
Computations in Groups

We consider a general group G, not necessarily infinite, and write
the group operation multiplicatively. It is a good exercise to trans-
late our results below into additive notation. Typically, + is used
for abelian groups.

1. For any subsets A,B, etc. (not necessarily subgroups) of G, we
define

AB :=

A−1 :=

One or both sets could be singletons, like {g}, with g ∈ G.
Then it is nicer to write Ag instead of A{g}, etc.

We thus treat such sets as individual entities. This is a very
useful way to think and is at the heart of ‘quotienting’ in algebra
and geometry.

2. Prove

• (AB)C = A(BC)

• (AB)−1 = (what?)

• (A−1)−1 = (what?)
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3. Suppose now that H is a subgroup of G, written H 6 G. For
any g ∈ H we say that the subset Hg is a right coset of H and
that gH is a left coset of H. For left-to-right computations,
right cosets are typically more convenient. Many of the claims
below will have obvious left-hand variants.

Prove for elements x, g, etc. of G and the subgroup H:

• HH = H

• H−1 = H

• g ∈ H ⇐⇒ Hg = gH = H

• x ∈ Hg ⇐⇒ Hg = Hx

Remark: any element of this coset, in particular either of
x or g, is considered to be a (right) coset representative for
the coset.

• Hg1 ∩Hg2 6= ∅ ⇒ Hg1 = Hg2.

• Each element x ∈ G belongs to exactly one coset of a given
subgroup H.
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• Any two cosets have the same cardinality, since there is a
bijection

Hg1 → Hg2

defined by ...

4. Definition If H 6 G, the index of H in G, written [G : H], is
the number of (right) cosets of H in G.

(Prove that this equals the number of left cosets, too.)

5. Prove Lagrange’s Theorem: If G is finite and H 6 G, then |H|
divides |G| and

[G : H] =
|G|
|H|

Remark. One can make sense of this when G is infinite, too.
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6. Definition: Suppose H is a subgroup of G. Then a (right)
transversal T forH in G is a set of coset representatives, exactly
one for each coset of H.

Remarks: Thus the intersection T ∩Hx always has size one.
However, the element in this singleton set might not be x. Yes,
it will be x if by chance x was the representative in T chosen
for the coset Hx.

Notice that 1 ∈ H, so that 1 does represent H = H1 itself.
Typically we (and Gap, too) make this standard choice for the
representative of the subgroup. If we follow this convention
then

T ∩H = {1}

Also note that the cardinality of T is just the number of cosets,
since we chose one representative for each coset. Thus |T | =
[G : H], the index. So T is finite if G itself is finite, but also in
other cases.

7. Definition. Fix a (standard) transversal T for the subgroup
H in G. Then we may define a ‘transversal function’

G → T

x 7→ x

where x is the representative (in T ) for the coset Hx.

For example, given our standard choice of 1 for H itself, we
have x = 1 if and only if x ∈ H. (Prove this for yourself.)

8. Prove these properties of the bar function for x, y ∈ G and
t ∈ T :

• x = x
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• xx−1 ∈ H

• xy = xy

• tx x−1 = t

9. Prove that if the right coset Hg equals some left coset, then
Hg = gH, or equivalently, g−1Hg = H.

Remark: We could say g commutes with H (in bulk, possibly
not with the individual members of H).

10. Definition (one of many equivalent versions). The subgroup
H of G is normal, written H ⊳ G, if every right coset of H is
also a left coset.

Remark. This amounts to the more useful criterion that
g−1Hg ⊆ H for all g ∈ G.

11. If H ⊳ G prove that

Hg1Hg2 = H(g1g2)
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for all g1, g2 ∈ G.

12. Remark and Definition

This means that coset multiplication is a closed operation. It
follows at once that the set G/H of all cosets becomes a group
with this operation. This is the quotient group.

The identity in G/H is H; and (Hg)−1 = H(g−1). (Check these
claims!)

Each coset Hg is treated as an individual entity; in effect, this
blurs the distinction between individual elements of the coset.
In other words, elements a, b of G are identified when they
belong to the same coset, namely when ab−1 ∈ H.

13. Suppose {Hj : j ∈ J } is any collection of subgroups of a given
group G. (The index set can be finite or not; the individual
groups can be finite or not.) Show that

H =
⋂

j∈J

Ht

is a subgroup of G.

Remark. Thus any intersection of subgroups is a subgroup. In
particualar, if H1 and H2 are subgroups of G then so is H1∩H2.

14. Definition. Let X be any subset of the group G. X need not
be a subgroup. By a word in X we mean any product

xε1

1 x
ε2

2 . . . xεk

k

where εj = ±1 and each xj ∈ X. For example,

1 = x1
1 · x−1

1

x3
1 = x1

1x
1
1x

1
1

x1x
−1
2 x1x3x

−1
4

are all words in X = {x1, x2, x3, x4}.
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The subgroup generated by X is the set of all words in X. We
write

〈X〉 = {words xε1

1 . . . xεk

k in X}.
15. Verify that 〈X〉 is indeed a subgroup of G.

16. Show that 〈X〉 is the intersection of all subgroups of G which
contain X. (There is at least one such subgroup, namely G
itself.)

Remark: this provides an alternative definition for the sub-
group generated by a subset X of the group G. Intuitively,
we may therefore say that 〈X〉 is the smallest subgroup which
contains the set X.

17. Suppose now that X is a set of generators for group G, so that
G = 〈X〉. Let H be a subgroup and let T be a fixed transversal
T for H in G.

We will use the bar function : G → T to manufacture a
set of generators for the subgroup H. This algorithm (due to
Schreier) is important (in Gap, for example). I am copying the
treatment in Larry Groves’s Groups and Characters.

We let X± = X ∪X−1 and define two subsets of G as follows:

A := {tx(tx)−1 : t ∈ T and x ∈ X±}
B := {tx(tx)−1 : t ∈ T and x ∈ X}

Thus B is merely a subset of A, since we just restrict the pos-
sibilities for x (generators only for B; also their inverses, if it
makes any difference, for A).

18. Prove that B ⊆ A ⊆ H.

19. Prove that A ⊆ B ∪B−1 ∪ {1}.
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20. Prove that the 〈A〉 = 〈B〉 (i.e. equal subgroups with possibly
different sets of generators).

21. Schreier’s Theorem The subgroup H is generated by the set
B = {tx(tx)−1 : t ∈ T and x ∈ X} (from above).
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Symmetric Groups

1. Let X be any set. A bijection from a set X to itself is often
called a permutation on X; another synonym is rearrangement.

The collection of all such bijections, with left-to-right compo-
sition of functions, is the symmetric group SX .

If x ∈ X and f, g ∈ SX , then it seems we should write (x)f ,
instead of f(x); and composition becomes ((x)f)g (meaning
first apply f then g).

But this is awkward, so we often use the ‘exponential’ alterna-
tive

xf

(in place of f(x)). Then composition is defined by the very
natural looking rule

xfg := (xf )g .

Indeed, this is so in Gap, where exponentiation is indicated by
the caret ˆ :

gap> # Here is a permutation in S_6:

gap> f:= (1,4,5,2)(3,6);

(1,4,5,2)(3,6)

gap> # Here are some elements in the ground set [1..6]

gap> x:=4;y:=6;

4

6

gap> x^f; y^f;

5

3

2. The actual nature of the elements of the ground set X is often
immaterial. When X has finite cardinality, say

|X| = n ,

it is convenient to take

X = {1, . . . , n},
in which case we often write Sn in place of SX .
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Notation. Sn is the symmetric group of permutations on
{1, . . . , n}. Note that Sn has order n!.

