
1. GAP, which stands for Groups, Algorithms and Programming is a
remarkable environment for doing discrete algebra (no limits, please!) –
it is of excellent quality, it is very well documented, and it’s free.

2. The GAP startup depends on your system. Typically under Unix/Linux
you type ‘gap’ after the usual prompt:

~ : gap

3. Once in GAP you will get a new prompt:

gap>

GAP is interactive - you type something legal after this prompt and press
‘ENTER’. GAP then takes your instructions, works on them (perhaps a
long time), then responds with an answer, followed by a prompt for the
next instruction.

4. Almost every command you type must be followed by a ‘;’ ,which is used
to signal the end of your request. For example, here is a typical portion
of a GAP session:

gap> 25 - 13;

12

gap> # that was subtraction. This line, beginning with #, is

a comment;

gap> 2^12; # anything following a # is taken as commentary;

4096

gap> # Thus comments don’t produce output;

gap> # In fact, comments don’t need to end with a semi-colon

gap> # see??

gap> # to quit GAP we enter

gap> quit;

5. Sometimes GAP’s response is suppressed, either by you our the system.

In particular, you must tell GAP to quit, as shown above.

6. GAP has a lot of on-line help. Probably the best way is to have at hand
a paper copy of the relevant pages of the manual, which is huge.

Or you may want to open a browser like Netscape. In our system, you
should point to the file

/usr/local/gap4r2/doc/htm/index.htm

1

7. Finally, you may also seek help from within your GAP session, as below:

gap> # I want to find the factors of 123454321

gap> Factor(123454321);

Variable: ’Factor’ must have a value

gap> # Hmmm - something went wrong in my command

gap> # so we seek help

gap> # here is how we ask for help on the topic of Factoring

gap> # we can’t have a comment after the ? since GAP would

gap> # interpret that as part of the topic to be searched

gap> ?factor;

Help: several sections match this topic, type ?2 to see topic

2.

[1] reference:factor groups

[2] reference:factor groups of polycyclic groups - modulo pcgs

[3] reference:factor groups of polycyclic groups in their own

representation

[4] reference:factorcosetoperation

[5] reference:factorization

[6] reference:factorcosetaction for fp groups

[7] reference:factorfreemonoidbyrelations

[8] reference:factorfreesemigroupbyrelations

[9] reference:factorgroup

[10] reference:factorgroupfpgroupbyrels

[11] reference:factorgroupnc

[12] reference:factorgroupnormalsubgroupclasses

[13] reference:factorgrouptom

[14] reference:factorial

[15] reference:factorization (2nd)

[16] reference:factors

[17] reference:factors of univariate polynomial

[18] reference:factorsint

[19] reference:factorssquarefree

gap> # we go after the most likely topic

gap> ?16;

2

Here GAP prints out a lot of information, which I don’t want to edit into
a form acceptable to Latex. Let’s simply note the proper command:

> Factors(<r>)

8. Now back to our session.

gap> # O.K. the correct command is Factors;

gap> # by the way UPPER and lower case must be distinguished

gap> # in communicating with GAP

gap> Factors(123454321);

[41, 41, 271, 271]

gap> # this is actually a list of the prime factors;

gap> # let’s check

gap> IsPrime(41);IsPrime(271); # we can have two commands on a

line

true

true

gap> 41*41*271*271;

123454321

gap> # is it obvious that 123454321 is a perfect square?

gap> quit;

3

9. Here is another learning session:

gap> # since computers are profoundly stupid, they cannot

gap> # make the sort of casual identifications and

gap> # relabellings that humans do.

gap> # Hence computer algebra syntax is necessarily quite fussy

gap> # Gap also has to worry about allocating its computer

gap> # storage in light of all this

gap> #

gap> # ctrl - D should quit Gap normally

gap> # ctrl - C twice should stop it in the middle of an unfortunate computation

gap> # whitespace = blanks, tabs, returns are generally meaningless

gap> # to Gap, so are useful for clear writing

gap> 2^3; 2 ^ 3;

