
22 Frieze Patterns

A frieze pattern is any pattern which repeats at regular intervals along the whole length
of some line: see Figure 76. Such patterns are commonly found on the lintels of ancient
temples, and of course on more modern structures.

Each frieze pattern thus has a translation symmetry t; indeed it is symmetric under
any power tn of this translation (n = 0,±1,±2, . . .). From another point of view, we may
reconstitute the whole pattern by applying these translations to some basic decorative unit,
called a motif.
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Figure 76: A typical frieze pattern.

22.1 Possible Symmetries

The symmetry group G of any frieze pattern always includes all powers of a basic translation
t, which is one of two opposite and shortest non-trivial translations. (The other is t−1.)
Thus G has infinite order.

There may or may not be other sorts of symmetries. Here are the various possibilities:

(a) Rotations. In order that the pattern line be preserved, we can have only the identity
or half-turn rotations. If there are indeed half-turns in G, then their centres must lie
in a line a, which we call the natural axis for the pattern.

(b) Reflections. There could likewise be just the one reflection in some natural axis a
parallel to the vector of t; or there might be reflections in mirrors perpendicular to
the direction of translation; or there can be reflections of both these types.

(c) Glides. If there is a glide, it too must have the natural axis a.

22.2 A Flowchart for Frieze Patterns

There are only seven mathematically distinct types of frieze pattern. Any particular example
can be classified by following the appropriate path as far as possible through the diagram
below.
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Figure 77: Flowchart for frieze patterns.
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22.3 Notes

The F notation used here is my own, crude invention. In each, case you will also find J. H.
Conway’s very elegant orbifold notation for the frieze group (see [2]). Essentially, when we
say that two frieze patterns are of the same type, we mean that their groups are ‘identical’.

The first two types have only direct symmetries, i.e. translations and (perhaps)
rotations.

F1 (or ∞∞) : symmetric by no rotation except 1; no natural axis.

F2 (or 22∞) : symmetric by half-turns whose centres are equally spaced along the
natural axis. Note that t = h1h2.

The remaining five types admit as well opposite symmetries, i.e. reflections or glides or
both.

Falong
1 (or ∞∗): the only reflection is in the natural axis a.

Fperp
1 (or ∗∞∞): the only reflections are in equally spaced mirrors perpendicular to

the translation vector; no natural axis. Note that t = r1r2.

*** An interesting three-dimensional version of this pattern and group can be found on
page 39 of the New Yorker, Feb. 23, 1957. Look at the copy in Figure 78 below.

Fglide
1 (or ∞×): glide but not reflection symmetries. There is a shortest glide g such

that g2 = t, where t is the shortest translation. This is the pattern formed by a set of
footprints. There is a natural glide axis.

Fboth
2 (or ∗22∞): reflection in the natural axis as well as reflections in lines perpen-

dicular to the axis at the half-turn centres.

Fperp
2 (or 2∗∞): reflections only in lines perpendicular to the natural axis but midway

between the half-turn centres. To make this pattern in the snow, walk in a straight line,
turn around, then retrace your path, now taking care to place your feet exactly midway
between the previous set of prints.
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Here is the cartoon from the New Yorker mentioned above:

Figure 78: A bizarre frieze recreated in space.
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22.4 Some Problems on Frieze Patterns

1. Identify from our class list the type of frieze:

(b)

(a)

Also, show that patterns (a), (b) are mathematically distinct by exhibiting a type of
symmetry possessed by one but not the other.

2. Sketch the frieze pattern created by repeating each of the following motifs at regular
intervals along a horizontal straight line. Classify each pattern.

(a) 3 (b) Σ (c) H
(d) L (e) M (f) N

3. The following patterns are of two types. Determine these and describe a symmetry
for one of these patterns which is not a symmetry for another of the patterns.

(a)

(b)

(c)

(d)

4. Look again at the barbershop in Figure 78. We have essentially a three dimensional
version of the frieze pattern F

perp
1 . The customer is facing one mirror, say for the

reflection r1. Presumably there is on the opposite wall, but not in the picture, another
mirror for reflection r2. What product of reflections takes the customer to the demon?
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23 An Excursion into Coordinates and Trigonometry

By representing points using numbers we can convert geometric problems into algebraic
problems (which are only sometimes easier in this new form). Also, similar techniques
allow us to do problems in three or four or more dimensions, without having to visualize
the objects concerned.