Remarks. Such groups are well suited to computer implemen-
tation; there are many efficient algorithms for computing with
permutations.

The shorthand [n] := {1, . . . , n} is frequently used in algebra
and combinatorics. Thus a permutation is a bijection

f : [n] → [n] .

3. Visualizing general functions f : [n] → [n] (including
bijections)

We can use graphs, arrow digrams or cycle notation. The latter
device is efficient and is precisely how we represent permuta-
tions in a computer language like GAP. The case n = 4 is
typical enough, so we will take

X = [4] = {1, 2, 3, 4} .
(a) Here are some functions represented as conventional graphs

in R
2:

Actually, each graph is embedded in the grid

[4]2 = [4] × [4] = {1, 2, 3, 4} × {1, 2, 3, 4} .
Note that f is not onto hence also not 1–1. Thus f 6∈ S4.
However, g and h are typical permutations in S4.

Since the graph lives in the 4×4 grid, it makes no sense to
join up the dots by line segments! We begin to see that the
positions of 1,2,3,4 on the axes are irrelevant. As a matter
of fact, the symbols themselves are somewhat arbitrary.
We could just as well permute four other symbols, like

α, β, γ, δ

or
♥,♦,♣,♠ ,

which have no natural positions in a graph. The mathe-
matical content of the permutations would be unaltered by
such a change in the ground set.

However, we stick with 1,2,3,4, since these symbols are
familiar and are easy to enter into the computer.
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(b) The same three functions are more naturally represented
by these arrow diagrams:

1

3

4

2

1

2

3
4

1

3

4

2

1

2

3
4

1

3

4

2

1

2

3
4

f g h

Note how easy it is to pick out the 1–1 or onto functions.
In fact, we easily see why 1–1 is equivalent to onto for finite
ground sets X.

(c) Now we investigate cycle notation, which is appropriate
only for bijections. Let’s look at the function h, which
could be fully described by the following cumbersome setup:

1h = 4

2h = 1

3h = 3

4h = 2

The fact that we see a rearrangement of 1,2,3,4 in the
right-hand column confirms that h is a bijection. Here
is a slightly more compact way of representing the same
information:

1
h→ 4

h→ 2
h→ 1 and 3

h→ 3 .

The cycle representation for H is just an abbreviation of
this. Here is how it works.

Start with any element of the ground set, say x = 1 to be
specific, and track where that element is sent by h (here
4), then where that 4 is sent by h (here to 2), and so forth.
You will find that your list of elements closes up into a
so-called cycle. For example, h sends 2 back to the initial
element 1. This information can be compressed as follows:

(1, 4, 2) .

Note that we scan a cycle left to right and that each ele-
ment is mapped by h to the one just after, except that the
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right-most element is mapped to the front element of the
cycle.

Now repeat the process for any unaccounted-for elements
in the ground set and manufacture more such cycles.

To finish off our h we note that the remaining element 3
must belong to a trivial cycle (3), indicating that 3 is a fixed
point for h. When done we may express h as a product of
disjoint cycles, namely

h = (1, 4, 2)(3) .

Note that the same information is conveyed if we start any
particular cycle at another of its elements. Thus

h = (2, 1, 4)(3) .

If the context is clear, that is to say, if we know we are per-
muting {1, 2, 3, 4}, then trivial cycles are often suppressed
and understood. In fact, GAP will do just that and print
h as

(1, 4, 2) .

Clearly, the above process works for any bijection on a
finite set. One encodes the mapping information in a col-
lection of disjoint (i.e. non-overlapping) cycles.
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(d) The identity permutation and inverses

The notation 1 for the identity function would now be a bit
confusing; so let us use e to denote the identity permutation
on [4]. Thus e fixes every element and so

e = (1)(2)(3)(4) .

After suppressing trivial cycles, GAP would write e = ().

It is easy to write the inverse of a permutation given in
cycle form. Since the inverse merely reverses all arrows
in an arrow diagram, we must rewrite each of the disjoint
cycles in reverse order. Again the starting element for each
cycle is a matter of choice. For example,

h−1 = (1, 2, 4)(3) .

Trivial cycles, in fact also cycles of length 2, are unaffected
by switching to the inverse.

As another example, consider g from above. We can convey
the mapping information for g in several ways, so it is quite
legal to write

g = (1, 2)(3, 4) = (3, 4)(1, 2) = (2, 1)(3, 4) .

Since every cycle has length 2, g must be self-inverse: g =
g−1, just like a reflection.

(e) Products

Multiplying permutations in cycle format is is easy – just
remember to scan left to right. For example, g maps 1 to
2 and h maps 2 to 1, so gh maps 1 to 1. Now move on to
input 2: g maps 2 to 1 and h maps 1 to 4, so gh maps 2 to
4. Next move to input 4 and continue. With practice one
can write out products without any effort:

gh = (1, 2)(3, 4) · (1, 4, 2)(3) = (1)(2, 4, 3) = (2, 4, 3)

and

hg = (1, 4, 2)(3) · (1, 2)(3, 4) = (1, 3, 4)(2) = (1, 3, 4) .

Notice that we end up with disjoint cycles, even though at
intermediate steps we might not have disjoint cycles. Also
note here that gh 6= hg.
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(f) Theorem. Every permutation f ∈ Sn can be factored as
a product of disjoint cycles an essentially unique way.

Proof. See any text on group theory. The argument just
tightens up our informal discussion above. �

Even and odd permutations

1. An m-cycle in Sn is a permutation which can be written as a
single cycle, say

c = (a1, . . . , am) ,

where a1, . . . , am are distinct elements taken from {1, . . . , n} in
any particular order. Of course, this means m 6 n; and again
we have suppressed fixed points (i.e. 1-cycles).

A 2-cycle t = (a, b) is often called a transposition.

2. We have seen that we can factor a general permutation as a
product of disjoint cycles.

We now observe that any individual cycle can be factored as
a product of transpositions, typically in several different ways.
These transpositions are unlikely to be disjoint, however. Our
proof is by construction:

(a1, . . . , am) = (a1, a2)(a1, a3) · · · (a1, am) .

For example,

• (1, 3) = (1, 3) = (1, 2)(1, 3)(2, 3)

• (1, 3, 5) = (1, 3)(1, 5)

• (1, 2, 3, 4) = (1, 2)(1, 3)(1, 4)

We shall see, however, that if a permutation factors as a prod-
uct of an odd number of transpositions, then any other fac-
torization of it also involves an odd number of transpositions.
Ditto for even numbers of transpositions.

3. Since every permutation can be factored as a product of disjoint
cycles, we conclude
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Proposition 0.1. Every permutation f ∈ Sn can be factored as
a product of transpositions, generally in many different ways.

For example, in S8 we have

(1, 3, 5)(2, 4, 6, 8) = (1, 3)(1, 5)(2, 4)(2, 6)(2, 8) .

This permutation will soon be called odd; and it does require
an odd number of transpositions.

