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Evidence for p53-like-mediated stress responses in green algae
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Abstract The tumor suppressor protein, p53, plays a major role
in cellular responses to stress and DNA damage in animals; de-
spite its critical function, p53 homologs have not been identified
in any algal or plant lineage. This study employs a functional and
evolutionary approach to test for a p53 functional equivalent in
green algae. Specifically, the study: (i) investigated the effect
of two synthetic compounds known to interfere with p53 activity;
(ii) searched for sequences with similarity to known p53-induced
genes; and (iii) analyzed the expression pattern of one such se-
quence. The findings reported here suggest that a p53 functional
equivalent is present and mediates cellular responses to stress in
green algae.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The tumor suppressor protein, p53, is a potent transcrip-

tion factor that plays a major role in several cellular

responses to stress and DNA damage in animals [1].

Despite: (i) p53’s critical function in preserving genome

integrity; (ii) many similarities between animal and plant cel-

lular responses to stress [2]; (iii) theoretical arguments for

the presence of a p53-like protein in land plants [3]; and

(iv) the growing number of algal and plant genome sequenc-

ing projects (http://www.ncbi.nlm.nih.gov/genomes/PLANTS/

PlantList.html), p53 homologs have not been reported in

any algal or plant lineage. As the p53-like sequences

described to date (including the p63 and p73 homologs)

are quite diverged (e.g. [4,5]), standard methods appear

inadequate in identifying p53 counterparts in distant evolu-

tionary lineages. This study undertakes a functional and

evolutionary approach to test for the presence of a p53

functional equivalent in two green algae: the multicellular

Volvox carteri, and its unicellular relative, Chlamydomonas

reinhardtii.

V. carteri is a multicellular green alga with two cell types,

somatic and reproductive. An asexual V. carteri consists of

2000–4000 bi-flagellated somatic cells and up to 16 asexual

reproductive cells (gonidia) (Fig. 1A). V. carteri is found in
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temporary vernal water bodies where it reproduces asexually;

however, environmental heat-stress initiates a series of events

culminating with the switch to sexual reproduction and the

formation of dormant zygospores [6]. Our previous work

showed that sexual induction and development in V. carteri

are in fact responses to oxidative stress and possibly DNA

damage [7,8]. Moreover, we found that in V. carteri sexual

induction, cell-cycle arrest and programmed cell death (PCD)

are alternative responses to increased levels of stress [7].

Both oxidative DNA damage [9] and hyperthermia – by

mechanisms other than induction of DNA damage [10] are

known to induce and activate p53. Therefore, if a p53 counter-

part exists in V. carteri, it is conceivable that the sexual induc-

tion pathway – which: (i) involves chronic hyperthermia,

oxidative stress and possibly DNA damage; and (ii) is

functionally related to cell-cycle arrest and PCD (which are

p53-mediated processes in animals), is also p53-mediated and

thus could be affected by agents that interfere with p53 activity.

Recently, two synthetic compounds, pifithrin-a (PFTa) and

amifostine (AMF), have been reported to interfere with p53

transactivation and p53-dependent apoptosis in animal

systems [11,12].

This study: (i) investigated the effect of PFTa on V. carteri

and C. reinhardtii responses to heat-stress; (ii) searched the

available genome sequence of C. reinhardtii and V. carteri

for sequences with similarity to known p53-target genes,

and (iii) analyzed the expression pattern of one such se-

quence, namely pig8/ei24, in the presence of PFTa and

AMF. As further functional studies are difficult to be under-

taken in the absence of sequence information, it is hoped that

this evidence will direct a systematic search for p53 counter-

parts and other potential p53-target genes when the C. rein-

hardtii and V. carteri complete genome sequences become

available.
2. Materials and methods

2.1. Strains and culture conditions
The V. carteri female strain (Eve) used in this study was kindly pro-

vided by Dr. David L. Kirk (Washington University); synchronous
cultures were grown in the standard Volvox medium, at 28 �C on a
16 h light/8 h dark cycle [6]. A C. reinhardtii strain (CC-2454) was ob-
tained from the Chlamydomonas Center (www.chlamy.org) and grown
in TAP medium [13], on a 12 h light/12 h dark cycle.

