
20 The Addition Of Angles Theorem For Rotations

20.1 Products of Rotations

Suppose p and q are rotations (each is then direct). Thus s = pq is also direct and is a
rotation or translation. But in Section 18.5 we observed that a translation can just as well
be considered as a rotation (through 0◦, with infinitely distant centre).

Theorem 20.1 (Addition of angles). If rotations p, q have angles α, β respectively, then
s = pq is a rotation with angle γ = α + β. In particular, if α + β is any integral multiple of
360◦, then s is a translation.

Remark. The proof below contains a procedure for determining the centre of the new
rotation s, or the vector in case s happens to be a translation.

Proof . Suppose that p and q have centres A and B, respectively.

Case 1–Equal Centres. Note that s = pq fixes A, since p and q each do so. It is now clear
from the definition of rotation that s must itself be a rotation with centre A and angle α+β.

A
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o

o

Figure 64: Rotations with the same centre.

In the above figure, for example, α = 20◦, β = 40◦, and so s has the same centre and angle
γ = α + β = 60◦.

Case 2–Different Centres. On the other hand, when p and q have different centres, so that
A 6= B, then it is not at all obvious where the new centre C for pq is located.

To understand what is going on, we first let m2 be the line through A and B (see
Figures 65 and 66 ). Next draw the line m1 through A such that the angle from m1 to m2

equals α
2 . Finally draw the line m3 through B such that the angle from m2 to m3 equals β

2 .
As usual, we let rj be the reflection in line mj .

It is important to draw these various angles in the correct sense. For example, in
Figure 66 we have α = +90◦, so that α

2 = +45◦ (anti-clockwise). Also, β = +60◦, so that



β
2 = +30◦ (again anti-clockwise). On the other hand, in Figure 65, we have α = +90◦

(anti-clockwise) whereas β = −90◦ (clockwise).

Now let’s proceed with the proof. It follows from Theorem 18.1 that

p = r1r2 and q = r2r3 ,

so that
s = pq = r1r

2
2r3 = r1r3 .

Note that lines m1 and m3 may or may not intersect in some point C, so that we must
consider two subcases.

Subcase 2.1: Lines m1 and m3 are parallel (see Figure 65).

m
m

mA

B

M

2

13
α/2

β/2

Figure 65: A product of rotations which is a translation.

Here we conclude at once from Theorem 18.3 that s = r1r3 is a translation with vector
2 ~AM , where M is the foot of the perpendicular from A to m3. Note that the length of
segment AM is given by

AM = AB · | sin(
β

2
)| .

We must also determine which angles α and β will produce this situation. By The-
orem 5.2, the alternate angles at A and B must be equal. Here we tacitly assume that all
angles are measured in the positive (anti-clockwise) sense: negative angular measurement
is an innovation needed to cope with rotations. Thus we really have α

2 = −β
2 , so that

α + β = 0◦ .

You might experiment with other angles, say α = 200◦ and β = 160◦. You should then
convince yourself of the following

Conclusion : m1 is parallel to m3 and s = pq is a translation precisely when α + β is
a multiple of 360◦ (that is, α + β = 0◦,±360◦,±720◦ , etc.).
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Subcase 2.2: Lines m1 and m3 intersect in some point C (see Figure 66). By our work
in the previous subcase, we observe that α + β is not a multiple of 360◦.

C

B A m
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β/2
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γ̂

Figure 66: A product of rotations which is a proper rotation.

Now let γ̂ be the angle from m1 to m3. By Theorem 5.5 (concerning the exterior
angle for a triangle), we have

γ̂ =
α

2
+

β

2
.

Thus, by Theorem 18.1, we conclude that

s = pq = r1r3

is a rotation with centre C and angle

γ = 2γ̂ = α + β .

In other words, we have verified that the angles add as required, and moreover we may
determine the centre C following the diagram in Figure 66. //

Corollary 20.2 The product of two half turns hA and hM is the translation t with vector
2 ~AM .

Proof. This is a special case of the theorem, since

180◦ + 180◦ = 360◦ .

But hA fixes A so that t = hAhM maps A to B where M is the midpoint of segment AB.
Thus t has vector 12

~AB ≡ 2 ~AM .