8

8

gap> # in the next line I hit return BEFORE the ;

gap> 2

> ^

> 3

> ;

8

gap> # Gap must distinguish names of things in your

gap> # Gap session, e.g. variables, from things

gap> # elsewhere on your computer. E.g. file names

gap> # which, after all, are outside your session, must

gap> # be enclosed in quotes;

gap> #

gap> # For example, sometimes we want to read Gap input from a pre-prepared

gap> # file on our system. Maybe the data is very long or needs easy editing.

gap> # to do this, type and enter Read("thefilename");

gap> # Or to record your calculations for posterity,

gap> # LogTo("anotherfilename");

gap> #

gap> #

gap> # you can do some editing within your session

gap> # E.g. ctrl-P recovers the last line of input

gap> # ctrl-E moves cursor to the end of line, ctrl - A to beginning

gap> # ctrl-K erases to end of line, etc.

gap> # Try these! See help section on ‘line editing’

gap> # Gap knows various kinds of constants

gap> # Integers:

gap> 134; -18; 2*6; 2^6; (-3)^5;

134

-18

4

12

64

-243

gap> Factorial(7);

5040

gap> # it knows truth values = Boolean constants

gap> 2^3 = 3^2; 3^3 = (32 - 5);

false

true

gap> # so you are not allowed to let ‘false’ or ‘true’

gap> # refer to other things;

gap> #

gap> # let’s assign to the variable prue the value 19!

gap> # this is so big I don’t want Gap to print the

gap> # full response, so I suppress output using ;;

gap> prue := Factorial(19);;

gap> # O.K. let’s see how big that really was;

gap> prue;

121645100408832000

gap> #

gap> # ‘false’ , ‘true’ , ‘quit’, and ‘last’ and other keywords cannot

gap> # be used as variable names

gap> # now try something illegal:

gap> true := Factorial(18);

Syntax error: ; expected

true := Factorial(18);

^

6402373705728000

gap> # Gap did what it could - ignore the assignment,

gap> # but compute the factorial

gap> #

gap> true=true;

true

gap> true = false;

false

gap> # let’s abbreviate. We use := with, no space to assign

gap> # some object to an identifier. For example, we assign the

gap> # reserved constant ‘true’ to the identifier ‘T’; ditto for ‘false’

gap> T := true; F:= false;

true

false

gap> (T or F) and (not T);

false

gap> # Gap knows permutations in cycle form;

gap> # E.g. the permutation taking 3->4->1 and back,

gap> # as well as 2->5 and back is

5

gap> perm:=(3,4,1)(2,5);

(1,3,4)(2,5)

gap> # of course we can multiply permutations

gap> # and find inverses

gap> perm^3;perm^2;perm^6;

(2,5)

(1,4,3)

()

gap> # so the period is 6 - note the identity ()

gap> quip:=(5,1,4,2);

(1,4,2,5)

gap> quip*perm; perm*quip*perm^-1; # a product and a conjugate

(3,4,5)

(2,4,3,5)

gap> # you can compute the action on an element

gap> 1^quip;

4

gap> # Gap understands elements of finite fields, complex roots of unity

gap> w:=E(3); # this is a primitive third root of unity

E(3)

gap> # namely exp(2*Pi/3);

gap> w^3;

1

gap> w^2+w+1;

0

gap> # However, Gap does not support floating point arrithmetic, i.e.

gap> # real numbers as a computer grasps them; nor does

gap> # Gap do graphics

gap> #

gap> # Gap will do all sorts of lists, set theory, matrices,etc.

gap> # Gap also needs a way to understand characters, namely

gap> # individual keyboard symbols whose mathematical content is

gap> # suppressed or non-existent

gap> ’a’; ’b’=’a’;

’a’

false

gap> # single characters only; if we want several we need lists

gap> # a variable name, or identifier, is any string of letters

gap> # or numbers, with at least one letter; keywords like ‘true’ or

gap> # ‘quit’ arenot allowed to be variable names.

gap> # Case is important: x1 and X1 are different

gap> #

gap> # to assign some Gap meaning or object to a variable we enter

gap> # varname := meaning , for example

gap> a:=(1,2,3); # a permutation

6

(1,2,3)

gap> b:=(1,3,2)^2; # the ‘same’ permutation?