2.2. Heat-stress
Cultures of V. carteri asexual females (5 individuals/ml) bearing

young asexual embryos were subjected to a 42.5 �C heat-stress for
2 h [6]. C. reinhardtii cultures were grown up to 2 · 105 cells/ml, then
resuspended at 2 · 106 cells/ml in fresh medium and subjected to
several combinations of heat-stress (Fig. 2). At the end of the stress,
cultures were returned to standard growth conditions. PFTa (Sigma;
blished by Elsevier B.V. All rights reserved.
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Fig. 1. The effect of PFTa on the response to the sex-inducing heat-stress in V. carteri. (A) Top left: Young asexual V. carteri; larger cells are gonidia.
Top right and bottom: Hatched motile ‘‘ghost’’ colonies, one day after the stress in the presence of PFTa (2 lM); note the marks left in place of
gonidia, and the change in overall shape of the colony due to the complete dissolution of gonidia. (B) ROS accumulation during the 2-h stress in the
absence (left) and presence (right) of PFTa (red is due to chlorophyll autofluorescence, and green indicates the accumulation of ROS [8]); not all
gonidia appear ‘‘green’’ at once, due to stochastic differences in their location and physiological/developmental state; bottom panels show close-ups
of the top panels. (C) DNA-laddering effect; DNA was extracted 1 h after the stress in the absence (lane 1) and presence (lane 2) of PFTa.

Fig. 2. DNA-laddering in C. reinhardtii following (A) an acute heat
stress (C, control, Hs, heat-stress), and (B) two types of mild stress in
the absence/presence (�/+) of PFTa.
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40 mM stock in DMSO) and AMF (Sigma, 1 M stock in water) were
added one hour prior to the stress to a final concentration of 2 and
10 lM, respectively. Control cultures were also treated with the same
concentration of DMSO as in the PFTa cultures.

2.3. Visualization of reactive oxygen species
Reactive oxygen species (ROS) were detected using the fluorogenic

compound 2 0,7 0-dichlorodihydrofluorescein diacetate (H2DCF-DA;
Molecular Probes) as described in [8].

2.4. DNA-laddering assay
Cells were lysed in the presence of SDS (0.5%) and proteinase K

(20 lg/ml). DNA was phenol extracted, treated with RNase A
(25 lg/ml), and separated on a 1.8% agarose gel.

2.5. Sequence analyses
The Chlamydomonas v2.0 database (http://genome.jgi-psf.org/chlre2/

chlre2.home.html) – which also includes Volvox whole-genome shot-
gun reads, was searched (tblastn) for sequences with similarity to
p53-induced genes. Human (AAC39531), mouse (AAC52483), and
Caenorhabditis elegans (AAC48294) pig8/ei24 sequences were retrieved
from GenBank. The C. reinhardtii pig8/ei24-like sequence (gene model
C_1250044 in the Chlamydomonas v2.0 database) was blasted against
the Volvox whole-genome shotgun reads; many sequences with similar-
ity to the C. reinhardtii pig8/ei24 were retrieved and used to design
primers to amplify the entire V. carteri pig8/ei24-like genomic sequence
(Nedelcu and Li in preparation) and to investigate its gene expression
(see below). The predicted PIG8/EI24 sequences were aligned using
ClustalW [14]. Pfam (http://pfam.cgb.ki.se), PSORT (http://www.psor-
t.org), and MatInspector (http://www.genomatix.de/) were used for do-
main identification, cellular localization, and transcription factor
binding sites analyses, respectively.

2.6. RT-PCR analyses
RNA was extracted as described in [8]. RT-PCR was performed

using the SuperScript One-Step RT-PCR System (Invitrogen) and a
Stratagene Robocycler; RNA levels were normalized using actin as a
control [15]. Primers were designed across introns to ensure amplifica-
tion products are from RNA only. Sequence primers and RT-PCR
conditions were as follows. For pig8/ei24-like –GGCGCTGTGGCTT-
CTTCCCGT//CGCCCAGCGGCGCTCAAAGTA, and: 55 �C/30
min; 94 �C/2 min; (94 �C/30 s; 63 �C/30 s; 72 �C/1 min) (45 cycles);
72 �C/10 min. For actin – TGGCTGACGAGGGCGAGGTCT//
GCGCAGAGTCAGAATACCGCG, and: 50 �C/30 min; 94 �C /2
min; (94 �C /15 s; 56 �C/30 s; 72 �C/1 min) (45 cycles); 72 �C/10 min.
3. Results and discussion

3.1. PFTa induces PCD in both Volvox and Chlamydomonas

To address the possibility that a p53 functional equivalent is

present and functions in stress responses in V. carteri, asexual

females (bearing asexual fully developed embryos) were sub-

jected to the sex-inducing stress (42.5 �C for 2 h) in the pres-

ence and absence of an agent known to interfere with p53

activity, PFTa. PFTa was initially reported as a specific inhib-

itor of p53 transactivation and p53-dependent apoptosis [11].

However, further studies showed that PFTa’s activity is cell

line-dependent – as PFTa failed to inhibit p53 function in

one cell lineage [16], and promoted p53 activation and apopto-

sis in another cell line [17].