12There is actually a very subtle point here concerning the correspondence between vectors and transla-
tions, which we explore in the next section.
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20.2 Examples

Let AB = 4cm., let p be a 30◦ rotation at A, q a −70◦ rotation at B, and w a −30◦ rotation
at B.

(a) Determine s = pq. This is a rotation with angle 30◦ − 70◦ = −40◦.

-35 o

15o

A B

Cm
3

2m

m

1

Figure 67:

Now construct the (clockwise) angle −70◦
2 = −35◦ from AB to a new line m3. Then

with C on m3 construct the (anticlockwise) angle ∠CAB = 30◦
2 = 15◦ from CA to

AB. Hence pq has centre C.

(b) Find pw. The rotation pw has angle 30◦ − 30◦ = 0◦ and hence is a translation. In
fact, if w : A → D, then pw : A → D as well, so that pw must have vector ~AD (see
Figure 68). There is no real need to display the reflections once we know that the
result is a translation.

A

D

B

-30 o

Figure 68:

In § 21, we shall look more closely at products of rotations and translations.
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20.3 Some geometrical problems best solved by using isometries.

The following problems are most easily done using isometries.

1. In 4ABC inscribe a line segment equal and parallel to a given segment p.

p
A

B C
2. If squares are erected externally on the sides of a parallelogram, then their centres are

the vertices of a square.

3. Construct an equilateral 4ABC such that a given point P is 2 units from A, 3 from
B, 4 from C.

4. Given any three parallel lines p, q, r, construct an equilateral 4ABC with A on p, B
on q, C on r.

5. Let A be one of the common points of two intersecting circles. Construct through A
a line which is cut by the circles in two equal chords.

6. Prove that the midpoints of the edges of any quadrilateral form a parallelogram.

7. 4ABC is scalene (all angles less than 90◦). Where on side AB should a light source
be placed so that a beam reflected successively by the other two sides returns to the
source?
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20.4 More Isometry Review Problems

Instructions

• When asked to describe an isometry, state what type it is along with all pertinent
information:
reflection - give the mirror

rotation - give the centre and angle

(recall - clockwise angles are negative)

translation - give the vector ~AB

glide - give the axis and shift vector.

• In the isometry problems below, ri generally refers to the reflection in the line mi ,
which we often simply label just i.

1. Copy the following figure accurately before answering the questions.

1

2
3

P

C

A

B

D

20o

(a) Where does s = r1r2 send A, B, C and D? (Call the images A′, B′, etc.)

(b) Use a ruler to compare AC with A′C ′, and a protractor to compare ∠ABC with
∠A′B′C ′. How accurately did you determine A′, B′, C ′?

(c) Where does u = r2r1 send A? Does r1r2 = r2r1?

(d) What isometry is s = r1r2? What about u = r2r1?

(e) Write s−1 in terms of r1 and r2.

(f) Determine the isometries s2 , r2
2 and s9.

(g) Describe r1r2r3 and r1r2r1.
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2. Copy the following figure accurately before answering the questions.

3

21

B

Q P

A

C

D

2 units

(a) Describe h = r1r3 and likewise r3r1.
Why does r1r3 = r3r1? (Remember, this usually isn’t true - see part (c) in
question 1.)

(b) What is r1r2?

(c) What pattern results if we apply r1 and r2 repeatedly (in any order) to the ‘flag’
motif which is shown?

(d) Let q = r1r2r3. Where does q send A, B, C, D? What isometry is q? Is it direct
or opposite? Does it fix any points?

(e) What pattern results if we apply q repeatedly to the indicated motif?
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3. Suppose lines m1 , m2 , m3 enclose an isosceles right triangle 4ABC:

B = 90o

B

A

C

m
m

1
m 3

4

m

2

D

(a) Describe r1r2, r1r3 and r2r3.

(b) Find a mirror m5 such that r1r2 = r5r4, where mirror m4 bisects angle B as
shown.

(c) Determine q = r1r2r3.
Hint:

(i) From (b) substitute r5r4 for r1r2.
(ii) Why does r4r3 = r3r4?
(iii) Thus show q = r5r3r4 = tr4 where t = r5r3.
(iv) What is t?

