
MATH 6991 (1B) – Group Presentations and Group
Representations

1 Basics of Presentations

1.1 Reading and exercises

1. Read Gallian, all of ch. 26.

2. Example 2 , page 437, is particularly important.

3. Do exercises page 447: 1,2,3,4,5,6,7,8,9,11,12,13,15,17,18,19,20,25.

1.2 Free Groups

1. On a first reading, it is sensible to think of the constructions in Chapter
26 in an intuitive way. Nevertheless, it is worth noting how certain
objects can be more precisely described.

2. At first, the elements of S = {a, b, c, . . .} are mere symbols. S−1 is a
set disjoint from S but in 1-1 correspondence with S, say

S−1 = {a−1, b−1, c−1, . . .}.

For now, a−1 is merely a new typographic symbol for the element of
S−1 which corresponds to a. We could just as well write â, or A, or a0,
etc. These symbols as yet have no algebraic meaning, so that

aa−1b−1b

is merely a four letter word. Of course, the algebraic structure comes
soon.

3. A word from S is any formal finite string, say

w = x1x2 . . . xk
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where each xj ∈ S ∪ S−1.

We include the empty word

e =

We multiply two words by juxtaposing them, i.e. by writing one next
to the other. Example:

w = abb−1

u = bca

e =

wu = abb−1bca

uw = bcaabb−1

w2 = abb−1abb−1

eu = bca

we = abb−1.

Two words are equal when they have exactly the same symbols in ex-
actly the same positions.

It is best to calculate with words in this intuitive way. However, if you
are so inclined, you may want to compare the more rigorous construc-
tions which follow.
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4. A More Precise Description of These Things

Suppose 1 is a new symbol not in S ∪ S−1, and let

S∗ = S ∪ S−1 ∪ {1}.

Definition. A word w in S is any sequence in S∗ whose entries are 1
precisely for all positions past some slot k. That is, a word is a function

w : N → S∗,

where, for some integer k ≥ 0,

{

w(j) = 1, for j > k;
w(j) 6= 1, for j ≤ k.

In short,

w = [x1, x2, . . . , xk, 1, 1, 1, . . .]

where xj ∈ S ∪ S−1, for 1 ≤ j ≤ k.

We abbreviate this by writing the word in the much more convenient
form

w = x1x2 . . . xk.

The cut-off value k is called the length of the word w.

Notice that the empty word

e = [1, 1, 1, . . .]

has length 0.
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5. Also, one can more precisely define the juxtaposition of two words:

w = x1 . . . xk (all xj ∈ S ∪ S−1)
u = y1 . . . ym (all yj ∈ S ∪ S−1)

.

Then the juxtaposed word

wu = x1 . . . xky1 . . . ym

can be interpreted as a certain function wu : N → S∗.

Note that

length (wu) = k + m = length (w) + length (u).

6. Anyway, we have

• the set W (S) of all words;

• juxtaposition, an associative binary operation on W (S);

• an identity element e (for juxtaposition).

Thus W (S) is a monoid.

7. We don’t quite have a group – no inverses! To manufacture inverses,
we have to ‘factor out’ by an equivalence relation. For example, we
really do want

aa−1 ∼ e,

or passing to equivalence classes,

a a−1 = e.

We normally abuse this cumbersome notation simply by writing

aa−1 = e.
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8. One can likewise give a more precise description of the equivalence
relation on page 436 of Gallian. For words u, v ∈ W (S), we say u ∼ v
if there is a finite list of words

u = u1, u2, . . . , un = v (n ≥ 1)

such that for 1 ≤ i < n there are words wi, zi ∈ W (S) and symbols
ai ∈ S ∪ S−1 so that either

ui = wia
ǫi

i a−ǫi

i zi and ui+1 = wizi

or

ui = wizi and ui+1 = wia
ǫi

i a−ǫi

i zi.

(Here ǫi = ±1, and we agree that (a−1
i )−1 = ai.)

9. Remark. In Gallian, the set of all equivalence classes u comprises the
free group F . Another approach used by some authors is to employ
reduced words.

A word w ∈ W (S) is reduced if it contains no substrings of the form
aǫi

i a−ǫi

i , where ai ∈ S ∪ S−1, ǫi = ±1. For example.

aba−1 is reduced

a−1ab is not reduced.

Then one may prove

• each equivalence class u contains a unique reduced word u0, say.
In fact, u0 is always the (unique) shortest word in u = u0;

• one defines F to be the set of all reduced words only. If u, v are
reduced, then the product in F is defined this way:

u · v = unique reduced word in the class uv.

One can check then that F is a group, free over S.
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10. Theorem 26.2 (Universal Mapping Property) is not stated as broadly
as it should be. A more general version follows.

Let F be the free group constructed over S. Define a function

j : S →֒ F

by j(a) := a , ∀a ∈ S. As a word in S, we note that a has length 1,
and that the class a contains all sorts of words, such as

aaa−1 , a−1aaa−1a , bb−1acc−1 , . . . .

Remark: After the Theorem, we will prove that the function j must
be 1–1. Since the a’s and a’s therefore pair off, we may safely identify
each a ∈ S with the corresponding a ∈ F . Effectively, we may think of
S as a subset of F .

In fact, if you are very fussy, you can literally do this:

• remove the subset j(S) = {a : a ∈ S} from {u : u ∈ W (S)}, and
replace it by S. Now, as a set

F = [{u : u ∈ W (S)} − j(S)] ∪ S .