23.1 Coordinates

We first select perpendicular lines called the x-axis and the y-axis which cross at a point O
called the origin. Next establish equal units on each axis. Now any point P has coordinates
[x, y], where in the rectangle OEPF , we take x to be negative if P lies to the left of the
y-axis and take y to be negative if P lies below the x-axis.

y

x

P

E

F

O

[-1,-2]

P = [x,y]
E = [x,0]
F = [0,y]
O = [0,0]

Remarks:

(a) The signed numbers x and y represent real measurements; thus they are called real
numbers. In order to determine these coordinates, we have to choose a scale of measurement
on each axis. This is done by taking any convenient point on each axis as lying 1 unit from
the origin. We need not (but often do) employ the same scale on each axis.

(b) We need not chose perpendicular x− and y−axes. If these axes are not perpen-
dicular, then we similarly obtain oblique coordinates [x, y] (see Section 21.4). The rectangle
OEPF is then replaced by a parallelogram with sides parallel to the axes.
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23.2 Trigonometric Functions

Draw a unit circle centred at the origin O. Next let P = [x, y] be any point on this circle
and let α be the angle from OA (the positive x-axis) to OP . Recall that α is taken to be
positive if measured in the anti-clockwise sense, negative in the clockwise sense.

x

y
α

1

P = [x,y]

A = [1,0]

[0,1]

O
x

y

Figure 79: The unit circle.

Here are some definitions for the standard trigonometric functions: For any real number α

(i) cos α = x and sinα = y .

(ii) tanα = y/x and secα = 1/x , if x 6= 0. Thus, α cannot be an odd multiple of 90◦.

Note that tanα = (sinα)/(cos α) and sec α = 1/(cos α).

(iii) cotα = x/y and csc α = 1/y , if y 6= 0. Here α cannot be any integer multiple of 180◦.

Note that cotα = (cos α)/(sin α) and cscα = 1/(sin α).

We can make a few immediate conclusions:

(a) cos 0◦ = 1 = sin 90◦.

(b) sin 0◦ = 0 = cos 90◦.

(c) By Pythagoras (Theorem 8.2), the unit circle has equation

x2 + y2 = 1 .

Hence, for all real α
cos2 α + sin2 α = 1 .
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23.3 Linear Equations

Draw through the origin the line l making an angle α with the positive x-axis. The constant

m = sinα/ cos α = tanα

is called the slope of the line l. For any point Q = [x, y] on the line, 4OMQ ∼ 4OLP (see
Figure 80 below).

l
Q

P

M

O L

x

y

cos

sin

α

α

Figure 80: The geometry underlying a simple linear equation.

Thus MQ/OM = LP/OL, so that y/x = tanα = m . Hence the line l is described by the
linear equation

y = mx .

When α = 90◦, tanα is undefined; nevertheless, l is still described by the linear
equation x = 0.

23.4 Rotations

(a) Let rα be the rotation through α about the origin O. Thus rα is a transformation

rα : P → P ′

mapping P = [x, y] to P ′ = [x′, y′], say. This rotation is completely specified by
requiring that OP = OP ′ and ∠POP ′ = α.
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(b) To understand the action of rα, let Q′ = [x′, 0] be the point on both the x-axis and
the vertical line through P ′. Now rotate 4Q′OP ′ through −α (i.e. ‘backwards’) to
get the congruent 4QOP . Since rα maps 4QOP to 4Q′OP ′, we see that

x′ = OQ′ = OQ and ∠QOQ′ = α = ∠POP ′ .

x

y

/

T
O

P

P

S
Q

V

Q/

/

U
α

α

Figure 81: Rotations via coordinates.

Let line PQ meet the x-axis at T and draw SU perpendicular to PQ, where S is the
point of intersection of the x-axis and the vertical line through P . Finally, draw SV
perpendicular to line OQ. Note that ∠UPS = α, and US = QV . Thus,

x′ = OQ

= OV − QV

= OV − US

= (OV/OS)OS − (US/PS)PS

= (cos α)x − (sinα)y .
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We can similarly compute y′. Thus the effect of rα on P = [x, y] is described by the
following equations:

The rotation rα in coordinate form

x′ = x(cos α) − y(sin α) ,

y′ = x(sin α) + y(cos α) .