4. As in problem 3, determine q = r1r2r3 , where mirrors m1, m2, m3 are the sides of an
equilateral triangle.

5. Let s be a +60◦ rotation with centre A and let q be a −60◦ rotation with centre B.
Determine sq.

6. Let s be a rotation through α with centre A and let u be a rotation through −α with
centre B. Determine su.
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7. An equilateral triangle (denoted {3}) is clearly symmetric by reflections r1, r2, r3 in
lines m1, m2, m3 through the centre O.

A

B C

m

m m
3 2

1

O

In order to clearly describe all symmetries we put labels - say A, B, C− near the
vertices of the triangle and keep these labels as well as lines m1, m2, m3 fixed in
position.

Thus, the reflection

r1 :




A → A
B → C
C → B

Note carefully that B → C means the vertex initially in position B ends up finally in
position C.

(a) How many symmetries does this {3} possess?

(b) Describe each symmetry by completing the following chart:
Name Description Effect

r1 reflection in m1 r1 :




A → A
B → C
C → B

etc.

(c) Describe s = r1r2. What is s−1?

– continued next page –
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(d) Using the chart we may describe q = r1r3 as follows:
r1 r3

A → A → ?
B → C → ?? (Careful!)
C → B → ???

or, omitting the intermediate step

q = r1r3 :




A → ?
B → ??
C → ???

Thus identify q from your chart.

(e) Use this method to identify w = r1r2r1r3r1r2r3r1.

(f) Write out a multiplication table for the symmetry group.

8. What isometries could possibly map both A → A′ and B → B′ ?

A

B

B
A

/
/

147



9. Describe q = r1r2r3, where ri is the reflection in line labelled i:

1

3

2

10. Let ri be the reflection in the line labelled i:

1 3

2
45

45
o

o

Briefly explain your answers to the following questions:

(a) Does r1r3 = r3r1?

(b) Does r1r2 = r2r1?

(c) Does r2r3 = r3r1?

(d) Let q = r2r1r3. Is q direct or opposite?

(e) What type of isometry is q? Describe q completely.
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11. In the rectangle below, PQ is twice as long as PS:

RS

P Q

Using the addition of angles theorem for rotations (20.1), find and describe pq where:

(a) p = 60◦ rotation at P .
q = 37◦ rotation at P .

(b) p = 45◦ rotation at S.
q = −45◦ rotation at S.

(c) p = 90◦ rotation at P .
q = 90◦ rotation at Q.

(d) p = 90◦ rotation at P .
q = −90◦ rotation at Q.

(e) p = 180◦ rotation at P .
q = 180◦ rotation at R.
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12. Review problem 1 (c) on page 36: shoot the cue ball C so that it hits mirrors
m4 , m3 , m2 , m1 in that order then returns to its original spot.

RS

P Q

m

m

m

m

C

2

3

4

1

(a) Let w = r1r2r3r4 and say w : C → C ′. Show that you should shoot for C ′.

(b) But w = pq where

p = r1r2

q = r3r4.

Describe the isometries p and q fully.

(c) Use one of the results in problem 11 to say what type of isometry w is.

(d) Thus briefly describe to a ‘man on the street’ how to solve this billiard table
problem.

(e) How far has the ball travelled when it returns to its original position?

13. (a) Which isometry is q = r1r2r3, where ri is the reflection in line i?

30

60o

o

1

23

C

(b) Describe s = r1r3. Describe r−1
3 .

14. Let h be a half-turn with centre C and let r be a reflection in line m.
Determine and describe the isometry q = hr. Distinguish between the cases when C
does or does not lie on m.
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15. The square shown here has eight symmetries:

1 = the identity
s1 = 90◦ rotation about the centre
s2 = 180◦ rotation about the centre
s3 = 270◦ rotation about the centre
h = reflection in a horizontal line
v = reflection in a vertical line
r = reflection in the ‘down’diagonal
r̂ = reflection in the ‘up’ diagonal.