Remark. This factorization essentially says that any shuffle
of a deck of cards can be achieved by repeatedly swapping two
cards at a time. This is quite believable.

4.

Definition 0.2. Let f be any permutation in Sn; and suppose
when f is written as a product of disjoint cycles that we require
d such cycles, including all 1-cycles. Then the sign of f is

sgn(f) = (−1)n−d .

If sgn(f) = +1, we say that f is an even permutation; if
sgn(f) = −1, we say that f is odd.
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The Gap lingo is

gap> SignPerm(f);

5. Examples. Remember to count all 1-cycles, which normally
we would suppress for ease of reading.

• the identity e = () = (1)(2) . . . (n) has d = n one-cycles
hence

sgn(e) = (−1)n−n = +1 .

• A transposition t = (a, b) has a single 2-cycle and n − 2
one-cycles,
so d = 1 + (n− 2) = n− 1, so

sgn(t) = (−1)n−(n−1) = −1 .

individual transpositions are odd

• Since them-cycle c = (a1, . . . , am) = (a1, a2)(a1, a3) · · · (a1, am),
the sign of an m-cycle c is

sgn(c) = (−1)n−(1+n−m) = (−1)m−1 .

Thus, a little confusingly, a 5-cycle is even, whereas a 6-
cycle is odd.

The crucial result is a neat calculation:

Proposition 0.3. For any permutation f and transposition
t = (a, b) in Sn,

sgn(ft) = −sgn(f) = sgn(f)sgn(t) .

Proof. Write f as a product of disjoint cycles, taking care to
include all 1-cycles:

f = (. . .) · · · (. . .)(. . .) · · · (. . .) .
The distinct elements a and b must appear somewhere and
exactly once, either in a common cycle or in different cycles.

Case 1. A common cycle. We convey the same mapping in-
formation by moving a to the front of the cycle. The rest of
the cycle must look something like

(a, x1, . . . , xl, b, y1, . . . , yk) .
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(Possibly l = 0 so there aren’t any x’s, etc.; this won’t hurt our
argument.) Anyway, this cycle for f is disjoint from all other
cycles, so we can commute it to the end to get

f = (. . .) · · · (. . .)(. . .) · · · (a, x1, . . . , xl, b, y1, . . . , yk) ,

whence

ft = (. . .) · · · (. . .)(. . .) · · · (a, x1, . . . , xl, b, y1, . . . , yk) · (a, b)
= (. . .) · · · (. . .)(. . .) · · · (a, x1, . . . , xl)(b, y1, . . . , yk) ,

thereby introducing exactly one more cycle! The number of
disjoint cycles goes up by 1; since this appears in the exponent
in the definition of the sign, the sign must change by the factor
-1.

Case 2. a and b in different cycles. This is similar and basically
reverses the calculation in Case 1. Now the number of disjoint
cycles goes down by 1; but again this multiplies the sign by −1.

�

6.

Theorem 0.4. The function

sgn : Sn → {±1}
f 7→ sgn(f)

is a homomorphism from the group Sn (with permutation com-
position) to the group {±1} of order 2 (now multiplication of
integers). In other words, we have

sgn(fg) = sgn(f)sgn(g)

for all f, g ∈ Sn.

Proof. Any f and g can be written as a product of trans-
postions, say f = t1t2 · · · tk and g = t̃1 · · · t̃l. By repeatedly
applying Proposition 0.3, we get

sgn(f) = sgn([t1 · · · tk−1]tk)

= (−1)sgn(t1 · · · tk−1)

= (−1)2sgn(t1 · · · tk−2)

= (−1)ksgn(e)

= (−1)k.
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Similarly, sgn(g) = (−1)l, so that

sgn(fg) = sgn(t1t2 · · · tk t̃1 · · · t̃l) = (−1)k+l = (−1)k(−1)l = sgn(f)sgn(g) .

�

7.

Corollary 0.5. Parity of permutations has a new, sensible
meaning. An even permutation can be factored only as an even
number of transpositions; an odd permutation can be factored
only as an odd number of transpositions.

Proof. Note that (−1)k = +1 forces k to be even, never odd.

�

8. Application 1 - determinants. Suppose A = [aij] is an n×n
matrix. One way to define the determinant is

det(A) :=
∑

f∈Sn

sgn(f) a1,(1)fa2,(2)f · · · an,(n)f (1)

(a sum of n! signed terms, each a product of n specially selected
entries).

Remark. This definition makes sense over any field, in fact,
over any commutative ring R with identity 1.
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9. Application 2 - the ‘15-puzzle’. This familiar puzzle has 15
sliding blocks labelled 1, . . . , 15 and located in a 4 × 4 frame.
The 16th square is empty or blank, so we label it b. By sliding
the blank around, we can reconfigure the blocks in various ways.

Here is the starting configuration:

5

1

8

3

6 7

42

13

1211

14

10

15

9

The key problem is this: can we slide the blocks so as to arrive
at

31 4

5 86

2

7

13

12

15

1110

14

9

Solution. No, we cannot. Each unit move of the blank space
(either horizontal or vertical) leaves most of blocks fixed and
really amounts to applying a transposition of the form (i, b),
where i ∈ {1, 2, . . . , 15}. Any succession of m such moves
amounts to a product of m transpositions, whose sign is (−1)m

(Theorem 0.4). However, the blank space is still at the lower
right corner, which means that we have moved the blank an
even number of times (both horizontally and vertically). In
any case, m must be even. Thus we have effected an even per-
mutation on the set {1, 2, . . . , 15, b}. The configuration in the
second figure amounts to the transposition (1, 2), which is odd.

�
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10. Application 3 - the Alternating Group.

Definition 0.6. The alternating group of degree n is the set
An of all even permutations in Sn, still with left to right com-
position.

(a) Remarks. Thus An is the kernel of the homomorphism
sgn in Theorem 0.4. Its order is n!

2
.

(b) For example, A3 is isomorphic to the group of rotational
symmetries of an equilateral triangle (order 3, rotations
through 0◦,+120◦,−120◦).

(c) Likewise, A4 faithfully represents the group of rotational
symmetries of a regular tetrahedron in ordinary space. There
are 12 rotations:

• the identity rotation (through 0◦), corresponding to the
identity permutation ().

• four 120◦ rotations (looking from outside onto a trian-
gular face), corresponding to say (1, 2, 3), (1, 4, 2), (1, 3, 4), (2, 4, 3).

• four −120◦ rotations (still looking from outside onto a
triangular face), corresponding to say (1, 3, 2), (1, 2, 4), (1, 4, 3), (2, 3, 4).

• three 180◦ rotations, corresponding to (1, 2)(3, 4), (1, 3)(2, 4)
and (1, 4)(2, 3).

We have twelve symmetries that we can achieve by phys-
ically manipulating the tetrahedron; and we have twelve
even permutations.

In fact, we have listed the four conjugacy classes of A4. On
the geometrical side, the motions in each class have the
‘same geometric effect’ on the tetrahedron. In particular,
120◦ rotations and −120◦ are different: we cannot pass
from one to the other without the use of a reflection taking
right to left hand. But such reflections must correspond to
odd permutations of the four vertices.