• correctly redefine the binary operation on this new F , so as to be
consistent with the old definition u v := uv.

This is possible precisely because j is 1–1. Now F is a group in which
S really is a subset.
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Theorem – Universal Mapping Property. Let F be the free group
constructed over S. Then for any group G and any function

ϕ : S → G

(not necessarily a homomorphism), there exists a unique homomor-
phism

ϕ̂ : F → G

which extends ϕ:
ϕ̂(a) = ϕ(a) ,

for all a ∈ S, that is
ϕ̂(j(a)) = ϕ(a) .

Thus there exists a unique homomorphism ϕ̂ making the following di-
agram commute, meaning that ϕ̂ ◦ j = ϕ:

φ̂

F

φ
S

j

G

there exists a unique

Proof: Suppose u ∈ F , where

u = aǫ1
1 . . . aǫk

k ∈ W (S),

aj ∈ S, ǫj = ±1. It is easy to check from the definitions that

aǫ1
1 · aǫ2

2 = aǫ1
1 aǫ2

2

for various choices of the signs ǫj . Similarly, and more generally we
have
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aǫ1
1 · aǫ2

2 · . . . · aǫk

k = aǫ1
1 aǫ2

2 . . . aǫk

k = u.

(Here ‘·’ indicates multiplication in F .) Thus, if the homomorphism ϕ̂
does exist we are forced to conclude that

ϕ̂(u) = ϕ̂(aǫ1
1 · . . . · aǫk

k )

= ϕ̂(a1)
ǫ1 ∗ . . . ∗ ϕ̂(ak)

ǫk

= ϕ(a1)
ǫ1 ∗ . . . ∗ ϕ(ak)

ǫk ,

where ‘∗’ indicates multiplication in G. In short, ϕ̂ is uniquely deter-
mined if it exists at all, and we see how it must be defined. Indeed, if
u = aǫ1

1 . . . aǫk

k ∈ W (S), then u ∈ F and we do attempt to define

ϕ̂(u) = ϕ(a1)
ǫ1 ∗ . . . ∗ ϕ(ak)

ǫk .

We must show that ϕ̂ is well-defined. For example, suppose b ∈ S and

v = aǫ1
1 . . . a

ǫj

j b1b−1a
ǫj+1

j+1 . . . aǫk

k .

Thus u ∼ v and u = v. But

ϕ̂(v) = ϕ(a1)
ǫ1 ∗ . . . ∗ ϕ(aj)

ǫj ∗ ϕ(b) ∗ ϕ(b)−1 ∗ ϕ(aj+1)
ǫj+1 ∗ . . . ∗ ϕ(ak)

ǫk

= ϕ(a1)
ǫ1 ∗ . . . ∗ ϕ(aj)

ǫj ∗ 1 ∗ ϕ(aj+1)
ǫj+1 ∗ . . . ∗ ϕ(ak)

ǫk

= ϕ(u).

(Here we use ‘1’ as the identity in G.) Iterating this argument we
conclude that ϕ̂ is well-defined (i.e. independent of the word u used to
represent u). It is easy now to check that ϕ̂ is a homomorphism, and
that

ϕ̂(j(a)) = ϕ̂(a) = ϕ(a)

for all a ∈ S. 2

8



11. Corollary. The function j : S → F is 1-1.

Proof. Suppose a 6= b in S. We must show a 6= b. Let G = (Z2, +)
and define ϕ : S → G by

ϕ(a) = 0

ϕ(x) = 1, if x 6= a.

In particular, ϕ(b) = 1. From the Theorem we have

ϕ̂(a) = ϕ(a) = 0

ϕ̂(b) = ϕ(b) = 1.

Therefore, a 6= b, since ϕ̂ is a well-defined function. 2

We have noted that this allows us to consider S to be a subset of F .

12. This universal property is crucial and motivates a definition for what
it rally means for a group to be free over a subset S:

Definition. Let F be a group with a subset S. Then F is free over
S if for any group G and function ϕ : S → G there exists a unique
homomorphism

ϕ̂ : F → G

which extends ϕ.

13. Remarks. We say that F has been defined by a universal property.
This does not mean that any such group F , with a specified subset,
actually exists. But our construction using W (S), and the theorem
above, shows that free groups exist in abundance, namely over any set.
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14. Exercises – typical of universal properties.

(a) The trivial group {e} is free over the subset ∅.
(b) The group (Z, +) is free over {1}.
(c) If F is free over S, then S generates F . (This is tricky: You need

to use G = 〈S〉, the subgroup of F actually generated by S. Then
show G = F is forced.)

(d) If F1 is free over S1, F2 is free over S2, and there is a bijection
α : S1 → S2, then

F1 ≃ F2

are isomorphic as groups.

(e) Definition. The rank of F is |S|, the cardinality of S. To show
that this is well-defined, prove that if F is free over two subsets S
and T , then

|S| = |T |.

Remark: this is very much analogous to the theorem that the
dimension of a vector space is well-defined.

(f) If F is free over S, then S ∩ S−1 = ∅.
(g) If x = x1 . . . xk is a reduced product in F (i.e. all xj ∈ S ∪ S−1,

but no xjxj+1 = e) then

x 6= e.

(h) Suppose a group F is generated by a subset S such that S∩S−1 =
φ and such that there are no non-trivial relations over S:

xj ∈ S ∪ S−1, xjxj+1 6= e ⇒ x1 . . . xk 6= e.

Prove that F is free over S.
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1.3 Generators and Relations

1. One and the same group can be represented by various means, eg.
permutations, matrices, geometrical symmetries. Each method has its
advantages and natural applications. The same is true for ‘generators
and relations’.