1 2

34

r v

h

r̂

Much as in problem 7, we suppose that the positions labelled 1, 2, 3, 4 are fixed. If
you like, think of the square resting on a table, and paste labels 1, 2, 3, 4 on the table
(not on the square). Likewise, the mirrors of reflection are fixed on the table, too.
The square is movable, however.

Thus, for example, s1 moves the vertex in position 1 to position 4, etc. which we
indicate by

s1 :


 1 2 3 4

↓ ↓ ↓ ↓
4 1 2 3


 or better still, s1 :

[
1 2 3 4
4 1 2 3

]
.

(a) Likewise describe the remaining 7 symmetries.

(b) Use this scheme to identify s2
1h. Hint: s2

1 : 1 → 3 and h : 3 → 2, so

s2
1h :


 1

. . .
2


 .

(c) Fill in the multiplication table for the symmetry group of the square (see below).
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1 s s v r r

v

r

r

h

s

s

s

1

s h

^

^
1 2

3

2

1

3

second term

first
term

16. (a) Determine the symmetry group G for the figure below.
(b) Write out its multiplication table.
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21 A Closer Look At Translations And Vectors

21.1 The Translation Group T

We shall see here that the collection T of all translations is a group in its own right. Thus,
T is a subgroup of the full Euclidean group Isom. However, unlike Isom, the translation
group T is commutative (or abelian : see Theorem 21.3 below). For an alternate and very
elegant treatment of these matters, we refer to [19, sections 1.5, 2.1, 2.2].

Now let us recall Definition 11 : each directed line segment (i.e. vector) ~AB describes
a translation t which moves each point P through the same distance and direction as ~AB,
thus along a line parallel to the line through A and B.

It is a subtle, though important fact, that ‘equivalent’ vectors describe equal transla-
tions:

Theorem 21.1 Suppose that vectors ~AB and ~CD have the same length and sense along
parallel lines, and let t and u be the corresponding translations. Then t = u.

Proof (refer to Figure 69). Consider an arbitrary point P and suppose t : P → P ′, so
that by definition we have PP ′‖AB and PP ′ = AB. But we are given AB‖CD, so that
PP ′‖CD, by Theorem 5.1. We are also given AB = CD so that PP ′ = CD. Thus the
translation u, with vector ~CD also maps P to P ′. Since P is a general point, we conclude
that t = u. //

BA

C D

P P /

Figure 69: Equivalent vectors and their translation.

Corollary 21.2 If t has vector ~CD and t : A → B, then vector ~AB just as well describes
the translation t.

We now see why we are justified in saying that vectors ~AB and ~CD are ‘equal’ if they
have the same length and direction, since then they certainly do describe equal translations.
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It is useful to think of these two vectors as issuing the same translation command. On the
other hand, since AB and CD usually will be quite different segments, the word ‘equal’
is a bit misleading. Thus, let us say instead that ~AB and ~CD are equivalent, and write
~AB ≡ ~CD.

Another way to assert that ~AB ≡ ~CD is to demand that ABDC be a parallelogram
(see Figure 70). Here we must allow degenerate parallelograms which have ‘collapsed’ onto
a line.

A

A

B
B

BC D C D D
C

A

Figure 70: Ordinary and degenerate parallelograms.

This way looking at equivalent vectors is more in the spirit of affine geometry, which avoids
mention of congruence, but which does have the usual notion of parallelism. Note that we
defined a parallelogram in Definition 3 without ever mentioning congruence.

As innocuous as it seems, Theorem 21.1 has some important consequences. To begin
with, we can clarify a small point in the proof of Corollary 20.2 : The product of two half
turns hA and hM is the translation t with vector 2 ~AM .

Indeed, we know from Theorem 20.1 that t = hAhM is a translation. And certainly
t : A → B, where M is the midpoint of AB. Thus, by Corollary 21.2, t is described by the
vector ~AB ≡ 2 ~AM .
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Now consider any two translations t and u with vectors ~AB and ~EF respectively, and
construct parallelogram ABDC with ~BD ≡ ~EF , as in Figure 71. Suppose MN and PQ
bisect the sides of the parallelogram; note that MN and PQ must cross at the midpoint L
of diagonal AD.