In parallel to that, the permutations in each conjugacy
class ‘look like one another’. In addition, we have seen
that we do further have to distinguish say (1, 2, 3) from its
inverse (1, 3, 2) when the setting is A4. However, when the
setting is enlarged to S4 these two classes fuse into one.
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(d) Let’s see how this plays out in Gap:

gap> S4:=SymmetricGroup(4);;

gap> A4:=AlternatingGroup(4);Size(A4);

Alt( [ 1 .. 4 ] )

12

gap> IsSubgroup(S4,A4);

true

gap> conA:=ConjugacyClasses(A4);;Size(conA);

4

gap> for j in [1..4] do Print(j," ",Elements(conA[j]),"\n");od;

1 [ () ]

2 [ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ]

3 [ (2,4,3), (1,2,3), (1,3,4), (1,4,2) ]

4 [ (2,3,4), (1,2,4), (1,3,2), (1,4,3) ]

gap> conS:=ConjugacyClasses(S4);;Size(conS);

5

gap> for j in [1..5] do Print(j," ",Elements(conS[j]),"\n");od;

1 [ () ]

2 [ (3,4), (2,3), (2,4), (1,2), (1,3), (1,4) ]

3 [ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ]

4 [ (2,3,4), (2,4,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,4,2),

(1,4,3) ]

5 [ (1,2,3,4), (1,2,4,3), (1,3,4,2), (1,3,2,4), (1,4,3,2), (1,4,2,3)

Thus the 4! = 24 elements of S4 lie in 5 classes. For exam-
ple, the second class consists of the six reflection symme-
tries. The fourth class consists of the rotations of period
3 - now they are all alike since the presence of reflections
lets the group waive the distinction between clockwise and
anticlockwise. The second class is unchanged (and a clock-
wise 180◦ rotation is indeed identical to an anticlockwise
180◦ rotation).

This leaves the last class, consisting of all six 4-cycles in
the symmetric group. (Recall that a 4-cycle is an odd
permutation.) These must correspond to a symmetry for
the tetrahedron which (like reflections) reverses orienta-
tion. In other words, such symmetries would send a left
hand sketched on the surface of the solid to a right hand.

So look at a 4-cycle like (1, 2, 3, 4). What does this mean
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geometrically? It will help to hold a model in your hand,
with an edge horizontal and the opposite edge also hori-
zontal but ‘perpendicular’ to the first. Imagine the vertical
axis passing through the midpoints of these two opposite
edges. The symmetry that we are after here is a composite
thing obtained by composing a 90◦ turn about the ver-
tical axis with a subsequent reflection in the (horizontal)
plane perpendicular to the axis and through the centre of
the tetrahedron. (Caution: this last reflection on its own is
not a symmetry, nor is the 90◦ turn!) If you track the effect
of this symmetry, you will see that it cyclically sends the
4 vertices of the tetrahedron along a ziz-zag path through
the edges. (Such a path is called a Petrie polygon for the
tetrahedron.) Thus we recreate the 4-cycle in a geometrical
way.

This sort of combined reflection-rotation is called a rotatory
reflection. It certainly reverses sense, since the reflection
part does but the rotation part does not. Yet it is different
from an ordinary relection. An ordinary reflection fixes all
points on its planar mirror; a rotatory reflection fixes only
one point, in this case the centre of the tetrahedron. This
qualitative geometrical distinction translates into distinct
conjugacy classes in the group S4.
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One Group from Several Points of View

1. Geometrical Symmetry: let G be the group of symmetries
for an equilateral triangle. We know that there are three rota-
tions, including the identity, say 1, s1, s2, together with three
reflections r1, r2, r3. Thus

G = {1, s1, s2, r1, r2, r3} ,

with left-to-right composition as usual. Note that rj is the
reflection in mirror mj. Of course, |G| = 6.

m
1

m
2 m

3

1

23

Exercise. Write out the multiplication table for G. Remember
that fg means first apply the isometry f to the triangle, then
the isometry g.

2. Permutations: label the vertices of the triangle 1, 2, 3. Since
each isometry of the plane is determined by its effect on this
triangle, we can unambiguously track the isometries via per-
mutations of {1, 2, 3}. We obtain the permutation group

S3 = {( ), (1, 3, 2), (1, 2, 3), (2, 3), (1, 3), (1, 2)}
(again composed left-to-right as functions).

We have seen that G ≃ S3. Explicitly, there is an isomorphism
mapping
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G → S3

1 7→ ( )

s1 7→ (1, 3, 2)

s2 7→ (1, 2, 3)

r1 7→ (2, 3)

r2 7→ (1, 3)

r3 7→ (1, 2)

3. Matrices (version 1) : orthogonal. Place the origin O at
the centre of the triangle. Thus every symmetry of the triangle
fixes O.

Compute relative to the usual orthonormal basis. After rescal-
ing the triangle, we may assume that the top vertex is

e2 = [0, 1] .

As usual,
e1 = [1, 0]

is the unit vector pointing east. (It extends outside the triangle
a little.) We then get a matrix group M1 in which the above
isometries are represented in order as

[

1 0
0 1

]

,

[

−1/2
√

3/2

−
√

3/2 −1/2

]

,

[

−1/2 −
√

3/2√
3/2 −1/2

]

,

[

−1 0
0 1

]

,

[

1/2 −
√

3/2

−
√

3/2 −1/2

]

,

[

1/2
√

3/2√
3/2 −1/2

]

.

Here each matrix is orthogonal: to get the inverse, simply trans-
pose.

4. Matrices (version 2) : nice but not orthogonal

We can actually employ any basis that we want. But it makes
sense to choose a ‘nice’ basis. So let’s take vertices 1 and 2
of the triangle as the new basis vectors d1 and d2. Because
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the triangle is equilateral, we see that vertex 3 is given by
−d1−d2. A little computation gives a new set M2 of matrices
for the original isometries, again in the original order:

[

1 0
0 1

]

,

[

−1 −1
1 0

]

,

[

0 1
−1 −1

]

,

[

1 0
−1 −1

]

,

[

−1 −1
0 1

]

,

[

0 1
1 0

]

.

Thus the entries of these new matrices are a little nicer to work
with.

We have the same group, of course; but since the basis is non-
standard, the corresponding coordinates are non-standard and
measurement works differently. For example, the usual inner
product x1y1 + x2y2 using new coordinates does not usefully
measure anything.

5. The trace of a square matrix A is the sum of its diagonal
entries, say

tr(A) :=
∑

j

ajj .

Thus the trace of a matrix is a very special scalar.

6. Notice that corresponding matrices in the above groups have
identical traces. Why is this so?

Well, we have changed basis according to this rule:

d1 = e2 = 0e1 + 1e2 , d2 = (
√

3/2)e1 + (−1/2)e2 .

Thus the corresponding basis change matrix is

B =

[

0 1√
3/2 −1/2

]

.

Symbolically we should think

(new basis d1,d2 in a column) = B (old basis e1, e2 in a
column).
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It follows that if A is one of the six ‘old’ matrices in M1, then
the corresponding ‘new’ matrix in M2 is

BAB−1 .

Remark: Getting the matrices arranged in the correct way
here is a little tricky. Of course, much the same procedure
works in n dimensions.

7. Let’s return to the traces. It is easy to check for square n× n
matrices A and C that

tr(AC) = tr(CA) .

(Do this as an exercise.) Thus

tr((BA)B−1) = tr(B−1(BA))

= tr((B−1B)A)

= tr(IA)

= tr(A) .