2. Example-Cyclic Groups

By definition, a cyclic group G can be generated by a single element
‘a’ (even though G might be described in terms of several generators).
Thus

G = {an : n ∈ Z} = 〈a〉.
(Why?)

Suppose ad = e for some positive integer d. Then each integer

n = dq + r ,

for an appropriate remainder r, satisfying 0 ≤ r < d. Thus

an = adq+r = (ad)q · ar = eq · ar

= ar.

Hence actually

G = {e = a0, a = a1, a2, . . . , ad−1}.
If these d elements are distinct then

|G| = d.

This happens precisely when d is the smallest positive integer such that

ad = e,

namely if a has order d. (Proof ?)

This cyclic group of order d might be denoted Cd. Recall that

Cd ≃ (Zd, +).
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3. Example. Consider complex numbers of norm 1 (unit circle). These
form a multiplicative group with identity e = 1.

The case d = 6 is typical, so suppose G = 〈a〉, where a6 = 1. There
are several possibilities for ‘a’ (how many?). For example, perhaps

(a) a = 1; 16 = 1; G = 〈1〉 has order 1.

(b) a = −1; (−1)6 = 1; G = 〈−1〉 has order 2.

(c) a = e2πi/3 = − 1

2
+ i

√
3

2
satisfies a6 = 1, but G has order 3.

(d) a = e2πi/6 =
1

2
+ i

√
3

2
satisfies a6 = 1; now G does have order 6.

Thus the fact that G = 〈a〉, where a6 = 1, does not imply |G| = 6.
However, we did exhibit a for which G does have the largest possible
order 6. (Each other case involves a subgroup, so has order dividing
6.)

Conclusion. The largest group with

(i) a single generator ‘a’

(ii) satisfying a single relation a6 = e

is indeed the cyclic group C6. These data determine the group since
from this we can recreate all elements of the group, as well as their
multiplication table. (Why?)

We therefore say that C6 has the presentation

C6 = 〈a | a6 = e 〉.

More generally, the cyclic group of order n is

Cn = 〈a | an = e 〉.
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4. We shall do various examples which prompt the question

What does it mean to derive one relation in a group G from
others?

Suppose G is generated by a subset S. Thus a typical element in G is
a word

w = x1x2 . . . xk, xj ∈ S ∪ S−1.

Any relation (i.e. equation) in G can be written as equality between
two words in these generators, say

x1 . . . xk = y1 . . . yℓ

or

v = u

or

vu−1 = e

or

x1 . . . xky
−1
ℓ . . . y−1

1 = e.

In brief, any relation in G amounts to writing

w = e

for some word w in the elements of S ∪ S−1.

Intuitively, we say that

w1 = e, . . . , wm = e

are defining relations for G if every relation in G can be ‘derived’
from these defining relations. What does this mean?
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We start with

(i) defining relations, say

w1 = e, . . . , wm = e

which are particular to G; and

(ii) trivial relations, true in any group G,

z = z

or

zz−1 = e, for all words z.

In a group, we are limited algebraically to multiplication and taking
inverses. Hence about all we can do is take inverses and multiply equal
things by equal things, as in

a = b (i.e. ab−1 = e)

c = d (i.e. cd−1 = e).

Thus

ac = bd

or

[a(cd−1)a−1] · [ab−1] = e.

Note that

a(cd−1)a−1 = conjugate of a known relation

ab−1 = e(ab−1)e−1 = another known relation.

We thus arrive at a new relation, perhaps a little lengthier, but still in
the form
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w̃ = e.

In this way we further enhance our supply of known relations. This
process may be iterated.

Conclusion. Any relation derived from

w1 = e, . . . , wm = e

has the form

[z1 wj1
ǫ1 z1

−1] [z2 wj2
ǫ2 z2

−1] . . . [zr wjr

ǫr zr
−1] = e

where the ǫt = ±1, zt ∈ G, jt ∈ {1, . . . , m}.

5. If we let F be the free group over the set S, then the collection of all
words such as

[z1 wj1
ǫ1 z1

−1] . . . [zr wjr

ǫr zr
−1]

form a normal subgroup N of F . Indeed, the collection of all such
words is clearly closed under multiplication and the taking of inverses.
Furthermore, since the zk’s are allowed to vary over the whole group
F , we have

N � F .

From another point of view, N is the intersection of all normal sub-
groups containing the relator set

R = {w1, . . . , wm} .

(Hence, N is the smallest normal subgroup containing R. Consequently,
N is called the normal closure of R in F .)
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Thus if x1, . . . , xk ∈ S ∪ S−1, we conclude that

x1 . . . xk = e [as a product in G]

if-f

x1 . . . xk ∈ N [as a word in F ].

In other words, it makes sense to define

G ≃ F/N.

This should motivate the definition of generators and relations on pages
438-439 of Gallian.

1.4 A Brief Look Back

The upshot of our discussion above is that we can legitimately treat
the elements of any set S as generators of a free group F . The elements
of F are words in the generators a, b. . . . ∈ S, and their inverses. We
multiply these words subject to no special relations, other than merely
letting one generator cancel its inverse:

bb−1 = e = a−1a, if a, b ∈ S.

A free group thus has no defining relations. More generally, if S is any
set of objects, and if R is any set of words over S ∪ S−1, then there
does exist a group

G = 〈 S | R 〉,

consisting of all words in S, subject only to the relations w = e, for all
w ∈ R.
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1.5 Finitely Presented groups

Typically, both S = {a1, . . . , an} and R = {w1, . . . , wt} are finite, and
we write

G = 〈 a1, . . . , an | w1 = e, . . . , wt = e 〉.