Interestingly, in the presence of 2 lM PFTa, most or all of

the reproductive cells inside V. carteri embryos underwent ra-

pid shrinkage (visible as early as the end of the two-hour stress)

and complete dissolution by next day – when the juveniles
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hatched out of the mother colony (Fig. 1A). Noteworthy, in

contrast to the dramatic changes that took place in gonidia, so-

matic cells appeared unaffected as their flagella continued to

beat and move about these ‘‘ghost’’ colonies. Protoplast

shrinkage is a hallmark feature of PCD, and the same rapid

and complete dissolution of gonidia (while somatic cells ap-

peared unaffected) has been previously observed following a

more intense stress (43.5 �C for 2 h or 42.5 �C for 3 h) in the

absence of PFTa [7].

As during p53-mediated PCD reactive oxygen species (ROS)

can be generated [18], the involvement of ROS in the observed

PFTa-induced PCD in V. carteri was investigated using fluo-

rescence microscopy [8]. Consistent with a ROS-mediated pro-

cess, gonidia revealed a soaring increase in ROS levels – when

compared to the gonidia heat-stressed in the absence of PFTa
(Fig. 1B). The fragmentation of DNA – another diagnostic

feature of PCD, was also observed in the cultures heat-stressed

in the presence of PFTa (Fig. 1C). The low proportion of lad-

dered DNA relative to total DNA (Fig. 1C) reflects the fact

that only gonidia undergo PCD (as somatic cells are still alive),

and is due to the very low gonidia to somatic cell ratio (ca.

1:200) (Fig. 1A).

The functional significance of PFTa’s PCD-inducing effect

would be strengthened if a similar effect were also observed

in another algal lineage. Thus, the effect of PFTa on the

response to heat-stress in V. carteri’s unicellular relative, C.

reinhardtii, was also investigated. In this species, PCD and

DNA-laddering can be triggered by an acute heat-stress (e.g.,

10 min at 48–50 �C) (Fig. 2A). Interestingly, a milder stress

(e.g., a 30-min heat-stress at 40 �C or a 2 h stress at 42.5 �C)

– which did not induce a DNA-ladder, did so if the stress

was carried out in the presence of 2 lM PFTa (Fig. 2B).

Together, these data indicate that PFTa interferes with path-

ways that are specifically activated during heat-stress, and this

interaction results in the activation of the PCD response in

both the unicellular C. reinhardtii and the multicellular V. car-

teri. Interestingly, the effect of PFTa in this study is consistent

with Gaji et al.’s report [17]; that is, in both C. reinhardtii and

V. carteri, PFTa promotes PCD. Furthermore, the concentra-

tion at which PFTa is effective in inducing PCD in green algae

(i.e., 2 lM) is similar to the concentration (1–3 lM) reported

to induce p53 activation in mouse epidermal cells [17] – which

is lower than the concentration level (10–20 lM) reported to
Fig. 3. (A) Partial alignment (position 191–281 in human PIG8/EI24) of V.
(Ce) predicted PIG8/EI24. (B) p53 DNA binding sites: consensus site (p53C
(�275 to �255) in C. reinhardtii pig8/ei24 (p53Cr). (C) V. carteri pig8/ei24-lik
presence of AMF/PFTa (1 and 2 indicate two concentrations of RNA used
inhibit p53-dependent apoptosis [11] or to potentially affect

additional p53-independent pathways [19,20].

3.2. A p53-target gene is present in both Chlamydomonas and

Volvox

To further implicate a p53 counterpart in stress responses in

green algae, the Chlamydomonas genome database was

searched for sequences with similarity to known p53-induced

genes (pig) (see Section 2). Remarkably, a sequence with simi-

larity to pig8 (gene model C_1250044 in Chlamydomonas v2.0

database) was found. pig8/ei24 is an important p53-induced

gene expressed during DNA damage-induced p53-mediated

apoptosis [21,22]. A partial amino acid alignment showing

the presence of a conserved region (pfam07264 domain) in

the human, mouse, the nematode Caenorhabditis elegans, and

the two green algal predicted PIG8/EI24 sequences is shown

in Fig. 3A.

pig8/ei24 has been recently described as a candidate tumor

suppressor gene coding for an apoptosis factor that is a novel

endoplasmic reticulum-localized Bcl-2 binding protein [23].

Noteworthy, the C. reinhardtii predicted EI24/PIG8 (Protein

ID 154363 in the Chlamydomonas v2.0 database) is also an

integral membrane protein with potential endoplasmic

reticulum localization (as predicted by PSORT). Moreover,

MatInspector [24] identified putative p53 DNA-binding con-

sensus sites in the 5 0-untranscribed region of the C. reinhardtii

pig8/ei24-like sequence (Fig. 3B).