In short, basis change does not change the trace values for
matrix group representations of the original group G.

These trace values are called the character values for the
matrix representation. Indeed, they serve to classify and dis-
tinguish essentially different matrix representations for one and
the same group G.

In a sense, the character values (traces) contain just enough nu-
merical information to completely determine the matrix group
(up to a change in basis). All other numerical data in the
matrices is clutter.

8. Exercise. Prove that conjugate elements in G must have iden-
tical character values.

The upshot, which is quite hard to prove, is that a matrix group
is determined by k scalars, where k is the class number =
number of conjugacy classes in G.
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9. A first level of abstraction: the multiplication table of
G

In a basic way, the multiplication table alone completely de-
fines G, though we must of course inspect the table to root
out the interesting properties of G. In this abstract point of
view, we forget all concrete representations such as isometries,
permutations, matrices, etc. and think merely of |G| symbols
combined according to the table.

r
3r2r1s1

2s

2s

s1

r1

r2

r
3

s1 2s r1 r2 r
3

s1

2s

r1

r2

r
3

2s

s1

s1

2s

2s

2s

s1

s1

r2
r
3

r
3

r1 r2

r1

r
3 r2r1

r
3r2

r1

1

1

1

1

1

1

1

1

10. The second and universal level of abstraction: a pre-
sentation for G.

Intuitively, a presentation for a group G is a ‘concise’ summary
of the multiplication table, basically a minimal amount of in-
formation which would suffice to reconstruct the whole table.
Note that this means that

• we should be able to reconstruct all elements of the group;
and

• we should be able to say how all elements multiply.
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Now let’s be more precise. What we require in a presentation
is

(a) a (preferably small) set of generators a, b, c, . . . for the
group G. This means that every element g ∈ G is a prod-
uct of these generators or their inverses, allowing repeats.
We noted earlier that such a product is often called a word
in the generators. Examples are a, aa−1, abaaab−1b−1cc etc.
Of course, these can sometimes be simplified using the ba-
sic laws of exponents valid for all groups:

aa−1 = 1 , abaaab−1b−1cc = aba3b−2c2 .

But there could well be other simplifications possible due
to special features of the group G in question. These pe-
culiarities are given by

(b) a set of relations (a.k.a. relators) satisfied by the given
generators and from which all valid relations in G follow
by algebraic manipulations in the group. This is a little
hard to define more precisely, so here we will just sketch a
few examples and state the key theorems.

11. Example. Suppose in the calculation just above, we do know
that ab = ba, which can be rewritten as aba−1b−1 = 1. Then
we achieve a further simplification:

abaaab−1b−1cc = a4b−1c2 .

12. Example. Suppose G is generated by two elements a, b which
satisfy the relations

a2 = b2 = (ab)3 = 1 (∗∗)

Various different groups have these generators and satisfy the
relations!!

(a) a = b = 1 (say the integer 1); so G = {1} has order 1.

(b) a = b = −1 (again integers ). Check that the relations (**)
are satisfied. What now is the order of G?
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(c) Another possibility using ordinary integers? a = 1 and
b = −1. Are all the relations (**) above satisfied?

(d) Now try the symmetry group of the equilateral triangle
above. Let a = ? and b = ? be carefully chosen symme-
tries. Do they generate the full symmetry group? Do they
satisfy the relations (**)?
Hint: your choices for a and b will be closely guided by the
relations to be satisfied.

(e) Thus the order of G could be as big as 6. Could it be larger
still? Try to compute the possibilities!! Take all possible
combinations of a, b, a−1, b−1, subject to the relations (**),
and determine how many truly different elements you can
get. For example, a2 = 1 implies a2a−1 = 1a−1, so that
a = a−1. In short, in this example, negative powers of
the generators are unnecessary, and at the outset, we can
restrict only to positive integral exponents.

(f) In fact, there is a largest such group satisfying (**) !! And
its order is

Remark: the peculiar structure of the relations in (**)
means that the symmetry group of the equilateral triangle
is the Coxeter group of type A2.
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13.

Theorem 0.7.

Consider all groups generated by generators

a, b, c . . .

satisfying specified relations

w1 = w2 = . . . = 1

(namely certain special words in the generators).

Then there exists a ‘largest’ such group, denoted

G = 〈a, b, c . . . | w1 = w2 = . . . = 1〉

(This is called a presentation for the group G.)

More precisely, if H is any other group with corresponding
generators ã, b̃, c̃ . . . satisfying the corresponding relations w̃1 =
w̃2 = . . . = 1̃, then there exists a unique homomorphism

ϕ : G→ H

which explicitly sends a to ã, b to b̃, etc.

14. Remarks.

(a) This is a very powerful theorem. For example, it says that
we can construct groups at will, choosing random symbols
for generators, random equations for relations. Of course,
the resulting groups could be trivial (order 1), could be
infinite, could be uninteresting.

(b) Recall that H ≃ G/ kerϕ. Hence,

|G| = |H| | kerϕ| .

Since |H| divides |G|, we do indeed find that |G| > |H|. In
this sense, G is the largest group satisfying the relations.
(It could be infinite.)

(c) It is a nice exercise to use the theorem to prove that G is
uniquely defined up to isomorphism.
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15. Exercises on presentations. Compute the orders of these
groups and describe each in more familiar terms (e.g. symmetry
group of equilateral triangle).

(a) G = 〈a | a2 = 1〉
(b) G = 〈b | b3 = 1〉
(c) G = 〈a, b | a2 = b2 = (ab)4 = 1〉
(d) G = 〈a, b | a2 = b4 = aba−1b−1 = 1〉
(e) G = 〈a, b, c | a2 = b2 = c2 = (ab)3 = (bc)3 = (ac)2 = 1〉
(f) G = 〈a, b | a2 = b2 = (ab)2〉

Warning: we aren’t saying a2 = 1 here; rather, the rela-
tions are just clean ways of writing

a2b−2 = a2(ab)−2 = 1 .

It is still possible, for example, that a has infinite period!!

(g) G = 〈a, b | a2 = b2 = 1〉
(h) G = 〈a, b | a3 = b3 = (ab)3 = 1〉
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Counting with and in Permutation Groups

1. What we have to say here can be phrased in the slightly more
general context of actions. We may return to this later, partic-
ularly since ‘actions’ are a key device in GAP.

Definition 0.8. Let G be a group and X any set. In a formal
sense, an action of G on the set X is any homomorphism

ϕ : G→ SX .

Here is how we express computations with actions in a more
congenial way. For any group element g ∈ G and set element
x ∈ X, we have that (g)ϕ is a permutation (in Im(ϕ), a sub-
group of SX). Thus x(g)ϕ makes sense. As long as ϕ is under-
stood from context, we can suppress ϕ with the more econom-
ical notation

xg := x(g)ϕ, for all x ∈ X and g ∈ G .

You should verify these very nice rules:

• x1 = x for all x ∈ X. Here 1 is the identity in G, of course.

• xgh = (xg)h, for all x ∈ X and g, h ∈ G. Here we write the
operation in G multiplicatively, of course.

Remark. Actually we have above a right-action by G on X.
With a bit of care, one can also define left actions, written gx.

2. For now we put aside general actions and simply

assume G is a subgroup of the permutation group SX.

Usually we will have X = {1, . . . , n} for some integer n > 1.
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3.