Once again, the sensible point of view here is that G is the group
generated by a1, . . . , an, subject only to the defining relations w1 =
e, . . . , wt = e. Thus any relation in G can be derived from these.

More formally, if F is the free group over S, then also the wj ∈ F , so
that R is a subset of F . Letting N be the normal closure of R, we have
seen that we may explicitly define

G := F/N.

Actual Computing in G.

Strictly speaking in this definition, the generators of G are cosets
a1N, . . . , anN , and the identity is N itself. A typical relation in G
resembles

(a1N)(a2N)(a1N)−1(a2N) = N

which holds if-f a1a2a
−1
1 a2 ∈ N in F . We have seen that this means

a1a2a
−1
1 a2 can be ‘derived’ as a product of conjugates of relators.

When working in G, as opposed to F , it is convenient to abbreviate
ajN by aj , and N = eN by e, so that in G itself we have

a1a2a
−1
1 a2 = e,

a relation which is derivable from w1 = e, . . . , wt = e. (Just how this
derivation proceeds is a deep algorithmic question.) Anyway, we are
quite justified in working with generators and relations in such intuitive
ways.
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1.6 The Substitution Theorem

This is the key theorem for working with presentations like

G = 〈 a1, . . . , am | w1 = e, . . . , wt = e 〉.

The theorem asserts that in a natural way, G is the largest group of
any sort having m generators satisfying the given defining relations.
In fact, any such group H is isomorphic to a quotient of G (perhaps
even to G itself). Von Dyck’s theorem is actually a special case of the
Substitution Theorem.

Our notation is unchanged:

S = {a1, . . . , an} generates the free group F

R = {w1, . . . , wt} is a set of relators (in F )

N = normal closure of R in F

G = F/N.

The Substitution Theorem.

Suppose G = 〈a1, . . . , an | w1 = e, . . . , wt = e〉. Let H be any group
(abstract, matrices, symmetries, permutation, etc.) having generators
ã1, . . . , ãn ‘satisfying’ in H the relations for G.

(More precisely, we assume that if w̃j ∈ H is that product of various ãk’s
and their inverses which corresponds to wj ∈ G, then in fact w̃j = 1,
the identity in H , for 1 ≤ j ≤ t.)

Then there exists a unique onto homomorphism

η : G −→ H

such that

ak 7−→ ãk, 1 ≤ k ≤ n.
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Proof. Let u be any word in N , say

u = [z1 wǫ1
j1

z−1
1 ] [z2 wǫ2

j2
z−1
2 ] . . . ,

where the wji
∈ R, ǫi = ±1, and the zi are arbitrary elements of F .

Thus the corresponding element of H is

ũ = [z̃1 w̃ǫ1
j1

z̃−1
1 ] [z̃2 w̃ǫ2

j2
z̃−1
2 ] . . .

= [z̃1 1ǫ1 z̃−1
1 ] [z̃2 1ǫ2 z̃2] . . .

= 1,

by the ‘substitution hypothesis’. In short,

u ∈ N ⇒ ũ = 1 ∈ H.

Now define

ϕ : S −→ H

by mapping each aj 7−→ ãj . By the universal property of the free group
F , there exists a unique homomorphism

ϕ̃ : F −→ H

also mapping each aj 7−→ ãj . Let

π : F −→ F/N = G

be the natural homomorphism. Thus

π(aj) = ajN,

(which, as we have noted before, we generally write briefly as just aj ,
when working in G).
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The diagram

φ̂

F

φ
S

j

H

G = F/N

η

π

suggests that we define

η : G −→ H

by

η(π(w)) = ϕ̂(w), ∀w ∈ F.

Notice that if w = aǫ1
1 . . . aǫk

k , then

η(π(w)) = ϕ̂(aǫ1
1 . . . aǫk

k )

= ϕ̂(a1)
ǫ1 . . . ϕ̂(ak)

ǫk

= ãǫ1
1 . . . ãǫk

k = w̃.

The key thing now is to check that η is well-defined. But

π(w) = π(z) ⇒ π(wz−1) ∈ N

⇒
∼

wz−1= 1 (in H)

⇒ w̃z̃−1 = 1

⇒ w̃ = z̃.

In short, η is well-defined. It is now easy to check that η is an onto
homomorphism. Remembering that when working in G we abbreviate
akN by just ak, we have
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η(ak) = η(akN) (to be precise)

= η(π(ak))

= ϕ̂(ak)

= ãk,

as required. It’s easy to check that these conditions uniquely specify η.
2

1.7 Dihedral Groups

Definition. The dihedral group Dn is the symmetry group of a regular
n-sided polygon {n}, for n ≥ 3. (The presentation derived below will
provide a sensible definition in the cases n = 1, 2, as well.)

The vertices of the regular n-gon {n} are n equally spaced points
P1, . . . , Pn on a circle, joined consecutively by edges P1P2, P2P3, . . . , PnP1.
It is useful to take subscripts mod n.

P

P

P

P

O
x

z = x y

4

1

2

3

n

n-1

P P

y

It is easy to see, and not hard to prove, that our {n} is symmetric by
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(a) rotation y through 2π/n about the centre O of the circle,

(b) reflection x in the line OP1.