F

C

L

PA

M N

B DQ

E

Figure 71: Multiplication of translations is closed and commutative.

Thus t = hAhM = hP hL and u = hMhL = hAhP . Hence,

tu = (hAhM )(hMhL) = hAh2
MhL = hAhL

is a translation with vector 2 ~AL ≡ ~AD. Similarly,

ut = (hAhP )(hP hL) = hAhL = tu .

In short, the product of two translations is a translation, and moreover these two translations
commute. Recall as well that the identity 1 is a translation, with vector ~o ≡ ~AA, for any
point A. Also, the inverse of translation t is itself the translation with vector ~BA ≡ − ~AB.
We may summarize these facts in the following

Theorem 21.3 The collection T of all translations is a commutative subgroup of the full
isometry group Isom.

In fact, we can say a little more about how T acts on the plane, rather as in Corol-
lary 19.5:

Corollary 21.4 The translation group T acts sharply transitively on the points of the
plane. In other words, if A and B are any points of the plane, then there is exactly one
translation mapping A to B.

Proof. Clearly the translation t with vector ~AB does the job. But could some other
translation u with vector ~CD also work? No! By Corollary 21.2, u must equal t. //
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21.2 Vector Operations, Position Vectors and Vector Spaces

Vectors and the operations of scalar multiplication and vector addition were first introduced
in an informal way in Section 15.3. That intuitive approach is more formally justified in
Theorem 21.3 and the remarks preceding it.

For instance, we conclude from Figure 71 that the parallelogram method for adding
vectors is just the thing needed to force vectors to add in exactly the same manner as the
corresponding translations multiply. In short, the collection of vectors should and does
behave as a commutative group.

On the other hand there is this small but tiresome issue concerning equivalent (rather
than equal) vectors: we should consider vectors ~AB and ~CD as equivalent (written ~AB ≡
~CD) if they issue the same translation command.

One very useful way to simplify matters is work with position vectors . First of all,
choose any convenient point as an origin. Given this choice, every point P in the plane
is described by exactly one position vector ~p = ~OP .13 In other words, by fixing O as the
common initial point for all vectors, every point P is described by exactly one vector ~p (see
Figure 72). In particular, the origin itself is described by the zero vector ~o = ~OO. Also,
every vector ~q = ~OQ has an inverse (or negative) −~q = ~OQ′, where Q′ is chosen so that O
is the midpoint of segment QQ′.

O

Q

Q /

q

-q
p

r

P

R

Figure 72: Position vectors.

Of course, we still use the paralleogram rule for vector addition—just ensure that the
resulting vector is positioned with O as initial point. We see from Figure 72 that

~p + ~q = ~r = ~OR ,

if OR is the diagonal of parallelogram OPRQ. (Again we must allow degenerate parallelo-
grams.)

13By fixing an origin in this way we may use ‘=’ instead of ‘≡’ without ambiguity.
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Now let V denote the collection of all position vectors ~p. The upshot of the above
discussion is that V is a commutative group, which therefore has the following properties,
in which ~p, ~q, ~r denote position vectors:

VS-1. There is a zero vector ~o such that for any vector ~p

~p + ~o = ~p .

VS-2. For any vector ~p there is a vector −~p such that

~p + (−~p) = ~o .

VS-3. For any two vectors ~p and ~q, ~p + ~q = ~q + ~p.

VS-4. For any three vectors ~p, ~q and ~r,

(~p + ~q) + ~r = ~p + (~q + ~r) .

Next let’s consider scalar multiplication (also introduced in Section 15.3), as it per-
tains to position vectors. Suppose that γ is any real number and ~p = ~OP is any position
vector. Then the vector γ~p = ~OP ′ lies along the same line as ~OP , but is |γ| times as long,
and is pointed in the opposite direction if γ < 0.

Scalar multiplication behaves and interacts with vector addition according to the
following rules, in which we take ~p , ~q to be any position vectors, and γ , λ to be any real
scalars:

VS-5 (Mixed Associativity). (γλ)~p = γ(λ~p).

VS-6 (Mixed Distributivity). (γ + λ)~p = γ~p + λ~p ; γ(~p + ~q) = γ~p + γ~q.