Definition 0.9. (a) If a ∈ X then the G-orbit of a is

OrbG(a) := {ag : g ∈ G}.
This subset of X consists of all places we can get to from
‘a’ under the action of G.

(b) The group G is transitive on X if OrbG(a) = X for some
a ∈ X (and hence for any b ∈ X).

(c) If a ∈ X then the G-stabilizer of a is

StabG(a) := {g ∈ G : ag = a}

4. Prove yourself that

Theorem 0.10. The orbits of G on X partition the set X.

5.

Theorem 0.11. Let a ∈ X. Then

(a) StabG(a) is a subgroup of X.

(b) Let T be a transversal to StabG(a) in G. Then the map

ϕ : T → OrbG(a)

t 7→ at

is a bijection. Thus the elements of an orbit are in 1–1
correpondence with the right cosets (say) of the stabilizer
of an element in the orbit. Furthermore, if G is finite then

|OrbG(a)| =
|G|

|StabG(a)| .

(The orbit size must be a divisor of the group order.)

(c) If also b ∈ OrbG(a), i.e. if b = ak for some particular
k ∈ G, then the map

ψ : StabG(a) → StabG(b)

g 7→ k−1gk

is a group isomorphism.
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Remark. We say that StabG(a) and StabG(b) = k−1StabG(a)k
are conjugate subgroups of G.

6.

Definition 0.12. Suppose X is finite and G 6 SX . For each
g ∈ G we let

• Fix(g) := {x ∈ X : xg = x}
• θ(g) = |Fix(g)|.

In other words, θ : G → Z
>0; and θ(g) is simply the number

of points fixed by g as it acts on X. For example, if X =
{1, . . . , n} and g = (), then θ(g) = n.

7. Show for k ∈ G that

Fix(k−1gk) = k−1Fix(g)k .

We might write this last product of sets as [Fix(g)]k. Note that
this new set has the same size as Fix(g). Why?

8. Prove that θ is a class function on G, i.e. is constant on con-
jugacy classes. In other words, for all g, k ∈ G we have

θ(g) = θ(k−1gk) .

9.

Theorem 0.13. (Burnside’s Orbit Formula) The number of
distinct G-orbits as G acts on X is

1

|G|
∑

g∈G

θ(g)

(i.e. the ‘average number of fixed points’ over the whole group).

10. Exercise. How many ‘essentially distinct’ necklaces can be
made with n beads, either black or white but otherwise identi-
cal?
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The symmetry groups for polygons, polyhadra, polytopes
of the most symmetric kind

1. For an integer n > 2, suppose v1, . . . , vn are equally spaced
points on a circle. Connect these in cyclic order by
edges ej = [vj, vj+1], for 1 6 j 6 n, taking subscripts modulo
n. Thus en closes the cycle by connecting vn to v1.

We obtain a regular n-gon, denoted {n}:

{3} {4} {5}

But what if  n = 2?

{2} v

e

e

v

2

2

1

1

2. Suppose n > 3. We see that {n} is a familiar convex polygon.
After replacing each edge by the circular arc it spans, we obtain
circular n-gons with the same abstract structure. (Think of the
vertices and edges as defining a graph.)

It therefore makes sense to say that the digon {2} (see the
figure above) has two vertices and two edges. We just cannot
separate the edges if we insist on using straight line segments.

3. What is the symmetry group Dn of the regular polygon {n}?
The mirrors for the various reflection symmetries are lines,
all passing through the centre O of the circumscribing circle.
These mirrors divide the plane into angular regions. The num-
ber of such regions will equal the order of the symmetry group.
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Definition 0.14. For n > 2, the symmetry group of a regular
n-gon {n} is denoted Dn.

Warning. There is much disagreement about whether the sub-
script n should be a little different (see below). I myself agree
with those who disagree.

4. We have observed for the equilateral triangle and the square
that we get generating reflections by taking two distinct mirrors
separated by the smallest possible angle. For an {n}, this angle
will be π/n.

To make the process a little more susceptible to generalization
in higher dimensions, let us do the following. A flag of the
polygon is a pair consisting of an incident vertex and edge. (It
will turn out that the order of the symmetry group Dn equals
the number of such flags. Of course, this order equals 2n, since
every vertex lies on 2 edges. Some authors, including at other
times myself, use the order 2n as subscript, instead of n itself.)

So choose any one flag as your base flag, say (v1, e1) to be
specific. Let

• r0 be the reflection in the perpendicular bisector of edge
e1. Thus

r0 : v1 → v2

e1 → e1

In short, r0 moves the 0-dimensional ‘face’ ( = vertex) of
the base flag and fixes the 1-dimensional face ( = edge).
(As one entity, edge e1 is fixed; of course, it is flipped end-
for-end in the process.)

• r1 be the reflection in the line joining O to v1. Thus

r1 : v1 → v1

e1 → en

In short, r1 moves the 1-dimensional ‘face’ ( = edge) of the
base flag and fixes the 0-dimensional face ( = vertex).

36



e2

v
2

en

v1

O

e1

{n}

r
r1

0

πn

A fundamental region for the action of the symmetry group Dn

on the polygon {n} has been shaded in. Repeated application
of r0 or r1 will move this region to all 2n available positions.

Thus Dn has generators r0, r1; once again we see that the order
is 2n.

The group Dn is called dihedral since we imagine it generated
by two reflections. In fact, we can make an actual kaleidoscope
corresponding to this group by using two real mirrors.

5. A presentation for Dn.

We can reason as we did for the equilateral triangle or square:
explicitly list the 2n elements of the group. Alternatively one
can use coset enumeration on the trivial subgroup. In any case,
a presentation is

Dn : 〈 r0, r1 | r2
0 = r2

1 = (r0r1)
n = 1〉

This sort of presentation means that Dn is an example of a Cox-
eter group. These groups appear all throughout mathematics,
often in places which wouldn’t seem to have much to do with
polygons or polyhedra.
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6. Exercises.

(a) Fix a background label ‘j’ next to vertex vj for each j. Use
this to represent the generators r0 and r1 as permutations
R0, R1 on {1, . . . , n}.
Compute R0R1 in this representation. For which n is the
resulting group 〈R0, R1〉 of permutations isomorphic to Dn?
In other words, can the permutations ever fail us?

(b) Clearly 〈R0, R1〉 is a subgroup of Sn. Can the subgroup
equal the whole group for any n?

(c) What goes wrong with the above permutations when n =
2? Correct that to give a faithful permutation representa-
tion of D2, say as a subgroup of S4.

(d) Compute on geometrical grounds the number of conjugacy
classes in Dn. (Intuitively, a conjugacy class consists of all
symmetries which act in the ‘same’ geometrical way on the
n-gon. Here ‘same’ will mean ‘up to relocation via any and
all elements of the surrounding group, here Dn.)

Find out how to retrieve a permutation version of Dn in
GAP and check your conjectures about the number of con-
jugacy classes for several small values of n.

Which subscript convention does GAP adhere to?
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The Finite reflection groups G

Our examples indicate that regular polygons and polyhedra,
and presumably their higher dimensional kin, have symmetry
groups generated by reflections. We survey these groups in
ordinary space.

7. Suppose then that G is a finite group generated by reflections
in R

3 and pick any point P . Its orbit, OrbG(P ), is finite, since
G is finite. The orbit therefore has a well-defined centroid O.