Taking P1 as a base vertex, we may enumerate all symmetries of {n}
as follows. Think of {n} as a piece of cardboard. We may flip it over,
or not; that is we may apply x, or not. Having done so, we may rotate
P1 to any of the n vertices P1, . . . , Pn. Thus every symmetry is of the
form

xyj or yj, 0 ≤ j ≤ n − 1,

and so

|Dn| = 2n.

Now we have a geometrical description of the group Dn. But by looking
at the effect of x, y on the n vertices, we also obtain an isomorphic
permutation group, generated by

(2 n)(3 n − 1)(4 n − 2)....
(1 2 3....n)

corresponding to x, y respectively.

Notice that z = xy is the reflection which interchanges P1, P2. (We
apply symmetries left to right, here first x, then y.) Thus Dn satisfies
the relations

x2 = yn = (xy)2 = 1,

but conceivably also further independent relations. In fact, we shall
immediately see that this is not the case. Indeed, consider the presen-
tation

G = 〈 a, b | a2 = bn = (ab)2 = e 〉.

Note that a2 = e. Thus in any word in G we may assume that a occurs
to the first power, or not at all:
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aaa = a2a = ea = a

aaaa = e.

We also have abab = e, so that

ba = a−1b−1

= ab−1.

Therefore, if ever b precedes a in some word, we may interchange a, b
at the expense of the exponent on b:

w = . . . b2a

= . . . b(ba) . . .

= . . . b(ab−1) . . .

= . . . ab−2 . . . .

Thus, in any word we may move all a’s to the front, b’s to the end. But
a2 = e = bn, so any word can be written

ajbk, 0 ≤ j ≤ 1, 0 ≤ k ≤ n − 1.

Hence |G| ≤ 2n. (Conceivably there are duplicates in this census.)

On the other hand, by the Substitution Theorem, there is an onto
homomorphism

ϕ : G −→ Dn,

so that

G/ ker ϕ ≃ Dn,

and hence
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|G|
| ker ϕ| = 2n.

Since |G| ≤ 2n, we conclude that |G| = 2n, so that | ker ϕ| = 1,
meaning that ϕ is an isomorphism. In short, we have proved that the
geometrically defined group Dn has the presentation

〈 a, b | a2 = bn = (ab)2 = e 〉.

Equivalently, letting r0 = a (corresponding to x), and r1 = ab (corre-
sponding to z = xy), so that a = r0, b = r0r1, we get

Dn ≃ 〈 r0, r1 | r2
0 = r2

1 = (r0r1)
n = e 〉.

This says that Dn is (isomorphic to) the Coxeter group whose dia-
gram is

1

n
0
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1.8 Finitely Generated Abelian Groups

(a) Two elements a1, a2 in a group G commute if and only if

a1a2 = a2a1 , i.e.

a1a2a
−1
1 a−1

2 = e , i.e.

[a1, a2] = e ,

using commutator notation.

(b) Suppose

G = 〈 a1, . . . , an | abel; extra relations 〉

where ‘abel’ is shorthand for the list of all relations

[ai, aj ] = e, 1 ≤ i < j ≤ n.

Thus G is abelian, perhaps with various extra relations on the
finitely many generators.

Because of commutativity, in any word w we may put all a1 terms
first, then all a2’s, etc. Hence each extra relation resembles

ak1

1 . . . akn

n = e

for integers kj ∈ Z. If there are t extra relations, we may therefore
write them as

aki1

1 . . . akin

n = e, 1 ≤ i ≤ t.

Thus the t × n integer matrix

K = [kij]

specifies the abelian group G.

(c) Example. Classify the abelian group

G = 〈 a, b, c | abel, a3c4 = b3, a6b2c4 = e 〉.
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The extra relations are

a3b−3c4 = e

a6b2c4 = e

so that

K =

[

3 −3 4
6 2 4

]

.

Now we apply various reversible operations which leave G alone
but which amount to altering K in a nice way.

(a) Clearly G is unchanged by

• permuting generators; this corresponds to permuting columns
of K:

a3b−3c4 = e ⇒ b−3a3c4 = e.

(Note use of commutativity!)

• replacing a generator by its inverse; this multiplies a col-
umn of K by −1:

a3b−3c4 = e ⇒ a3b−3(c−1)−4 = e.

• replacing generator x by xy, where y is a different gener-
ator; here we subtract the x column from the y column:

a6b2c4 = e ⇒ a6−2(ab)2c4 = e.

Iterating these operations, we may thus add or subtract any
integer multiple of one column to another column.

(b) G is also unchanged by the analogous operations on the extra
relations. Clearly, we can permute the relations or take their
inverses:

a3b−3c4 = e ⇒ (a3b−3c4)−1 = e

⇒ c−4b3a−3 = e

⇒ a−3b3c−4 = e.
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Again note the importance of commutativity.
Likewise we can replace one extra relation by its product with
another:

a3b−3c4 = e = a6b2c4 ⇒ (a3b−3c4)(a6b2c4) = e

⇒ a9b−1c8 = e.

Hence we may permute rows of K, negate rows, or add any
integer multiple of one row to another.
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(c) These ‘integral’ row and column operations are precisely what
are needed to transform K to Smith normal form:

K =

[

3 −3 4
6 2 4

]

∼
[

3 −3 1
6 2 −2

]

∼
[

1 3 −3
−2 6 2

]

∼
[

1 0 0
0 12 −4

]

∼
[

1 0 0
0 4 12

]

∼
[

1 0 0
0 4 0

]

= K̃.

In short, G has the presentation

G = 〈 x, y, z| abel, x1 = e, y4 = e 〉.

