
Link-Time Enforcement of
Confined Types for JVM Bytecode

Philip W. L. Fong

pwlfong@cs.uregina.ca

Department of Computer Science

University of Regina

Regina, Saskatchewan, Canada



Overview

Motivation

Confined Types

A Bytecode-level Formulation of Confined Types

Implementation Efforts

Secure Cooperation

Link-Time Enforcement of Confined Types for JVM Bytecode – p.1/33



Motivation

Link-Time Enforcement of Confined Types for JVM Bytecode – p.2/33



Dynamically Extensible Software Systems

Process P Process C

Code Producer Code Consumer

R

Link-Time Enforcement of Confined Types for JVM Bytecode – p.3/33



Dynamically Extensible Software Systems

E

Program
Fragment

Code Consumer

Process P Process C

R

Code Producer

Link-Time Enforcement of Confined Types for JVM Bytecode – p.4/33



Dynamically Extensible Software Systems

Program
Fragment

E

R

Code Producer Code Consumer

Process P Process C

Link-Time Enforcement of Confined Types for JVM Bytecode – p.5/33



Dynamically Extensible Software Systems

Program
Fragment

E

R

Code Producer Code Consumer

Process P Process C

Examples:
mobile code, OS kernel extensions, application
plug-ins, scriptable software

Link-Time Enforcement of Confined Types for JVM Bytecode – p.6/33



Language-Based Security
Language-based Security:

Use a safe language to encode untrusted software
extensions

Protection via programming language facilities
e.g., type systems, program rewriting, interpreters

Examples: JVM, CLR

Link-Time Enforcement of Confined Types for JVM Bytecode – p.7/33



Encapsulation and Security
Data Encapsulation

Protecting object states from undisciplined access

Well-supported in mainstream OO languages

Reference Encapsulation

Preventing accidental reference leaking

Not supported in mainstream OO languages

Reference leaking has led to a security breach in
JDK 1.1

Link-Time Enforcement of Confined Types for JVM Bytecode – p.8/33



Confined Types
Confined Types (Vitek et al 2001, 2003)

a recently proposed lightweight annotation system
for supporting reference encapsulation in Java-like
languages

existing formulations target Java-like source
languages

enforceable only by code producer at compile time

not qualified as language-based protection
mechanism for code consumers

Link-Time Enforcement of Confined Types for JVM Bytecode – p.9/33



Contributions
1. the first formulation of confined types for JVM bytecode

2. the first implementation to enforce confined types at
link-time on behalf of the code consumer

3. employing the bytecode-level formulation of confined
types to facilitate a form of secure cooperation

Link-Time Enforcement of Confined Types for JVM Bytecode – p.10/33



Confined Types

Link-Time Enforcement of Confined Types for JVM Bytecode – p.11/33



JDK 1.1 Security Breach

public class Class {
private Identity[] signers;
public Identity[] getSigners() {

return signers;
}

}

Link-Time Enforcement of Confined Types for JVM Bytecode – p.12/33



Manual Fix

public class Class {
private Identity[] signers;
public Identity[] getSigners() {

Identity[] dup =
new Identity[signers.length];

for (int i = 0; i < signers.length; i++)
dup[i] = signers[i];

return dup;
}

}

Link-Time Enforcement of Confined Types for JVM Bytecode – p.13/33



A New Type Qualifier
A class can be qualified as being confined.

References to confined class instances are not
allowed to escape outside of the package in which
the class is declared.

Examples:
confined class ConfinedIdentity { ... }

Link-Time Enforcement of Confined Types for JVM Bytecode – p.14/33



Solution (1)

public class Identity {
ConfinedIdentity rep;
Identity(ConfinedIdentity si) {

rep = si;
}
...

}

Link-Time Enforcement of Confined Types for JVM Bytecode – p.15/33



Solution (2)

public class Class {
private ConfinedIdentity[] signers;
public Identity[] getSigners() {

Identity[] dup =
new Identity[signers.length];

for (int i = 0; i < signers.length; i++)
dup[i] = new Identity(signers[i]);

return dup;
}

}

Link-Time Enforcement of Confined Types for JVM Bytecode – p.16/33



A Bytecode-Level Formulation of
Confined Types

Link-Time Enforcement of Confined Types for JVM Bytecode – p.17/33



Confined Types as Capabilities (1)
Capability Types (Boyland et al 2001):

A capability is an unforgeable pair:
〈object-reference, access-rights〉

In a strongly typed programming language, a type
qualifier plays the role of the access-rights
component of a capability:

const char *p;

Link-Time Enforcement of Confined Types for JVM Bytecode – p.18/33



Confined Types as Capabilities (2)
A Capability-based Formulation of Confined Types:

In our bytecode-level type system, confined-ness
is not just the property of a class, it is a capability
type.

Every object reference is associated with a
capability type to indicate where it can be
propagated .

Subtype hierarchy:

⊥ <: confined <: anonymous

Supertypes are more restrictive than subtypes.
Greatly simplifies the formulation of type rules.

Link-Time Enforcement of Confined Types for JVM Bytecode – p.19/33



Confined Type Interface
Code safety is a whole-program notion, but . . .

Lazy, dynamic linking ⇒ not all application classes
are loaded at all times.

Every classfile carries a confined type interface to
facilitate modular type checking .

