term group is used in recognition that Sy has these natural algebraic properties:

closure The product of two bijections f, g is another bijection fg.

associativity Always (fg)h = f(gh).

identity The identity 1 = 1x is a bijection on X.

inverses Each bijection f has an inverse f1.

Proof. We have verified all these properties in more general circumstances. You should

reverify that if f and g are bijections from X to X, then (i) so is fg; (ii) so is f~1; (iii)
sois 1= 1. .

. For completeness, we restate some important calculations, whose truth actually follows
from the above properties:

(a) Always, (f~1)~" = f.
(b) Always, (fg)™" =g~ "f".

. Exercises on Symmetric Groups

(a) If X is finite, say with n elements, how many bijections are there in Sx? In other
words, what is the order of Sx?

(Once again think of n people in n chairs rearranging themselves.)
(b) Could Sx ever be a commutative group?

(c) Suppose X is finite, say with cardinality n. Let f : X — X be any function not
necessarily with any special properties. Show that f is 1-1 if and only if it is onto.

Remark. For finite ground sets X, we therefore need only check one of the two
conditions required for a function to be bijective.

Symmetric Groups — Permutation Groups

. A bijection from a set X to itself is often called a permutation on X; another synonym
is rearrangement.

The actual nature of the elements of the ground set X is often immaterial. When X
has finite cardinality, say
[ X[ =mn,
it is convenient to take
X =A{1,...,n}=:[n],
in which case we often write S,, in place of Sx.
Notation. S, is the symmetric group of permutations on {1,...,n}.

Remarks. Such groups are well suited to computer implementation; there are many
efficient algorithms for computing with permutations.

The shorthand [n] := {1,...,n} is frequently used in algebra and combinatorics. Thus
a permutation is a bijection

[l = [n].
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2. Visualizing general functions f : [n] — [n] (including bijections)

We can use graphs, arrow digrams or cycle notation. The latter device is efficient and
is precisiely how we represent permutations in a computer language like GAP. The
case n = 4 is typical enough, so we will take

X = [4] = {1,2,3,4} .

(a) Here are some functions represented as conventional graphs in R?:

RN WS
RN WD
RN Wb

12 34

f g h
Actually, each graph is embedded in the grid
[4)* = [4] x [4] = {1,2,3,4} x {1,2,3,4} .

Note that f is not onto hence also not 1-1. Thus f ¢ S;. However, g and h are
typical permutations in Sy.

Since the graph lives in the 4 x 4 grid, it makes no sense to join up the dots by line
segments! We begin to see that the positions of 1,2,3,4 on the axes are irrelevant.
As a matter of fact, the symbols themselves are somewhat arbitrary. We could
just as well permute four other symbols, like

a,3,7,0

or

QQ7<>7*7.7

which have no natural positions in a graph. The mathematical content of the
permutations would be unaltered by such a change in the ground set.

However, we stick with 1,2,3,4, since these symbols are familiar and are easy to
enter into the computer.

(b) The same three functions are more naturally represented by these arrow diagrams:

f
la o1l
20 0 2
3o \03
40 0 4

Note how easy it is to pick out the 1-1 or onto functions. In fact, we easily see
again why 1-1 is equivalent to onto for finite ground sets X.
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(c) Now we investigate cycle notation, which is appropriate only for bijections. Let’s
look at the function A, which could be fully described by the following cumbersome

setup:
1h = 4
2h = 1
3h = 3
4h 2

The fact that we see a rearrangement of 1,2,3,4 in the right-hand column confirms
that h is a bijection. Here is a slightly more compact way of representing the same
information:

1542 1and3 3.

The cycle representation for H is just an abbreviation of this. Here is how it
works.

Start with any element of the ground set, say x = 1 to be specific, and track
where that element is sent by h (here 4), then where that 4 is sent by h (here to
2), and so forth. You will find that your list of elements closes up into a so-called
cycle. For example, h sends 2 back to the initial element 1. This information can
be compressed as follows:

(1,4,2) .

Note that we scan a cycle left to right and that each element is mapped by h
to the one just after, except that the right-most element is mapped to the front
element of the cycle.

Now repeat the process for any unaccounted-for elements in the ground set and
manufacture more such cycles.

To finish off our A we note that the remaining element 3 must belong to a trivial
cycle (3), indicating that 3 is a fized point for h. When done we may express h
as a product of disjoint cycles, namely

h=(1,4,2)(3).

Note that the same infromation is conveyed if we start any particular cycle at
another of its elements. Thus

h=(2,1,4)(3).