(1,2,3)

gap> a=b;

true

gap> IsIdenticalObj(a,b);

false

gap> # Hmmm: Gap recognizes that a and b are the ‘same’ permutation;

gap> # However, a and b are not identical objects, in the sense that

gap> # the two assignments for a and b pointed to different parts of memory.

gap> # You see, Gap couldn’t know ahead of time that a would equal b, so the

gap> # only reasonable response is to put the two objects in

gap> # different parts of memory

gap> c:=b;

(1,2,3)

gap> IsIdenticalObj(c,b); IsIdenticalObj(c,a);

true

false

gap> # Now, however, Gap has been programmed to understand that c and b

gap> # merely point to the same place in memeory - so c and be really are

gap> # identical from the machine’s strong point of view.

gap> #

gap> # this sort of fussiness is necessary, particularly when ‘=’

gap> # refers to some sort of equivalence relation.

gap> # What happens then in varname := meaning

gap> # is that the identifier ‘varname’ is attached to, i.e.

gap> # points to the object ‘meaning’. This object may move about in

gap> # memory, but ‘varname’ will go with it, and will always

gap> # point to it --- unless we reassign a new meaning;

gap> a;b;a=b;

(1,2,3)

(1,2,3)

true

gap> a:=193;

193

gap> a; a=b;

193

false

gap> # Lists are key structures: e.g. matrices are special lists

gap> Pr:=[2,3,5,7]; # a list of the first four primes

[2, 3, 5, 7]

gap> # To extend our list we ‘append’ another list

gap> Append(Pr,[11,13]);

gap> Pr; Length(Pr);

[2, 3, 5, 7, 11, 13]

7

6

gap> # note how Pr was automatically extended

gap> # say we know that the 8th prime is 19

gap> Pr[8]:=19;

19

gap> Pr;

[2, 3, 5, 7, 11, 13,, 19]

gap> # notice that Gap left space for the missing 7th element

gap> # such a list with holes is NOT DENSE

gap> Pr[7]:=17;

17

gap> Pr;# this is now a dense list

[2, 3, 5, 7, 11, 13, 17, 19]

gap> # there are many useful manipulations;

gap> Reversed(Pr);

[19, 17, 13, 11, 7, 5, 3, 2]

gap> Sum(Pr);Product(Pr);

77

9699690

gap> # a set is a dense list without repetitions;

gap> # this corresponds to how we normally think of sets;

gap> t:=[-3,5,4,5,3,-3,2,5];

[-3, 5, 4, 5, 3, -3, 2, 5]

gap> T:=Set(t);

[-3, 2, 3, 4, 5]

gap> # the elements are ordered in some fashion in a set

gap> # sets and lists can be empty

gap> e:=[]; # the empty list

[]

gap> Em:=Set(e); # the empty set - essentially the same thing

[]

gap> # The letter ‘E’ is reserved for use in finite fields

gap> #

gap> S:=Set([2,7,9]);

[2, 7, 9]

gap> Union(T,S);Intersection(T,S);Union(S,Em);

[-3, 2, 3, 4, 5, 7, 9]

[2]

[2, 7, 9]

gap> W:=Set([(1,2,3),-17/4,[],S]);

[-17/4, (1,2,3), [], [2, 7, 9]]

gap> # sets and lists can contain all sorts of objects

gap> W;

[-17/4, (1,2,3), [], [2, 7, 9]]

gap> W[3];

[]

8

gap> W[4][3];

9

gap> # a range is an arithmetic progession

gap> R1:=[25,22..-5];

[25, 22 .. -5]

gap> Elements(R1);

[-5, -2, 1, 4, 7, 10, 13, 16, 19, 22, 25]

gap> J:=[1..20];Elements(J);

[1 .. 20]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

gap> # we can create lists in many ways

gap> List(J,IsPrime);