(If you keep careful track of the row, column operations, you
can see how to write x, y, z in terms of a, b, c and conversely.)
In fact, x = e is a superfluous generator, but z isn’t! Thus

G = 〈x, y, z| abel, y4 = e〉.

In other words,

G ≃ Z4 × Z,

is a direct product of cyclic groups.
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(d) Clearly, we can similarly prove that every finitely generated abelian
group is a direct product of cyclic groups. A closer look at Smith
normal form reveals quite a bit more:

• the crucial orders 1 for x, 4 for y, none for z are uniquely
determined by K itself. In fact,

1 = gcd{all 1 × 1 subdeterminants of K}
= gcd{all entries of K}

4 = gcd{all 2 × 2 subdeterminants of K}
none = number of 3 × 3 subdeterminants.

• the direct product structure is uniquely determined if we de-
mand that each order divide the next.

Reference: Algebra, Vol. 1, P. M. Cohn.
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1.9 Coset Enumeration

(a) The method is due to Todd and Coxeter (1936); see Coxeter and
Moser for more details and examples. The summary below is
based on J. Rotman, An Introduction to the Theory of Groups,
4th ed.

(b) Enumerating The Cosets of the Subgroup H in

G = 〈a1, . . . , an | w1 = e, . . . , wt = e〉.

i. For each defining relation wj = e we require a relation table.
For example, if

a2b−1ac = e,

in which the word on the left has length 5, then we require
a table with 6 columns separated by 5 lines headed by the
letters:

a a b−1 a c

Such tables have (for now) an unknown number of rows.

ii. For each generator a and its inverse we maintain an auxiliary
table with two columns:

a
D
D
B
D

a−1

D
D
B
D

It is helpful to mark the rows as arriving by definition (D)
or bonus (B). In fact, sometimes we might want to indicate
collapse (C), as well. Notice that if a2 = e, then a−1 = a, so
we need only one auxiliary table.
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iii. To compute the order |G|, we must enumerate all elements.
This amounts to counting cosets of the trivial subgroup H =
{e}. In this case, no subgroup generator tables are needed.
However, if we enumerate cosets of a larger subgroup H , such
tables are necessary. For example, if the subgroup

H = 〈 aba , b2 〉

is generated by the two indicated elements, then we maintain
a subgroup generator table for each:

a b a
1 1

b b
1 1

Only one row will be needed, as shown.

iv. The entries 1, 2, 3 . . . in any table are abbreviations for various
cosets, starting with

1 := H.

Then 2 := 1a is an abbreviation for the coset Ha; and 3 :=
2b−1 indicates the coset H(ab−1).
In any table, the entries

aǫ

...
...

j k

indicate that

jaǫ = k.

That is if j = Hw, then

k = H(waǫ).
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v. If, for example,

a2b−1ac = e

is one of the defining relations, and if j = Hw is any coset,
then in the corresponding table there will be a row beginning
and ending with j:

a a b−1 a c
1 * * * * 1
...
j * * * * j

This is because

j(a2b−1ac) = (Hw)e = H(we) = j.

(c) The actual running of the algorithm is quite delicate. Various
points should be kept in mind:

• At each stage one must extract the maximum information
from the various definitions and bonuses. This amounts to
repeatedly scanning all tables for fillable slots.

• The general strategy, which can be made a bit more precise,
is to fill in slots in the earliest defined rows.

• Coset collapse may occur. Here, a later coset is unexpectedly
found to equal an earlier one. This forces updating of all
tables, and may induce several bonuses.

• If [G : H ] = n < ∞, the algorithm is guaranteed to stop.
This happens when all rows in all tables are ‘full’, and then

[G : H ] = # of distinct cosets.

(Basically, this follows from the Lemma below.)

• However, there is no predictable bound on the number of steps
needed in the algorithm. For example, you might define cosets
for 1010 centuries before finally reaching the crucial collapse
which shows in fact that |G| = |H| = 1!

• Of course, if [G : H ] = ∞, then the algorithm will never stop.
When a computer implementation (as in GAP) runs out of
time or space, one may reasonably suspect an infinite index.
But you cannot be sure without further investigation.
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(d) Lemma. Suppose G = 〈 S 〉.
i. If Y is a non-empty subset of G such that

Y a ⊆ Y for all a ∈ S ∪ S−1,

then Y = G.

ii. Suppose H is a subgroup of G, and suppose Hw1, . . . , Hwn is
a finite list of cosets, closed under right multiplication by all
a ∈ S ∪ S−1. Then

G =
n

⋃

j=1

Hwj.

Conceivably there are duplicates in the list. But if there are
m distinct cosets, then

[G : H ] = m.
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1.10 Exercises.

i. Compute the order of 〈 a, b | a2 = b2 = (ab)2 〉.
(Careful: we have a2b−2 = e, not necessarily a2 = e !) What
group is this?

ii. Compute the orders of

(i) 〈 a, b | a4 = b2 = (ab)3 = e 〉.
(ii) 〈 a, b | a5 = b2 = (ab)3 = e 〉.
by enumerating cosets of H . Find a permutation representa-
tion for each group and identify each group.

iii. Compute the order of

G = 〈x, y, z, u, v | xy = z, yz = u, zu = v, uv = x, vx = y〉.
Hint: first enumerate cosets for H = 〈x〉, then calculate a bit.