If the context is clear, that is to say, if we know we are permuting {1,2, 3,4}, then
trivial cycles are often suppressed and understood. In fact, GAP will do just that
and print h as

(1,4,2) .

Clearly, the above process works for any bijection on a finite set. One encodes
the mapping information in a collection of disjoint (i.e. non-overlapping) cycles.
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(d) The identity permutation, inverses, products

The notation 1 for the identity function would now be a bit confusing; so let us
use e to denote the identity permutation on [4]. Thus e fixes every element and

e=(1)(2)(3)() -

After suppressing trivial cycles, GAP would write e = ().

It is easy to write the inverse of a permutation given in cycle form. Since the
inverse merely reverses all arrows in an arrow diagram, we must rewrite each
cycle in reverse order. Again the starting element for each cycle is a matter of
choice. For example,

ht=(1,2,4)(3) .
Trivial cycles, in fact also cycles of length 2, are unaffected by switching to the
inverse.

As another example, consider g from above. We can convey the mapping infor-
mation for g in several ways, so it is quite legal to write

g=1(1,2)(3,4) = (3,4)(1,2) = (2,1)(3,4) .

Since every cycle has length 2, g must be self-inverse: g = g, just like a reflection.

Multiplying permutations in cycle format is is easy — just remember to scan left
to right. For example, g maps 1 to 2 and A maps 2 to 1, so gh maps 1 to 1. Now
move on to input 2: ¢ maps 2 to 1 and h maps 1 to 4, so gh maps 2 to 4. Next
move to input 4 and continue. With practice one can write out products without
any effort:

gh=(1,2)(3,4)-(1,4,2)(3) = (1)(2,4,3) = (2,4, 3)
and
hg =(1,4,2)(3) - (1,2)(3,4) = (1,3,4)(2) = (1, 3,4) .

Notice that we end up with disjoint cycles, even though at intermediate steps we
might not have disjoint cycles. Also note here that gh # hg.

(e) Theorem. Every permutation f € S, can be factored as a product of disjoint
cycles an essentially unique way.

Proof. See any text on group theory. The argument just tightens up our informal
discussion above. O

(f) Here are the 24 = 4! elements of S,, as produced by GAP:

0),(3,4),(2,3),(2,3,4),(2,4,3),(2,4),(1,2),(1,2)(3,4), (1, 2,3), (1,2, 3,4),

(1,2,4,3), (1,2,4), (1,3,2), (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3, 2,4),
(1,4,3,2), (1,4,2), (1,4,3), (1,4), (1,4,2,3), (1,4)(2, 3)
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3.1 Even and odd permutations

1. An m-cycle in S, is a permutation which can be written as a single cycle, say
c=(a,...,an),
where ay, ..., a,, are distinct elements taken from {1,...,n} in any particular order.

Of course, this means m < n; and again we have suppressed fixed points (i.e. 1-cycles).

A 2-cycle t = (a,b) is often called a transposition.

2. We have seen that we can factor a general permutation as a product of disjoint cycles.

We now observe that any individual cycle can be factored as a product of transpositions,
typically in several different ways. These transpositions are unlikely to be disjoint,
however. Our proof is by construction:

(a1,...,am) = (a1,a2)(ar,a3) - (a1, an) -

For example,

b (17 3) = (17 3) = (17 2)(17 3)(27 3)
e (1,3,5) =(1,3)(1,5)
e (1,2,3,4) = (1,2)(1,3)(1,4)

We shall see, however, that if a permutation factors as a product of an odd number

of transpositions, then any other factorization of it also involves an odd number of
transpositions. Ditto for even numbers of transpositions.

3. Since every permutation can be factored as a product of disjoint cycles, we conclude

Proposition 3.1 FEvery permutation f € S,, can be factored as a product of transpo-
sitions, generally in many different ways.

For example, in Sg we have
(1,3,5)(2,4,6,8) = (1,3)(1,5)(2,4)(2,6)(2,8) .
This permutation will soon be called odd; and it does require an odd number of trans-
positions.
Remark. This factorization essentially says that any shuffle of a deck of cards can be

achieved by repeatedly swapping two cards at a time. This is quite believable.

4. Definition 3.1 Let f be any permutation in S, ; and suppose when f is written as a
product of disjoint cycles that we require d such cycles, including all 1-cycles. Then
the sign of f is

sgu(f) = (~1)""¢.