Designed to be backward compatible:
Existing classfiles in the Java platform library does
not need further annotation.

Link-Time Enforcement of Confined Types for JVM Bytecode – p.20/33



Type Rules for Bytecode Instructions
invokevirtual 〈B.m〉

Operand Stack:
. . . , o, a1, a2, . . . , ak −→ . . . , v

Operation: Invoke method 〈B.m〉 on object instance o,
passing arguments a1, a2, . . . , ak. Any return
value v is pushed into the operand stack.

Type Constraints:
Suppose 〈B.m〉 : T0(T1, T2, . . . , Tk)T ∈ IA.
Suppose further that o : To, ai : Tai

, and v : Tv.
Then To <: T0, Tai

<: Ti, and T <: Tv.

Link-Time Enforcement of Confined Types for JVM Bytecode – p.21/33



Intermodular Type Checking
Lazy, dynamic linking ⇒ intermodular type checking
must be performed incrementally.

Intermodular type checking is carefully staged to
dovetail with dynamic linking events.

Special consideration to preserve laziness in
dynamic linking.

Link-Time Enforcement of Confined Types for JVM Bytecode – p.22/33



Implementation Efforts

Link-Time Enforcement of Confined Types for JVM Bytecode – p.23/33



Set-Up

Type Annotations

Frontend javac Backend
Link−Time

Type Checker

Annotated

Java Source

Java

Source

Internet

Annotated

Classfile

JVM

Classfile

Implementation Experiences:

Linux command-line tool for annotating classfiles
Link-time type checker

Link-Time Enforcement of Confined Types for JVM Bytecode – p.24/33



Pluggable Verification Modules
Aegis VM

an open source research VM for Java
bytecode verification is a pluggable service
third-party verification services can be safely
incorporated into the dynamic linking process as a
Pluggable Verification Module (PVM)
[OOPSLA’04]

PVM-based Implementation of Confined Types

for both intra- and inter-modular type checking
enforces confined types at link time
≈ 3000 lines of moderately commented C code

Link-Time Enforcement of Confined Types for JVM Bytecode – p.25/33



Secure Cooperation

Link-Time Enforcement of Confined Types for JVM Bytecode – p.26/33



Secure Cooperation

Enabling a form of secure cooperation among
mutually suspicious code units.
1. Protection by access contracts
2. Trust inspiration
3. Secure software extensions

Link-Time Enforcement of Confined Types for JVM Bytecode – p.27/33



Protection via Import Type Annotations
Problem: Alice wants to share a Recourse with Bob, but
worries that the sharing leads to resource leaking . . .

package domain;

confined class Resource { ... }

public class Alice {

static Resource resource = new Resource();

public static void main(String[] args)

throws Throwable {

Class C = Class.forName(args[0]);

Bob b = (Bob) C.newInstance();

b.share(resource);

}

}

public interface Bob {

void share(Resource r);

}
Link-Time Enforcement of Confined Types for JVM Bytecode – p.28/33



Protection via Import Type Annotations

Solution: Annotate the classfile of Bob with the
following export type assertion:

Bob.share : confined → ⊥

Subtypes of Bob must conform to this access
contract.

Link-Time Enforcement of Confined Types for JVM Bytecode – p.29/33



Non-Compliant Extension

package domain;

public class Charlie implements Bob {
public static Resource leak;
public void share(Resource r) {

leak = r;
}

}

Link-Time Enforcement of Confined Types for JVM Bytecode – p.30/33



Robustness of Trust Inspiration
1. What if Charlie falsely asserts a matching export

type assertion?
Consequence: PVM fails to confirm compliance of

Charlie.sum to its promised export type.
⇒ Definition of class Charlie will fail.

2. What if Charlie does not supply a matching export
type assertion?
Consequence: Intermodular type checking will fail.

⇒ Preparation of class Charlie will fail.

Link-Time Enforcement of Confined Types for JVM Bytecode – p.31/33



Summary & Future Work
Summary

the first formulation of confined types for JVM
bytecode

A first implementation to enforce confined types at
link time

Application to secure cooperation

Future Work

a static capability type system, Discretionary
Capability Confinement (DCC) , for Java bytecode

a generic framework for defining capability type
systems over the Java platform

Link-Time Enforcement of Confined Types for JVM Bytecode – p.32/33



Thank You

Link-Time Enforcement of Confined Types for JVM Bytecode – p.33/33


	Overview
	Motivation
	{large Dynamically Extensible Software Systems}
	{large Dynamically Extensible Software Systems}
	{large Dynamically Extensible Software Systems}
	{large Dynamically Extensible Software Systems}
	Language-Based Security
	Encapsulation and Security
	Confined Types
	Contributions
	Confined Types
	JDK 1.1 Security Breach
	Manual Fix
	A New Type Qualifier
	Solution (1)
	Solution (2)
	A Bytecode-Level Formulation of Confined Types
	Confined Types as Capabilities (1)
	Confined Types as Capabilities (2)
	Confined Type Interface
	{large Type Rules for Bytecode Instructions}
	Intermodular Type Checking
	Implementation Efforts
	Set-Up
	Pluggable Verification Modules
	Secure Cooperation
	Secure Cooperation
	{large Protection via Import Type Annotations}
	{large Protection via Import Type Annotations}
	Non-Compliant Extension
	Robustness of Trust Inspiration
	Summary & Future Work
	Thank You