[false, true, true, false, true, false, true, false, false, false, true,

false, true, false, false, false, true, false, true, false]

gap> # suppose we want to extract only the primes from [1..20]

gap> Filtered(J,IsPrime);

[2, 3, 5, 7, 11, 13, 17, 19]

gap> # a matrix is a list of lists of entires from some field or ring

gap> # here is a 2 by 2 matrix of rational numbers

gap> A:=[[3/5,-4/5],[4/5,3/5]];

[[3/5, -4/5], [4/5, 3/5]]

gap> Display(A);

[[3/5, -4/5],

[4/5, 3/5]]

gap> DefaultFieldOfMatrix(A);

Rationals

gap> Determinant(A);

1

gap> A^4; # its 4th power

[[-527/625, 336/625], [-336/625, -527/625]]

gap> Display(last);

[[-527/625, 336/625],

[-336/625, -527/625]]

gap> Display(A-A);

[[0, 0],

[0, 0]]

gap> A^0;A^-1;

[[1, 0], [0, 1]]

[[3/5, 4/5], [-4/5, 3/5]]

gap> Display(last);

[[3/5, 4/5],

[-4/5, 3/5]]

gap> Trace(A);

6/5

gap> w:=E(5); # a primitive 5th root of unity

E(5)

9

gap> # lets put the 5th roots on the diagonal

gap> B:=DiagonalMat([1,w,w^2,w^3,w^4]);

[[1, 0, 0, 0, 0], [0, E(5), 0, 0, 0], [0, 0, E(5)^2, 0, 0],

[0, 0, 0, E(5)^3, 0], [0, 0, 0, 0, E(5)^4]]

gap> Display(B);DefaultFieldOfMatrix(B);

[[1, 0, 0, 0, 0],

[0, E(5), 0, 0, 0],

[0, 0, E(5)^2, 0, 0],

[0, 0, 0, E(5)^3, 0],

[0, 0, 0, 0, E(5)^4]]

CF(5)

gap> B^2;

[[1, 0, 0, 0, 0], [0, E(5)^2, 0, 0, 0], [0, 0, E(5)^4, 0, 0],

[0, 0, 0, E(5), 0], [0, 0, 0, 0, E(5)^3]]

gap> Display(B^5);

[[1, 0, 0, 0, 0],

[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 0, 0, 1, 0],

[0, 0, 0, 0, 1]]

gap> Trace(B);

0

gap> # the 5th roots do sum to 0

gap> C:=PermutationMat((1,2,3,4,5),5);

[[0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1],

[1, 0, 0, 0, 0]]

gap> Display(C);

[[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 0, 0, 1, 0],

[0, 0, 0, 0, 1],

[1, 0, 0, 0, 0]]

gap> # these two 5 by 5 matrices will generate a group

gap> Grp:=Group(B,C);;

gap> Order(Grp);

125

gap> IsAbelian(Grp);

false

gap> IsSimple(Grp);

false

gap> # finally, let’s look at some

gap> # storage issues;

gap> Pr;

[2, 3, 5, 7, 11, 13, 17, 19]

gap> Q:=Pr; # a copy of Pr;

[2, 3, 5, 7, 11, 13, 17, 19]

10

gap> # let’s change the 3rd entry of Q

gap> Q[3]:=5000;

5000

gap> Q;Pr;

[2, 3, 5000, 7, 11, 13, 17, 19]

[2, 3, 5000, 7, 11, 13, 17, 19]

gap> # what happened is that Q:=Pr means that

gap> # Q merely points to the same Gap object as Pr, so

gap> # changing Q also changes Pr; let’s restore Pr

gap> Pr[3]:=5;

5

gap> Pr;

[2, 3, 5, 7, 11, 13, 17, 19]

gap> Q:=ShallowCopy(Pr);;

gap> Q;Pr;

[2, 3, 5, 7, 11, 13, 17, 19]

[2, 3, 5, 7, 11, 13, 17, 19]

gap> Q[3]:=5000;

5000

gap> Q;Pr;

[2, 3, 5000, 7, 11, 13, 17, 19]