If sgn(f) = +1, we say that f is an even permutation; if sgn(f) = —1, we say that f
15 odd.
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The Gap lingo is
gap> SignPerm(f);

5. Examples. Remember to count all 1-cycles, which normally we would suppress for
ease of reading.

e the identity e = () = (1)(2)...(n) has d = n one-cycles hence
sgn(e) = (=1)""=+1.
e A transpostion t = (a, b) has a single 2-cycle and n — 2 one-cycles,
sod=1+(n—2)=n—1,s0
sgn(t) = (=)D = 1,
e Since the m-cycle ¢ = (ay,...,ay,) = (a1,a2)(a1,as3) - (a1, a,), the sign of an

m-cycle c¢ is
sgn(c) = (=10 = (—ymt

Thus, a little confusingly, a 5-cycle is even, whereas a 6-cycle is odd.

The crucial result is a neat calculation:

Proposition 3.2 For any permutation f and transposition t = (a,b) in S,,
sgn(ft) = —sgn(f) = sgn(f)sgn(t) .

Proof. Write f as a product of disjoint cycles, taking care to include all 1-cycles:

F=() 0 ) ().

The distinct elements a and b must appear somewhere and exactly once, either in a
common cycle or in different cycles.

Case 1. A common cycle. We convey the same mapping information by moving a to
the front of the cycle. The rest of the cycle must look something like

(aazla"'azlabayla"'ayk) .

(Possibly [ = 0 so there aren’t any z’s, etc.; this won’t hurt our argument.) Anyway,
this cycle for f is disjoint from all other cycles, so we can commute it to the end to get

=00 (.00 ) (axy, ..,z byyr, o Uk)

whence

ft = (.0 (.00 ) (a,xr, ...,z b,y1,. .. yk) - (a,b)
()G (ayx,x)(byyay  Uk)
thereby introducing exactly one more cycle! The number of disjoint cycles goes up by

1; since this appears in the exponent in the definition of the sign, the sign must change
by the factor -1.

Case 2. This is similar and basically reverses the above calculation. Now the number
of disjoint cycles goes down by 1; but again this multiplies the sign by —1. O
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6. Theorem 3.1 The function
sgn:S, — {£1}
[ sen(f)
is a homomorphism from the group S, (with permutation composition) to the group
{£1} of order 2 (now multiplication of integers). In other words, we have
sgn(fg) = sgn(f)sgn(g)
forall f,g €S,.
Proof. Any f and ¢ can be written as a product of transpostions, say f = tity- -ty
and g = t; - - - {;. By repeatedly applying Proposition 3.2, we get
sgu(f) = sgn(fts- - tre—1lty)
= (=Dsgn(ty---tr-1)
(—1)%sgn(ts - tr-2)
= (—1)"sgn(e)
(=D~
Similarly, sgn(g) = (—1), so that
sgn(fg) = sen(tity - - tyty - - 1) = (=) = (=1)*(=1)" = sgn(f)sgn(g) -
O

7. Corollary 3.1 Parity of permutations has a new, sensible meaning. An even permu-
tation can be factored only as an even number of transpositions; An odd permutation
can be factored only as an odd number of transpositions.

Proof. Note that (—1)¥ = +1 forces k to be even, never odd. O

8. Application 1 - determinants. Suppose A = [a;;] is an n X n matrix. As we noted
in class, one way to define the determinant is

det(A Z sgn(f) a1,1)7a2,2)f - - Qny(n)f (1)
feSn
(a sum of n! signed terms, each a product of n specially selected entries).
9. Application 2 - the ‘15-puzzle’. This familiar puzzle has 15 sliding blocks labelled

1,...,15 and located in a 4 x 4 frame. The 16th square is empty or blank, so we label
it b. By sliding the blank around, we can reconfigure the blocks in various ways.

Here is the starting configuration:

13 14 15
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The key problem is this: can we slide the blocks so as to arrive at

13 14 15

Solution. No, we cannot. Each unit move of the blank space (either horizontal or
vertical) leaves most of blocks fixed and really amounts to applying a transposition
of the form (i,b), where i € {1,2,...,15}. Any succession of m such moves amounts
to a product of m transpositions, whose sign is (—1)™ (Theorem 3.1). However, the
blank space is still at the lower right corner, which means that we have moved the
blank an even number of times (both horizontally and vertically). In any case, m must
be even. Thus we have effected an even permutation on the set {1,2,...,15,b}. The
configuration in the second figure amounts to the transposition (1,2), which is odd.

10. Application 3 - the Alternating Group.

(a)
(b)
(c)

Definition 3.2 The alternating group of degree n is the set A, of all even per-
mutations in S,, still with left to right composition.