Remark: Our proof is not completely general, since when α lies in other than the
first quadrant, certain segment lengths must be subtracted rather than added (or vice
versa). Mind you, these cases only require a slight modification of the diagram, and
the equations above remain valid in all cases.

(c) Example. Let us describe a 60◦ rotation r about the origin. First note that an equilat-

eral triangle with side length 2 has altitude
√

3. Thus cos 60◦ =
1
2

and sin 60◦ =
√

3
2

.
Hence,

x′ =
1
2
x −

√
3

2
y and y′ =

√
3

2
x +

1
2
y .

As an application, find the vertices of the regular hexagon centred at the origin, one
of whose vertices is [1, 1] (see Section 25).

23.5 Trigonometric Identities

One very useful application of the rotation equations derived above is an easy way to produce
the addition formulas for the sine and cosine functions.

We simply note that rαrβ = rα+β (by Theorem 20.1) then apply these equal trans-
formations to the point [1, 0]. Thus,

rα : [1, 0] → [cos α, sin α]

so that
rαrβ : [1, 0] → [cos α cos β − sinα sinβ, cos α sinβ + sin α cos β] .

On the other hand,
rα+β : [1, 0] → [cos(α + β) , sin(α + β)] .

Comparing x and y coordinates, we obtain

The Addition of Angles Formulae.

cos(α + β) = cos α cos β − sinα sinβ ,

sin(α + β) = cos α sin β + sinα cos β .

Most useful trigonometric identities can be derived from these two. For example, we get at
once

The Double Angle Formulae.

cos(2α) = cos2 α − sin2 α = 2 cos2 α − 1 = 1 − 2 sin2 α ,

sin 2α = 2 sinα cos α .
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23.6 Reflections

(a) Reflection p in the x-axis.
Note that p : P → P ′, where P and P ′ have the same x-coordinate, but opposite
y-coordinates. Thus,

p : [x, y] → [x,−y] .

(b) Reflection q in the line l given by y = mx.
Recall that the slope m = tanα, where α is the angle at which the line l is inclined
to the x-axis. Now 1 = cos2 α + sin2 α, so that

1/(cos2 α) = 1 + tan2 α = 1 + m2 .

Thus cos2 α = 1/(1 + m2) , so that

cos 2α =
2

1 + m2
− 1 =

1 − m2

1 + m2
,

and
sin 2α =

2m

1 + m2
.

(See the double angle identities in the previous section.) But r2α = pq is a rotation
through 2α about the origin, so

q = p−1r2α = pr2α

Thus

q : [x, y]
p→ [x,−y] r2α→ [x(cos 2α) + y(sin 2α), x(sin 2α) − y(cos 2α)] .

Conclusion. The reflection in the line through the origin with slope m maps [x, y] to
[x′, y′], as described in the following equations:

Reflection in the line y = mx.

x′ = {x(1 − m2) + y(2m)}/(1 + m2) ,

y′ = {x(2m) − y(1 − m2)}/(1 + m2) .

(c) For example, reflection in the line x + y = 0 (or y = (−1)x) maps [x, y] to [−y,−x].
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23.7 Translations

A translation t is specified by describing its effect on any convenient point, say the origin.

o

*

y

y

b

ax x

P

P D

C

O

/

/

Figure 82: Translations in coordinate form.

First of all, suppose

t : O = [0, 0] → C = [a, b] and t : P = [x, y] → P ′ = [x′, y′]

as shown in Figure 82. Since OCP ′P is a parallelogram, we have ◦ = ∗ and OC = PP ′.
Thus by (a.s.a.),

4OAC ≡ 4PDP ′ .

Hence,
x′ − x = PD = OA = a ,

so x′ = x + a , and similarly y′ = y + b .

Conclusion: If a translation t maps the origin O = [0, 0] to [a, b], then t maps [x, y] to [x′, y′]
as described in the following equations:

The translation t in coordinate form

t : [x, y] → [x + a, y + b]
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23.8 Matrix Operations

(a) A matrix P is any rectangular array of numbers. If there are m rows and n columns
in this array, we say that P has size or dimensions m × n. The number in row i and
column j is called the ijth entry.