VS-7 (Multiplication by 1). 1~p = ~p.
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The only law whose proof requires much verification is the second mixed distributive
law. In Figure 73 we suppose γ > 0, which is typical enough. Thus ~p = ~OP , γ~p = ~OP ′,
~q = ~OQ and γ~q = ~OQ′, where

OP ′

OP
= γ =

OQ′

OQ
.

Now complete the parallelogram OP ′R′Q′ and draw PR‖P ′R′ with R on the diagonal OR′.
Thus by Theorem 7.4,

OR′

OR
=

OP ′

OP
= γ =

OQ′

OQ
,

so that RQ‖R′Q′. Therefore, OPRQ is a parallelogram, so that

~p + ~q = ~r = ~OR ,

and thus
γ(~p + ~q) = γ~r = ~OR′

= ~OP ′ + ~OQ′ = γ~p + γ~q .

Q

R
R

P

P

Q

O

/

/

/

r = p + q

Figure 73: A mixed distributive law with γ = 3/2.

The remaining properties for scalar multiplication follow even more easily.

Any set equipped with two operations satisfying properties VS-1 through VS-7 is
called a vector space. Thus the set V of position vectors is a vector space.

Properties VS-1 through VS-7 actually imply all sorts of algebraic facts that we
might take for granted: the zero vector is unique, additive inverses are unique, 0~p = ~o,
−1~p = −~p, etc. This last item is rather subtle: we are asserting that scalar multiplication
by −1 has the effect of producing the additive inverse of ~p. We won’t pursue the details
here: you may consult any standard text on linear algebra or modern algebra.
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21.3 Parametrized Lines

The two basic vector space operations suffice to describe linear objects, such as the line m
through points A and B. Let these points have position vectors ~a = ~OA and ~b = ~OB as in
Figure 74.

O

A
B

P

d = AB

a b

p

m

Figure 74: Parametrizing the line.

The vector ~d = ~AB is called the direction vector for the line m. Note that ~d = ~b − ~a. Now
each point P on line m defines a unique real number

γ =
AP

AB
,

where we naturally take γ to be negative if segments AP and AB have opposite sense on
the line. In other words,

~AP = γ ~AB ,

so that P has position vector

~OP = ~OA + ~AP = ~OA + γ ~AB .

Emphasizing the dependence of ~p = ~OP on γ, we thus have

~p (γ) = ~a + γ ~d

= ~a + γ(~b − ~a) , (γ ∈ R).

We can think of ~p (γ) as a vector valued function which provides a parametric description
of the line m. Suitable restrictions on the parameter γ will describe certain portions of the
line. For example, the segment AB is described by taking 0 ≤ γ ≤ 1 and the ray issuing
from A (and away from B) is given by γ ≤ 0.
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21.4 Oblique Coordinates

Suppose 4OAB is any triangle with one vertex at the origin. We will call the line OA the
x-axis and OB the y-axis, although these lines need not be perpendicular (see Figure 75).

O

B

P

A
A

B

/

/

a

b

Figure 75: Setting up oblique coordinates.

Now let P be any point in the plane. By the parallelism axiom, there is a unique line
through P which is parallel to OB and which thus meets the x-axis at some point A′.
Likewise the unique line through P and parallel to OA meets the y-axis in some point B′.
In short, OA′PB′ is a parallelogram with A′ on the x-axis and B′ on the y-axis.

Next let

x =
OA′

OA
and y =

OB′

OB
,

where again we take the ratio to be negative if the segments have opposite sense on their
common line. Thus OA′ = x OA and OB′ = y OB, and it follows that

~p = ~OP

= ~OA′ + ~OB′

= x ~OA + y ~OB

= x~a + y~b .

The ordered pair of real numbers [x, y] gives the coordinates of the point P with respect to
the oblique coordinate system defined by 4OAB. For example, the origin O has coordinates
[0, 0], the point A has coordinates [1, 0] and the point B has coordinates [0, 1].

If 4OAB has OA = OB and ∠BOA = 90◦, then x, y are ordinary Cartesian coordi-
nates. We shall study these further in Section 23.
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