iv. Find the order of

G = 〈 a, b | ab2 = e, a2b3 = e 〉.
v. Identify the abelian group

G = 〈 a, b, c| abel, a10b8c12 = a16b8c20 = a4b4c4 = e 〉.
vi. Identify the abelian group

G = 〈 a, b, c | abel, a18b24 = c2, a2 = b16c22, a24b48c16 = e 〉.
vii. Suppose

G = 〈a1, . . . , an|w1 = e, . . . , wt = e〉
is a presentation in which every relator wj has even length in
the generators a1, . . . , an.
Show that the map

ϕ : G −→ {±1}
w 7→ (−1)ℓ(w)

is a well-defined homomorphism. (Here, ℓ(w) is the length of
w, which may not be well-defined.) Show that G has an ‘even’
subgroup G+ of index 2 (and hence normal) in G.
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1.11 Symmetry – Groups Acting on Spaces

1. The symmetry group of a regular n-gon {n} is the dihedral group Dn.
We know that Dn has order 2n and presentation

〈 a, b | a2 = b2 = (ab)n = e 〉.

If {n} has vertices P1, P2, . . . and center O, then we may take

a = reflection in line OP1

b = reflection in line OM,

where M is the midpoint of P1P2.

2. The regular pentagon {5} is typical (for n odd):

1

P2

3P

4P

P

P5

M

O

b

type b sides

ae

type a sides

Let F = △OMP1, considered here as a ‘nice’ subset of the convex
regular pentagon P = {5}. (By ‘nice’ we usually mean topologically
equivalent, i.e. homeomorphic, to a disc.)
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We say that F is a fundamental region for the group D5 acting on
P, since by repeatedly applying a, b to F we completely fill out the
pentagon without gaps and overlaps. In other words, P is the union
of the images F g := g(F), for g ∈ D5; and two distinct images can
intersect only at their boundaries, i.e. along an edge equivalent to
either OP1 (type a), or to OM (type b).

P4

P3

2P

1P

P5

a

b

M

O

Visually, we can observe this by building an actual kaleidoscope with
two mirrors inclined at π/5. Then if a cardboard triangle similar to
△OMP1 is placed between the mirrors we see re-created the complete
pentagon. It is a nice exercise in 3-dimensional optics to prove that
what you actually do see is an image of our ideal 2-dimensional kalei-
doscope.

Notice that each image of F has a type a edge, joining O to a vertex;
and a type b edge joining O to a midpoint. Colour these red and green,
respectively, say; and label F by ‘e’, indicating that F e = F . Indeed,
since F is a fundamental region,

F g = F ⇒ g = e.

Likewise every copy F g of F is labelled by a unique element g ∈ D5.
For example, △OMP2 = F b, so we label this region ‘b’. And reflecting
F in a, we get the region Fa, which we label ‘a’. Continuing this way,
we label each copy of the fundamental region by a word in a, b. (We
never require inverses since a = a−1, b = b−1.)
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In fact, there is a simple rule for inductively manufacturing this la-
belling. Suppose that we have already determined a region labelled
‘g’ (namely F g); and we wish next to label the region adjacent to ‘g’
across an edge of type x:

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

z

g
?

g
x

reflection 

e
x

mirror for generating reflection x

reflection 

an edge of type x 

F

F
g

One way to do this is to first transform F g back to F by applying
g−1; then apply reflection x; finally re-apply g. We see therefore that
z = g−1xg is the reflection across the edge of type x which belongs
to the region F g. Notice that z is conjugate to x, so that it is quite
reasonable to say that z is a reflection of type x.

Anyway, the adjacent region is

(F g)z = F (gz) = Fxg.

Keeping in mind that we apply isometries left to right, we conclude
that

“the region across an edge of type x from the region labelled ‘g’ should
be labelled ‘xg’.”
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Since F is a fundamental region, the number of copies of F is just the
order of D5, namely 10. However, a particular copy of F might be
labelled in different ways. For instance, here

‘babab’ = ‘ababa’.

But the existence of two equivalent labellings amounts to a relation
in the group, since two images can coincide only if the corresponding
group elements are equal!

In other words, we may drop the quotes to get

babab = ababa in D5, or

ababababab = e

(ab)5 = e.

In short, defining relations in the abstract group are geometrically
equivalent to tours proceeding face-to-face through the various images
of F , beginning and ending at the base region labelled ‘e’. In this way,
we may use topological and other geometric techniques to manufacture
a presentation for a geometrically defined group, such as D5.
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3. Now select a typical point interior to F and label it ‘e’. Its image in
F g is a similarly situated point, which we may as well label ‘g’, too.
These 10 points are the vertices of the Cayley graph for D5. Two such
vertices are joined by an edge labelled (or coloured) x ( = a or b), if
the corresponding regions share an edge of type x:

xgg

type x

In a sense, the Cayley graph is dual to the partition of P into funda-
mental regions.

In short, the vertices of the graph correspond to the elements of D5;
and two vertices g, h are joined by an edge, which is labelled x, precisely
when h = xg, for x = a or b. (Warning: this convention is ‘reversed’
below.) The structure of this particular Cayley graph is a bit simplified
since a, b are involutions:

a2 = b2 = e.

4. More generally, any (finitely generated) group G has a Cayley graph
Γ, as soon as we specify a set of generators S = {a, b, c . . .}.
The vertices of Γ are just the elements of G. Two vertices g, h ∈ G are
joined by an edge labelled x, and directed from g to h, precisely when

h = gx, for x ∈ S.

(I’ve reversed the convention used just above for D5; this won’t matter.)
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Thus Γ is a digraph. And for each generator x ∈ S, and group element
g, there are edges labelled x

– entering g , from k = gx−1

– leaving g , toward h = gx.