For example, A3 is isomorphic to the group of rotational symmetries of an equi-
lateral triangle (order 3, rotations through 0°,4+120°, —120°).

Likewise, A, faithfully represents the group of rotational symmetries of a regular
tetrahedron in ordinary space. There are 12 rotations:

e the identity rotation (through 0°), corresponding to the identity permutation
(-

e four 120° rotations (looking from outside onto a triangular face), correspond-
ing to say (1,2,3),(1,4,2),(1,3,4), (2,4, 3).

e four —120° rotations (still looking from outside onto a triangular face), cor-
responding to say (1, 3,2), (1,2,4), (1,4, 3),(2,3,4).

e three 180° rotations, corresponding to (1,2)(3,4), (1,3)(2,4) and (1,4)(2,3).

We have twelve symmetries that we can achieve by physically manipulating the
tetrahedron; and we have twelve even permutations.

In fact, we have listed the four conjugacy classes of A4. On the geometrical side,
the motions in each class have the ‘same geometric effect’” on the tetrahedron.
In particular, 120° rotations and —120° are different: we cannot pass from one
to the other without the use of a reflection taking right to left hand. But such
reflections must correspond to odd permutations of the four vertices.

In parallel to that, the permutations in each conjugacy class ‘look like one an-
other’. In addition, we have seen that we do further have to distinguish say
(1,2,3) from its inverse (1,3,2) when the setting is A,. However, when the set-
ting is enlarged to S, these two classes fuse into one.
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(d) Let’s see how this plays out in Gap:

gap> S4:=SymmetricGroup(4);;
gap> A4d:=AlternatingGroup(4);Size(A4);
AltC [ 1 .. 41)

12

gap> IsSubgroup(S4,A4);

true

gap> conA:=ConjugacyClasses(A4);;Size(conl);
4

gap> for j in [1..4] do Print(j," ",Elements(conA[j]l),"\n");od;
1001

[ (1,2)3,4), (1,3)(2,4), (1,4)(2,3) ]

[ (2,4,3), (1,2,3), (1,3,4), (1,4,2) ]

[ (2,3,4), (1,2,4), (1,3,2), (1,4,3) ]

ap> conS:=ConjugacyClasses(S4);;Size(conS);

ap> for j in [1..5] do Print(j," ",Elements(conS[jl),"\n");od;

[ O]

[ 3,4), (2,3), (2,4), (1,2), (1,3), (1,4) 1]

[ (1,2)(@3,4), (1,3)(2,4), (1,4)(2,3) ]

[ (2,3,4), (2,4,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,4,2),
(1,4,3) ]

[ (1,2,3,4), (1,2,4,3), (1,3,4,2), (1,3,2,4), (1,4,3,2), (1,4,2,3) 1]

2
3
4
g
5
g
1
2
3
4

(2]

Thus the 4! = 24 elements of S, lie in 5 classes. For example, the second class
consists of the six reflection symmetries. The fourth class consists of the rotations
of period 3 - now they are all alike since the presence of reflections lets the group
waive the distinction between clockwise and anticlockwise. The second class is
unchanged (and a clockwise 180° rotation is indeed identical to an anticlockwise
180° rotation).

This leaves the last class, consisting of all six 4-cycles in the symmetric group.
(Recall that a 4-cycle is an odd permutation.) These must correspond to a sym-
metry for the tetrahedron which (like reflections) reverses orientation. In other
words, such symmetries would send a left hand sketched on the surface of the
solid to a right hand.

So look at a 4-cycle like (1,2,3,4). What does this mean geometrically? It will
help to hold a model in your hand, with an edge horizontal and the opposite edge
also horizontal but ‘perpendicular’ to the first. Imagine the vertical axis passing
through the midpoints of these two opposite edges. The symmetry that we are
after here is a composite thing obtained by composing a 90° turn about the vertical
axis with a subsequent reflection in the (horizontal) plane perpendicular to the
axis and through the centre of the tetrahedron. (Caution: this last reflection on
its own is not a symmetry, nor is the 90° turn!) If you track the effect of this
symmetry, you will see that it cyclically sends the 4 vertices of the tetrahedron
along a ziz-zag path through the edges. (Such a path is called a Petrie polygon
for the tetrahedron.) Thus we recreate the 4-cycle in a geometrical way.
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This sort of combined reflection-rotation is called a rotatory reflection. It certainly
reverses sense, since the reflection part does but the rotation part does not. Yet
it is different from an ordinary relection. An ordinary reflection fixes all points
on its planar mirror; a rotatory reflection fixes only one point, in this case the
centre of the tetrahedron. This qualitative geometrical distin