Two matrices are quite naturally said to be equal when:

(i) they have the same size, and

(ii) entries in all corresponding positions are equal.

We shall also see that the sensible way to add two matrices is to add corresponding
entries. Here is a formal

Definition 14 The sum of two m× n matrices P and C is the m× n matrix P + C
whose ijth entry is the sum of the ijth entries in P and in C.

Matrix addition obeys various familiar algebraic laws. For example, if P , C and D
are matrices of the same size, then

(P + C) + D = P + (C + D) ,

(addition of matrices is associative).

(b) We are already familiar with certain matrices. Each point in the plane is represented
by a 1 × 2 matrix

P = [x, y]

In this case, and elsewhere in these notes, the entries x and y are real numbers.
Referring back to Section 21.4, we see that it also makes sense to call P a row vector.

(c) Translations and Matrix Addition.

(i) Any translation t or u is determined by its effect on the origin O. Suppose t has
vector ~OC, where C = [a, b]. We observed in section 23.7 above that

t : [x, y] → [x + a, y + b]

If we translate this into matrix notation, we conclude that the translation t is
described by

P ′ = P + C

Since the translation vector ~OC is a position vector (i.e. has the origin as initial
point), it is convenient to identify ~OC with the matrix [a, b].

(ii) Example. If t : O → O = C, then t = 1 is the identity. In this case,

P ′ = P = P + O ,

for all points P = [x, y] . In other words, the zero matrix O = [0, 0] serves two
purposes. It represents the origin as a point, and it acts as an identity for matrix
addition:

[x, y] = [x, y] + [0, 0] .
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(iii) Suppose that another translation u : O → D = [â, b̂], so that

u : Q → Q + D, for all points Q.

Thus,
P

t→ (P + C) u→ (P + C) + D = P + (C + D) .

In terms of coordinates, we have:

[x, y] t→ [x + a, y + b] u→ [(x + a) + â, (y + b) + b̂]

= [x + (a + â), y + (b + b̂)] .
Thus, we have verified from another point of view that if t is a translation with
vector described by the matrix C, and u is a translation with vector D, then tu
is a translation (with vector C + D).
Compare this with Figure 82 in Section 23.7 above. We conclude that the fourth
vertex of a parallelogram with vertices C, O and D is C + D.

(iv) In the previous example, we could in particular let u = t−1, so that

1 = tt−1 = tu .

Here then the zero vector O = C + D , so that

[0, 0] = [a, b] + [â, b̂] = [a + â, b + b̂] .

Hence, D = [â, b̂] = [−a,−b] , which we sensibly call −C.
Conclusion: If t has vector C = [a, b] , then t−1 has vector −C = [−a,−b].

(d) Matrix Multiplication. The product of two matrices P and R is defined in a most
unexpected way. Although matrix multiplication may at first seem peculiar, it has
many applications and is tailor-made to represent rotations.

(i) Definition 15 14 Suppose P is a k×m matrix and R is an m×n matrix. Then
the product PR is a k × n matrix. To calculate the entry in row i and column j
of PR:

- simultaneously scan across row i of P and down column j of R.
- multiply corresponding entries, and
- add these m products to get the ijth entry in PR.

14It is important to note that the matrix product PR is defined only when the dimensions match as shown:

#columns of P = m = #rows of R .
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(ii) Example.

P =
[

1 7 −1
2 8 0

]
R =


 4

5
6




(2 × 3) times (3 × 1)

Thus the inner dimensions match and we have

PR =
[

33
48

]
33 = 1 · 4 + 7 · 5 + (−1) · 6
48 = 2 · 4 + 8 · 5 + 0 · 6

with size (2 × 1). Note, however, that that the product RP is not even defined.

(e) The rotation rα through α about the origin.
Let P = [x, y] be the 1 × 2 matrix describing an arbitrary point in the plane. Taking
a hint from Section 23.4, we construct the following 2 × 2 rotation matrix for rα :

R =
[

cos α sinα
− sinα cos α

]

Then

PR =
[

x, y
] [

cos α sinα
− sinα cos α

]

= [x(cos α) − y(sin α), x(sin α) + y(cos α)] .

If you look back at the equations describing rα in section 23.4, you will see that
PR = P ′.