For example, if S = {a, b, c}, then every vertex has degree 6. The
neighborhood of the identity is typical. It looks like

aa

b

b
c

c

e-1

-1
-1

a
b
c

If a is an involution, then a = a−1, and we really have:

a-1

b

b
c

c

-1
-1

a = e

In this case it is useful to collapse the multiple edge into 1, just as we
did for D5. Thus if G is generated by say 3 involutions, each vertex
will have degree 3, rather than 6.

In practice, when there are a small number of generators, it is useful
to suppress the edge labels and instead employ different colours or line
styles (thick, thin, dotted, etc.).
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5. The idea of a group acting on a space generalizes considerably. Suppose
P is a metric space. An isometry of P is any bijection g : P → P
such that g (hence also g−1) is distance preserving. (It follows that g
is a self-homeomorphism for P.)

The collection Isom(P) of all isometries on P with ordinary composition
of functions, is clearly a group.

Suppose G is a subgroup of Isom(P). We then say that G, or any group
isomorphic to it, acts on P. If x ∈ P, g ∈ G, it is convenient to write
xg := g(x), since we shall compose functions left to right. Likewise, if
F ⊆ P we write F g, instead of g(F), for the image set.

We say that the subset F is a fundamental region for G (acting on
P if

(i) P =
⋃

g∈G

F g;

(ii) for g 6= h, u ∈ F g ∩ F g ⇒ u ∈ ∂F g ∩ ∂Fh.

Normally, one makes further topological demands, such as that F be
the closure of an open connected subset of P, or even that F be home-
omorphic to a closed ball.

In our examples, these technicalities will never be of much concern.
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1.12 Spaces of Constant Curvature

1. A fundamental result in differential geometry is that there exist exactly
three kinds of spaces which fill satisfy a ‘wish list’ of desirable geomet-
ric properties: homogeneous (all points alike), isotropic (all directions
alike), simply connected (no ‘holes’), constant curvature, etc.

In particular, there are three two–dimensional possibilites, sometimes
called surfaces of constant curvature. However, the word surface is a
little misleading: it is possible, sometimes preferable, to think of these
geometries intrinsically, as if you were a bug living in the surface, with
no higher–dimensional awareness.

2. The three nice geometries are spherical S
d, Euclidean R

d, and hy-
perbolic (or Lobachevskian) Hd.

• The spherical case S2 is somewhat peculiar in that we have a
ready made model for the geometry in Euclidean space, namely
an ordinary unit sphere, with great circles serving as the lines (or
geodesics ) in the geometry.

• And of course, even more obviously, we can model the Euclidean
plane R2 in ordinary space. The Euclidean plane is just a plane
in ordinary space R3.

• Actually, there is a subtle point to make here. All three geome-
tries can be described in an intrinsic fashion, making no mention
of Euclidean space. For example, we could set up axioms for each
geometry and develop the theory without ever making mention of
ordinary space. In particular, we can talk about distance, congru-
ence, angles, etc. in a sensible way in all three geometries.

The peculiar feature of the spherical and Euclidean cases is that
we have ready made models in Euclidean space, and further

distance in the model, as ‘inherited’ from R3 ,

coincides with intrinsic distance in the geometry.

• It is the hyperbolic plane H2 that is quite unfamiliar, perhaps
because there is no distance–faithful model in ordinary space R3.
It is possible to model the hyperbolic plane in a distance-faithful
way as a surface embedded in some Rd. ( I think d = 5 works.)
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But techniques such as obstruction theory in algebraic topology do
prove that the hyperbolic plane cannot be isometrically embedded
in R3.

However, there are several very nice distance–unfaithful models of
the hyperbolic plane, right inside the Euclidean plane R2. In each
case, the whole hyperbolic plane is represented by the interior of
the unit circle. (The circle iteself is interesting; but its points do
not belong to the model for H2.)

(i) in the Klein model, lines are ‘open’ chords of the circle (i.e.
discard endpoints); angles are distorted, except at the centre.
And, yes, distance is distorted. Each chord has infinite hyper-
bolic length.

(ii) in the Poincaré model, lines are open circular arcs or di-
ameters, always perpendicular to the unit circle. (Again we don’t
include end points.) Here angles are exactly represented, and we
say that the model is conformal. But again distance is distorted:
a circular arc or diameter connecting points on the boundary has
infinite hyperbolic length.

It is this model that underlies Escher’s Circle Limit prints.

3. Spherical space Sd does have a somewhat irksome feature: two distinct
geodesics (think great circles) intersect in two points (antipodes). The
remedy is to identify all such antipodal pairs of points so as to get
elliptic space (or projective space ) Pd. Now two distinct lines do
intersect in one point. But the space is no longer simply connected.
We won’t pursue it here.
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4. Here is a table comparing some fundamental features of the three two-
dimensional geometries.

S2 R2 H2

name spherical Euclidean hyperbolic
total area 4π ∞ ∞

(think unit sphere)
curvature κ = +1 0 −1

angle sum in △ABC α + β + γ > π α + β + γ = π α + β + γ < π
(with angles α, β, γ)
area of △ABC = ( α + β + γ) − π is indeterminate = π − (α + β + γ)

(the angular excess) (the angular defect)
Pythagoras (for △ABC cos(c) = cos(a) cos(b) a2 + b2 = c2 cosh(c) = cosh(a) cosh(b)
with ∠C = π/2)
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