But since G consists of isometries, each of which rearranges the
points in the orbit, it must be that O is fixed by every element
of the group. Furthermore, since G consists of isometries, this
means that G fixes as an entity any sphere centred at O. In
short, we can track the action of G by examining how it acts
on the unit sphere S

2 centred at O:

θ

A

A’

O

for r 1

great circular
mirror for  r 2

Any reflection in G has a plane mirror passing through O. This
mirror meets S

2 in a great circle. Two such mirrors intersect
in a line which meets the sphere at antipodal points A and A′,
as shown above. Notice that two distinct great circles always
intersect in a pair of antipodal points.

The (dihedral) angle θ from one such mirror to another appears
to a spherical bug living on S

2 as an angle on the surface of the
sphere. Just as in the Euclidean plane, we find that a product
r1r2 of reflections equals a rotation through angle 2θ with centre
A. If the angle appears to be anticlockwise as we view A from
without the sphere, then it will appear clockwise at A′.
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8. Now experience with kaleidoscopes informs us that all the mir-
rors for reflections in G will cut S

2 into various spherical poly-
gons. Any one of these polygons – call it K – serves as a
fundamental region for the action of the group G. This means
that by repeated reflection in the great circles bounding K, we
are able to cover the entire sphere once over.

From another point of view, K is a smallest region enclosed
by mirrors but not penetrated by any mirror of symmetry. If
the polygon K has n sides, let’s label the bounding reflections
r1, . . . , rn is cyclic order:

r

r

r

1

2

3

r
4

interior 
angles

The region K
   (n = 4)

9. Look at the reflections r1, r2 in two consective sides of K. Sup-
pose the angle from side 1 to side 2 is θ. Then r1r2 is a rotation
with angle 2θ. Furthermore, (r1r2)

n = 1 for some integer n > 2.
(If n = 1 we would have r1 = r2 and the two mirrors would
coincide.)

But (r1r2)
n = 1 is a rotation, too, now through a multiple of

2π. Thus there is an integer k such that

n(2θ) = 2πk or

θ =
kπ

n
.

Put k/n in lowest terms, so that gcd(k, n) = 1 = lk − mn
for certain integers l and m. (This possibly new n will be the
period of r1r2.) The rotation g = (r1r2)

l has angle

l(2θ) = l(2πk)/n = 2π/n+ 2πm ≡ 2π/n (mod 2π) .
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Now let r be reflection in the line x located π/n along from the
mirror for r1:

K

r

r
2

1

θ =    π/
π/n

k n
r

This line is interior to the region K if k > 1; but we don’t
yet know if r is in the group. However, r1r is also a rotation
through 2π/n, so r1r = g and r = r1g really is in the group.
This contradicts our construction of the region K if k > 1.

10. Conclusion. Each interior angle of K has the form π/n for
some integer n > 2 (i.e. is a submultiple of π).

11. The area of a spherical polygon

A lune is a region of S
2 bounded by two great semicircles. In the

figure on page 39 you can see four lunes terminating at A and
A′. Look at the lune specified by the angle θ. The symmetry of
the sphere clearly implies that this area is directly proportional
to θ. Since the whole unit sphere has area 4π we conclude that

the area of a lune with polar angle θ is 2θ.
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12. Let’s look now at a spherical triangle with angles α, β, γ:

α β

γ

Extending its sides we obtain various lunes which intersect in
a congruent antipodal triangle (indicated by ‘open’ vertices).
Let A be the area of the triangle. Observing how the various
lunes cover the sphere, we get

4π = 2(2α+ 2β + 2γ) − 4A,

so that

the area of a spherical triangle with angles α, β, γ is
α+ β + γ − π,

(the angular excess).

13. Let’s return to our fundamental region K, which is a spherical
n-gon (n > 2) with angles of the form π

p1

, π
p2

, . . . , π
pn

, where we

have seen each integer pj > 2. Now subdivide K into n − 2
spherical triangles and emply the angular excess. We conclude
that

K has area π[ 1
p1

+ · · · + 1
pn

− (n− 2)].

But this area is positive. On the other hand, each 1
pj

6 2, so

that
0 <

n

2
− (n− 2) .
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We conclude that n = 2 or 3. This immediately leads to an
easy enumeration of cases, as well as a formula for the orders
of the resulting reflection groups.

14.

Theorem 0.15. Let G be a finite reflection group in ordinary
Euclidean space. Then G belongs to one of the following classes:

(a) G = 〈r1〉 is generated by one reflection and has order 2. In
this case K is a hemisphere.

(b) G = 〈r1, r2〉 is a dihedral group Dp for some p > 2. Here G
has order 2p and K is a lune bounded by semicircles with
polar angle π/p.

(c) G = 〈r1, r2, r3〉 is generated by three reflections whose mir-
rors bound a spherical triangle K. The actual cases are

• (p1, p2, p3) = (2, 2, p) for any integer p > 2. Here G
has order 4p and can serve as the symmetry group of
of a uniform p-gonal right prism.

• (p1, p2, p3) = (2, 3, 3). Here G has order 24, is iso-
morphic to the symmetric group S4 and serves as the
symmetry group of the regular tetrahedron {3, 3}.

• (p1, p2, p3) = (2, 3, 4). Here G has order 48 and can
serve as the symmetry group of the cube {4, 3} or reg-
ular octahedron {3, 4}. (Here G ≃ S4 × C2.)

• (p1, p2, p3) = (2, 3, 5). Here G has order 120 and can
serve as the symmetry group of the regular dodecahe-
dron {5, 3} or regular icosahedron {3, 5}. (G is not
isomorphic to S5; instead G ≃ A5 × C2.)

We note that the order of the symmetry group of the regular
polyhedron {p, q} is

4
1
p

+ 1
q
− 1

2

=
8pq

4 − (p− 2)(q − 2)
.
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The Abstract Cube

1. The relation between the cube P and its symmetry group G
is quite typical of what happens for general regular polyhedra
(regular polytopes of rank n = 3). The extension to regular
polytopes of higher rank (n > 4) or even to lower ranks (eg.
polygons, of rank n = 2) is quite natural. Therefore, instead
of proving general things, we will just use the cube to suggest
a believable description of the basic theory of abstract regular
polytopes.

2. The cube has Schläfli symbol {4, 3} (after Ludwig Schläfli, a
19th century Swiss geometer). Here the ‘4’ indicates that the
faces of P are squares (Schläfli symbol {4}); the 3 indicates
that 3 squares surround each vertex. More precisely, the vertex-
figure of a typical vertex like v below is the equilateral triangle
{3} formed by the three vertices adjacent to v. (Sketch it in
yourself.)

v

e

f

r
2

r0

r
1

O
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3. The group G = G(P) is known to have presentation

G = 〈r0, r1, r2 | r2
0 = r2

1 = r2
2 = (r0r1)

4 = (r1r2)
3 = (r0r2)

2 = 1〉 .

(You could check the order 48 by coset enumeration. In the
1930’s Coxeter used geometric arguments to solidify our un-
derstanding of these kinds of groups in all dimensions.) Notice
where the 4 and 3 appear. And recall that the period 2 means
that r0 commutes with r2.

A Coxeter group is a group presented in this way as having
generators rj of period 2 subject only to those further relations
which specify the periods of products of two distinct generators.