Conclusion: The rotation rα is given in matrix form by the matrix product

P ′ = PR ,

where P is any point and R is the rotation matrix described above.

(f) Example. Let α = 0◦. The corresponding rotation r0 = 1 (the identity). Thus, we
naturally call the corresponding rotation matrix

[
cos 0◦ sin 0◦

− sin 0◦ cos 0◦

]
=

[
1 0
0 1

]

the identity matrix I. Indeed, for all P = [x, y]

PI = P.

(g) Matrix Algebra . The algebra of matrices is not totally like the ordinary algebra
of real numbers. For example, there is sometimes no sensible way of saying that a
non-zero matrix has a ‘reciprocal’. Furthermore, matrix multiplication is not always
commutative. Nevertheless, to a limited extent, matrices do interact algebraically as
one would expect.
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To illustrate this, let us describe the rotation s through α about a centre C = [a, b].
We already know that the rotation rα through α about the origin O is represented in
matrix form by

P → P ′ = PR ,

where R is the rotation matrix described above. Next let t be the translation with
vector ~OC.

α

α

O

C

s

rα

t

Figure 83: A rotation s conjugate to rα.

Now t−1rαt is a rotation with angle (−0◦) + α + (0◦) = α, and which maps

C → O → O → C .

Hence, s = t−1rαt.

Thus we can easily desribe s by matrices:

P
t−1→ (P − C) rα→ (P − C)R t→ (P − C)R + C .

Conclusion: The rotation s with centre C and angle α is represented in matrix form
by

s : P → P ′ = (P − C)R + C

= PR + (C − CR)

For example, let’s describe the 30◦ rotation with centre C = [4, 1]. This is given by

[x′, y′] = [x − 4, y − 1]




√
3

2
1
2

−1
2

√
3

2


 + [4, 1] .

Thus,

x′ =
√

3
2

x − y

2
+

9
2
− 2

√
3

y′ =
x

2
+

√
3

2
y − 1 −

√
3

2
.
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23.9 Distance and Angle Measurement

Much of our day-to-day work in geometry concerns the measurement of distances and angles.
We have a good understanding of how these things behave under motions. But how do we
make measurements with coordinates?

(a) Distance. It is not at all difficult to measure the distance d = d(P, Q) between two
points P = [x1, y1] and Q = [x2, y2] , as in Figure 84.

x

2y

2 x1

1yy = y  - y
2 1

x = x - x
2 1

∆

∆

Q
Q

P

d
W

α

/

O

Figure 84: Distance and angles from coordinates.

Observe that the vertical line through Q meets the horizontal line through P in the
point W = [x2, y1] , thus forming a right triangle 4PWQ. Note that the hypotenuse
has length d, whereas the remaining sides have signed lengths ∆x = x2 − x1 and
∆y = y2−y1. It would be awkward to keep track of these signs, but this is unnecessary
anyway, since in Pythagoras’ theorem (8.2) all distances are squared:

d2 = (∆x)2 + (∆y)2 = (x2 − x1)2 + (y2 − y1)2 .

You can now compute d after finding the square root.
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(b) Angles. This is a little trickier, though again we can extract the main ideas from
Figure 84. We shall calculate α = ∠POQ.

Let rα be the rotation with centre O and angle α described in Section 23.4. Thus

rα : P → Q′ ,

where
Q′ = [x1 cos α − y1 sinα , x1 sinα + y1 cos α]

lies on line OQ. (Most likely, though, Q 6= Q′.) Nevertheless, both Q and Q′ produce
with O the same slope for this line, so that

y2

x2
=

x1 sin α + y1 cos α

x1 cos α − y1 sinα
.

Cross multiplying and collecting the coefficients of cos α and sinα we get

(x1y2 − x2y1) cos α = (x1x2 + y1y2) sinα

so that
A cos α = B sinα ,

where
A = x1y2 − x2y1 and B = x1x2 + y1y2 .

Since sin2 α = 1 − cos2 α, squaring both sides of the equation yields

A2 cos2 α = B2(1 − cos2 α) .

Thus,

cos2 α =
B2

A2 + B2
,

where

A2 + B2 = (x1y2 − x2y1)2 + (x1x2 + y1y2)2

= x2
1y

2
2 + x2

2y
2
1 + x2

1x
2
2 + y2

1y
2
2

= (x2
1 + y2

1)(x
2
2 + y2

2) .