[2, 3, 5, 7, 11, 13, 17, 19]

gap> # so now Q points to a new portion of memory.

gap> # this is an issue whenever variable point to objects which

gap> # can be changed

gap> x:=5;

5

gap> y:=x;

5

gap> x;y;

5

5

gap> x:=4;

4

gap> x;y;

4

5

gap> # now for some programming

gap> J:=[1..8]; # a typical index set

[1 .. 8]

gap> for j in J do Print(j^2); od; # note the ; after the Print command

1491625364964gap>

gap> # well Gap is flexible, so we need formatting commands

gap> # the invisible character "\n" issues a new line command

gap> for j in J do Print(j, j^2, "\n"); od;

11

11

24

39

416

525

636

749

864

gap> # try again

gap> for j in J do Print(j," ",j^2,"\n"); od; # note how the blank space " " appears

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

gap> perms:=[(1,3,2,6,8)(4,5,9), (1,6)(2,7,8), (1,5,7)(2,3,8,6),

> (1,8,9)(2,3,5,6,4), (1,9,8,6,3,4,7,2)];;

gap> Length(perms); # let’s multiply these permutations

5

gap> prod:=(); # an empty product equals the identity

()

gap> for p in perms do

> prod:=prod*p;

> od;

gap> prod; # the product of the permutations

(1,8,4,2,3,6,5,9)

gap> # here is the Sieve of Erathosthenes.

gap> # we’ll find all primes less than 1500

gap> # notice that n mod p is the Gap command for the remainder

gap> # upon dividing n by p

gap> 15 mod 5; 15 mod 11; 15 mod 4; 15 mod 21;

0

4

3

15

gap> primes:=[]; # we must have an empty box in which we can put things!

[]

gap> numbers:=[2..1500];# this is the range of all integers from 2 to 1500

[2 .. 1500]

gap> #

gap> for p in numbers do

> Add(primes,p);

> for n in numbers do

12

> if n mod p = 0 then

> Unbind(numbers[n-1]);

> fi;

> od;

> od;

gap> #

gap> Length(primes);

239

gap> # we found 239 primes; to see the last 10

gap> for j in [1..10] do Print(primes[229+j],"\n"); od;

1451

1453

1459

1471

1481

1483

1487

1489

1493

1499

gap> # Note: the function Unbind(numbers[n-1]) deletes

gap> # the element at position n-1 of the list ‘numbers’

gap> # and leaves a hole there

gap> J;

[1 .. 8]

gap> Elements(J);

[1, 2, 3, 4, 5, 6, 7, 8]

gap> Unbind(J[5]);

gap> J;

[1, 2, 3, 4,, 6, 7, 8]

gap> #

gap> #

gap> # we can write our own functions

gap> # for example, we may simply want to abbreviate a wordy Gap command

gap> # say we want to abbreviate the

gap> # SmithNormalFormIntegerMat function

gap> # which produces elemntary divisors on the diagonal of a new matrix

gap> sm:=function(A)

> return SmithNormalFormIntegerMat(A);

> end;

function(A) ... end

gap> B:=[[12,24,14],[-62,106,-8]];

[[12, 24, 14], [-62, 106, -8]]

gap> Display(B);

[[12, 24, 14],

[-62, 106, -8]]

13

gap> sm(B);

[[2, 0, 0], [0, 2, 0]]

gap> Display(sm(B));

[[2, 0, 0],

[0, 2, 0]]

gap> # or suppose we want a (useless!)function that replaces each rational

gap> # number by 1 if non-negative, 10 if negative;

gap> jump:=function(x)

> if x < 0 then

> return 10;

> else

> return 1;

> fi;

> end;

function(x) ... end

gap> jump(19); jump(0); jump(-12/7);

1

1

10

gap> C:=ShallowCopy(B);;

gap> Display(C);

[[12, 24, 14],

[-62, 106, -8]]

gap> for j in [1..3] do

> for i in [1..2] do

> C[i][j]:=jump(C[i][j]);

> od;

> od;

gap> Display(C);

[[1, 1, 1],

[10, 1, 10]]

14