Thus, if there are n generators r0, r1, . . . , rn−1, we will have at

most

(

n
2

)

further defining relations.

Some such relation could be missing. This is an admission that
we allow the period to be ∞. For example, the rank 2 Coxeter
group

〈r0, r1 | r2
0 = r2

1 = 1〉
actually is infinite. The generators can be interpreted as re-
flections in distinct parallel lines in the plane. This gives the
symmetry group of the infinite regular polygon {∞} whose
vertices are all points with integer coordinates on a line per-
pendicular to the mirrors. Sketch this yourself, taking care to
place the mirrors for r0, r1 correctly. You can also see this group
portrayed on the door to Tilley 412.

4. The presentation for any Coxeter group can be encoded in a
most useful Coxeter diagram. The diagram for G above is

• 4 • 3 •

The three nodes correspond left-to-right to r0, r1, r2. You can
see how the ‘rotational’ periods are indicated by the branch
labels. Crucially, non-adjacent nodes correspond to commuting
reflections. This is a very useful trick.
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5. Let’s return to the picture of the cube:

v

e

f

r
2

r0

r
1

O

Now we want to understand how to extract the generating
reflections from the geometrical set-up. The first step is to
chooses a base flag, i.e. an incident [vertex, edge, square face]
triple. The flag [v, e, f ] is indicated. We may identify each of
these components by its centroid. As a result, we get the isosce-
les right triangle whose vertices are v, the midpoint of e and
the centre of f . This triangle does look a bit like a pennant.

There are 48 = 8 · 6 copies of the pennant on the surface of the
cube. We see once more why G has order 48.

If you now join these three points to the body centre O for the
cube itself, then you get the framework for an actual trihedral
kaleidoscope.
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The generating reflections now arise in a systematic way:

• reflection r0 moves only the dim 0 component of the base
flag (move v, globally fix e, f as entities);

• reflection r1 moves only the dim 1 component of the base
flag (move e, globally fix v, f as entities);

• reflection r2 moves only the dim 2 component of the base
flag (move f , globally fix v, e as entities).

The base flag is moved by rj to the so-called j − adjacent flag.
Take a moment to find these three flags and shade in their
pennants.

Now extract the abstract...

6. In order to count ingredients of each rank, we might emply
stabilizers. Observe that

• the stabilizer of the rank 0 element in the base flag is

G0 = StabG(v) = 〈r1, r2〉

• the stabilizer of the rank 1 element in the base flag is

G1 = StabG(e) = 〈r0, r2〉

• the stabilizer of the rank 2 element in the base flag is

G2 = StabG(f) = 〈r0, r1〉

In brief, the stabilizer of the rank j element in the base flag is

Gj = 〈ri : i 6= j, 0 6 i 6 n− 1〉,
where n = 3 for the cube, of course. The same description
works for regular polytopes of any rank.

In any regular polytope P , the symmetry group G = G(P) will
be transitive of ‘faces’ of each particular rank j: there is just
one orbit for each. Thus the number of j-faces in P equals

|G|
|Gj|

.
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7. Now recall how we proved this. We exhibited a 1−1 correspon-
dence between j-faces and right cosets of the stabilizer in G.
If x denotes the j-face in the base flag, then as g runs through
G, we have

xg ↔ Gjg

From an abstract point of view: j-faces are the cosets Gjg.

8. We have the ingredients of P . What about assembly instruc-
tions? In other words, can we use the cosets to say when some
j-face ‘lies on’ or ‘is incident with’ some k-face?

Again we look at the cube to see what must happen. For in-
stance, when does a vertex (face of rank k = 0) lie on a square
(face of rank j = 2)?

Well, a typical vertex is vg and a typical square face is fh,
where g, h ∈ G. Note that g and h might well be different, but
due to transititity, this does cover all cases.

Working in one direction, let us assume that vertex vg lies on
square fh. Since h−1 is a symmetry in G, this means

(vg)h−1

= v(gh−1) lies on the base square f = f 1 = f (hh−1).

Now we appeal in an inductive way to our knowledge of lower-
rank objects, in this case, the square f whose own symmetry
group is isomorphic to G2 = 〈r0, r1〉. There must be some y ∈
G2 such that v(gh−1) = vy. This in turn implies that gh−1y−1

fixes v, so that gh−1y−1 ∈ G0 = 〈r1, r2〉. Thus

G0(gh
−1y−1) = G0

G0g = G0(yh)

At the same time, since y ∈ G2, we have G2y = G2, so that
G2h = G2(yh). This shows that G0g and G2h have a common
representative yh:

yh ∈ G0g ∩G2h .
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The converse implication is easier. If we assume that Gkg∩Gjh
is non-empty, then say z ∈ Gkg ∩Gjh. In other words, z = xg,
where x fixes v and z = yh, where y fixes f .

Back in the base flag v is incident with f , so that if we apply z
we conclude that vertex vz = v(xg) = vg is incident with square
f z = f (yh) = fh.

From an abstract point of view: If k 6 j, the k-face Gkg
is incident with the j-face Gjh if and only if

Gkg ∩Gjh 6= ∅ .

9. We have seen how to ‘reconstruct’ the cube, at least in combina-
torial essentials, purely from the point of view of its symmetry
group G.

Much the same sort of thing is possible for any abstract regular
n-polytope, so that many questions concerning polytopes can
be reconfigured as questions concerning a suitable group G.

What sort of groups are suitable? Schulte proved in the early
1980’s that the regular n-polytopes correspond in a precise way
to string C-groups G. Such a group has these properties:

• it is generated by n specified elements r0, . . . , rn−1 each of
period 2. (The subscripts epmhasize that order is impor-
tant.)

• these elements satisfy certain relations

– (rkrj)
2 = 1, if k < j − 1 (indicating commuting gener-

ators).

– (rj−1rj)
pj = 1, for 1 6 j 6 n − 1 (think ‘rotational

periods’). Here each pj ∈ {2, 3, 4, . . . ,∞}.
Remarks. We may well need other relations of a type
not listed above to effect a presentation. But if no other
relations are needed, then the special sort of group that
results is called a Coxeter group with string diagram. The
diagram is a simple left to right string of nodes. If pj > 2,
then there is branch labelled pj connecting the (j − 1)st
node to the jth node.

The Schläfli symbol for the group (and polytope) is {p1, . . . , pn−1}.
We are not yet done with special properties for G. . .
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The group must also satisfy an

• intersection condition: for any subsets I, J ⊆ {r0, . . . , rn−1},
we have

〈I〉 ∩ 〈J〉 = 〈I ∩ J〉 .
Example. Many of the intersections hold for trivial reaons.
In the case of an abstract regular polyhedron (rank n = 3),
the crucial condition to be checked is

〈r0, r1〉 ∩ 〈r1, r2〉 = 〈r1〉 .

The direction ⊇ holds for sure. So what we really have to
show is ⊆, namely

g ∈ 〈r0, r1〉 ∩ 〈r1, r2〉 ⇒ g ∈ 〈r1〉 .

Remark. It turns out that Coxeter groups do satisfy the in-
tersection condition. This is tricky to prove. In other words,
it is the unstated ‘extra’ relations that can befoul the intersec-
tion condition. Much of one’s time in regular polytope theory
is spent dealing with this fact.
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