3.3. The expression of the V. carteri pig8/ei24-like sequence is

affected by both PFTa and AMF

To provide additional evidence that the V. carteri pig8/ei24-

like sequence is part of a p53-like-mediated cellular response to

stress, pig8/ei24 expression was investigated following the sex-

inducing heat-stress in the presence of PFTa as well as of an-

other agent known to interfere with p53 activation, amifostine

(AMF). Although the functional relationships between p53

and AMF also appear to be dependent on cell type and phys-

iological state (i.e., normal or stressed, normal or cancer cell),

in most cases AMF affects p53 activity and that of its target

genes (including pig8/ei24) (see [12] for a discussion). Interest-

ingly, as expected if pig8/ei24 were regulated by a p53

functional equivalent sensitive to these agents, V. carteri

pig8/ei24’s expression is altered by both PFTa and AMF;
carteri (Vc), C. reinhardtii (Cr), mouse (Mm), human (Hs), C. elegans
ON), murine ei24 (p53RE; [22]), and putative p53 DNAbinding sites

e gene expression pattern, after a 2 h-stress at 42.5 �C in the absence or
in RT-PCR; actin was used as a control [15]).
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specifically, pig8/ei24 is upregulated in the presence of PFTa
(which is consistent with the PFTa‘s PCD-promoting activity;

Fig. 1) and downregulated in the presence of AMF (as previ-

ously reported [12]).

3.4. A p53-functional equivalent in green algae

This study provides several lines of evidence suggesting that

a p53 functional equivalent is present and mediates cellular re-

sponses to stress in green algae. Although: (i) PFTa’s and

AMF’s precise mechanisms of action are not fully understood

(and are likely dependent on the nature, type and physiological

state of cells); and (ii) PFTa can affect additional pathways, it

seems unlikely that in both C. reinhardtii and V. carteri these

agents would interfere nonspecifically with p53-independent

pathways and trigger responses that are p53-mediated in ani-

mals (PFTa promotes PCD in C. reinhardtii and V. carteri –

Figs. 1 and 2; AMF affects cell cycle progression in V. carteri

– unpublished data). Furthermore, it seems unlikely that both

these agents would nonspecifically alter (in the expected direc-

tions) the expression of a gene that possesses putative p53

DNA-binding sites and is known to be a specific p53-target

in animals (Fig. 3).

The cell type-specific sensitivity to PFTa in V. carteri (Fig. 1)

also argues against a nonspecific action of this agent, and is

consistent with the response to a more acute stress in the ab-

sence of PFTa – that is, PCD is triggered in gonidia but not

somatic cells [7]. The observation that the stress-induced

PCD in the multicellular V. carteri is limited to gonidia (both

under acute stress in the absence of PFTa [7] and under milder

stress in the presence of PFTa – Fig. 1) parallels the situation

in the nematode C. elegans, where the pro-apoptotic function

of the p53 homolog is also restricted to the germ-line [25].

The adaptive significance of this differential response is two-

fold: the activation of PCD in germ cells ensures that damaged

cells are removed (and thus potential detrimental mutations

will not be transmitted to offspring), while the inhibition of

PCD in somatic cells (which cannot not be replaced if elimi-

nated) ensures the survival of the individual carrying the sur-

viving gonidia [7].

Noteworthy, p53 can promote PCD via both transcription-

dependent and transcription-independent pathways. The latter

has been recently described in sensitive organs and involves the

rapid (as early as 30 min) translocation of p53 to mitochon-

dria, where p53 initiates a rapid apoptotic response that

jump-starts the slower transcription-based response (i.e., 4–

8 h after p53 induction) [26]. Remarkably, the PCD response

(i.e., ROS production, protoplast shrinking, DNA laddering)

in V. carteri – following either an acute stress in the absence

of PFTa [7] or a milder stress in the presence of PFTa
(Fig. 1), is extremely rapid, being observed as soon as the

end of stress. This rapid response is also consistent with the

recently described heat-induced activation of p53 in human

osteosarcoma cells (incidentally, also at 42.5 �C for 1–2 h),

which – in contrast to radiation-induced activation, has been

shown to be very rapid [10].

The presence of both unicellular and multicellular forms

among volvocalen green algae (a monophyletic group of clo-

sely related and recently diverged lineages) provides an unprec-

edented opportunity for the study of PCD in an evolutionary

framework. Besides the evolutionary significance, the findings

presented here also provide support for V. carteri’s suitability
as a model-system for PCD research. Although classical model

organisms have been useful for studying cell death, it has been

recently pointed out [27] that these systems might have also

constrained our understanding of PCD; V. carteri is among

the few taxa suggested as alternative model-systems that could

actually improve our understanding of cell death processes. In-

deed, its simpler organization and life-cycle on the one hand,

coupled with its intriguing similarities in development [28]

and PCD responses with the more complex animal systems

on the other hand, make V. carteri a very attractive system

for fundamental and even clinical research.
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