Taking the square root, we finally obtain 15

cos α =
x1x2 + y1y2√

(x2
1 + y2

1)(x
2
2 + y2

2)
.

This important equation contains in three places an algebraic quantity that deserves
a special name.

15Careful! There must be some doubt as to whether we take the positive or negative root. To see which,
take the simplest case, in which P = Q, so that α = 0◦. But then x1 = x2 and y1 = y2, so that

1 = cos 0◦ =
±(x2

1 + y2
1)

x2
1 + y2

1

=
±1

1
.

We are forced to chose the positive root.
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Definition 16 The dot product of P = [x1, y1] and Q = [x2, y2] is the real number

P · Q = x1x2 + y1y2 .

Remark. The transpose of the 1 × 2 matrix Q is the 2 × 1 matrix QT obtained by
writing its row as a column. Then we can think of the dot product of P and Q as the
1 × 1 matrix

P · Q = PQT =
[

x1 y1

] [
x2

y2

]
= [x1x2 + y1y2] .

Note furthermore that P · P = x2
1 + y2

1. It follows then that the angle α is given by

cos α =
P · Q√

(P · P )(Q · Q)
.

(c) The Law of Cosines. The triangle above was special in that one vertex was the origin
O. Suppose, however, that we are presented with a general triangle 4ABC, with
angles α , β and γ, and opposite sides a , b and c (see Figure 85).

O

A
B

C

Q

P
α

α

a

c

b

Figure 85: Some trigonometric calculations.

How do we calculate say α in this case? Well, imagine that we apply the translation
t with vector ~AO. Then α is unchanged but

A → A − A = O ,

B → B − A = Q (say) , and
C → C − A = P (say) .

Notice that b2 = P · P , c2 = Q · Q and

a2 = (P − Q) · (P − Q)
= P · P + Q · Q − 2P · Q
= b2 + c2 − 2P · Q .
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On the other hand, we have from above that

cos α =
P · Q√

(P · P )(Q · Q)
=

b2 + c2 − a2

2bc
.

This last result is often called the law of cosines.

(d) Example Let us suppose, for example, that A = [−1, 2] , B = [3, 0] and C = [2, 4].
The distance formula immediately gives a =

√
17 , b =

√
13 and c =

√
20.

Then the law of cosines gives

cos α =
13 + 20 − 17
2
√

13
√

20
=

4√
65

' 0.4961 .

Your calculator will give α ' 60.255◦. One can similarly calculate β and γ. Or we
may use the law of sines from problem 5 on page 62.

Thus, sinβ = (b sin α)/a ' 0.7592, so that β ' 49.399◦. Likewise, we get γ ' 70.346◦.
As a check, notice that

α + β + γ ' 180.000◦ ,

despite all errors in calculation.
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23.10 A Few Problems on Coordinates and Matrices

1. Represent each of the following isometries in matrix form, namely

[x, y] → some sum or product of matrices.

(a) The translation t taking [1, 3] to [−1, 5].

(b) t−1, for t in (a).

(c) The translation taking [1, 4] to [1, 4].

(d) The reflection r in the line of slope 4 through the origin O.

(e) The rotation s through 60◦ about O. (Use exact values for the trig. functions.)

(f) s−1, for s in (e).

(g) The identity 1 (considered as a rotation through 0◦).

2. (a) Give the 2 × 2 matrices A, B representing the rotations through 65◦ and −23◦

(respectively) about O.

(b) Compute AB to 3 place accuracy.

(c) Compare AB with C, the matrix for the rotation through 42◦ about O. Explain.

3. (a) Represent in matrix form the translation
t : [0, 1] → [3, 3]. To which point Q does t send O?

(b) Find the slope m of the line OQ.

(c) Represent in matrix form the reflection r in line OQ.

(d) Represent in matrix form the glide g = tr.

4. (a) Give the matrices which represent rotations about O through

(i) 15◦: matrix A

(ii) 35◦: matrix B

(iii) 50◦: matrix C

(b) Check that AB = C (up 3 decimal place accuracy).

(c) Accurately plot the points [1, 0] , [1, 0] B , [2, 1] and [2, 1] B. Check by protractor
that both [1, 0] and [2, 1] have been rotated by 35◦.
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