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Preface 
 
The Stokes-Helmert Geoid software (SHGeo software) is a scientific software package for a precise geoid 

determination based on the Stokes-Helmert theory of determination of the gravimetric geoid. The software has been 

developed during a period of more then 10 years under the leadership of professor Petr Vaníček at the Department of 

Geodesy and Geomatics Engineering, University of New Brunswick in Fredericton. Authors of particular programs are: 

Juraj Janák, Pavel Novák, Mehdi Najafi-Alamdari, Jianliang  Huang,  Sander van Eck van der Sluijs, Robert Tenzer 

and Artu Ellmann. We also have to mention Z. Martinec, A. Kleusberg, L.E. Sjöberg, W.E. Featherstone and W. Sun 

whose research presented in their papers was incorporated into the SHGeo software. SHGeo software uses global 

geopotential models (e.g., GRIM4-S4, EGM-96, GGM-02) and a global elevation model (TUG-87 or JGP95 for 

instance). These global models play an important role in the geoid computation scheme. Therefore we acknowledge the 

contribution of all research teams that have developed these or other global models.  

 

The present software version (SHGEO 3.1) is an upgrade of the three earlier SHGeo packages:  

SHGEO vers. 1 (standard Helmert approach)  was compiled by Dr. J. Janak in 2001 

SHGEO vers. 2 (formulated for the NoTopography space) was compiled by Dr. R. Tenzer in 2003 

SHGEO vers. 3 (capable of standard Helmert and the NoTopography) was compiled by Dr. A. Ellmann in 2005 

 

This reference manual and the current version of the package, SHGEO 3.1 (standard Helmert and NoTopography) is 

compiled by D. Avalos in 2009.  New programs (dwnc08.c, res_anomaly.c and cogeoid2geoid.c) as well as bug-fixes 

for the Stokes integral computation are included in this version. 

 

The manual consists of three parts. Part I contains the theoretical description of the Stokes-Helmert method of the geoid 

determination by Dr. A. Ellmann (September 2005). Part II is the reference user’s guide with the description of the 

particular programs for the geoid computation, and Part III has the description of auxiliary programs, which can be 

used for data manipulation and format transformations. 
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Stokes-Helmert’s method for precise geoid determination 
  

Part I of the manual gives a brief theoretical overview of the precise geoid determination by the Stokes-

Helmert method. Particular details can be found in the reference papers listed at the end of this manual. 

 

 

1. Introduction 

 

The geoid as an equipotential surface of the Earth’s gravity field plays an essential role in geosciencies and 

in many practical applications. In geodesy, it serves as the reference surface for topographic height and 

depth measurements.  

The solution of the boundary value problem by Stokes’s method requires gravity observations that 

refer to the geoid as a boundary surface while gravity measurements are taken at the topographic surface. 

Thus, to satisfy the boundary condition the gravity anomalies need to be downward continued to the geoid 

level. Downward continuation requires harmonicity of the quantities to be downward continued; thus a 

number of different corrections related to the existence of topography and atmosphere need be accounted for 

very carefully. As is well known the evaluation of topographical effects is one of the most serious limits in 

precise geoid modeling nowadays.  Therefore, the topographical effects need be rigorously formulated and 

evaluated for the spherical Earth.    

One way of estimating the effect of topographical masses is to use Helmert’s second condensation 

model. According to this model the Earth’s topographical masses can be replaced by an infinitesimal 

condensation layer located on the geoid. To use this model, the real field quantities are first transformed into 

corresponding quantities in this model space which we call the Helmert space. So “Helmertizised” gravity 

field can be then decomposed into low- and high-frequency parts (see Vaníček and Kleusberg, 1987). Global 

geopotential models are the most accurate source for the low-frequency information, whereas the short-

wavelength information is obtained from the Stokesian integration. For practical considerations, the 

integration is limited to a spatial domain around the computation points. Importantly, the Stokes kernel 

modification scheme is employed. This scheme mitigates the error in the contribution from the field in the 

remote zone which exists even though the contribution is rigorously evaluated from global geopotential 

model. 

The Stokesian integration with the so-called residual gravity anomalies results with the Helmert 

residual co-geoid. The complete Helmert co-geoid is obtained as a sum of the Helmert reference spheroid 

and the residual co-geoid. In the final computational step the geoid in the real space is evaluated by 

subtracting the primary indirect topographical and atmospheric effects from the Helmert co-geoidal heights.  

 

The principles of the Stokes-Helmert method of the geoid determination are summarized by the following 

scheme (see Fig. 1): 

 

- Formulation of the fundamental formula of physical geodesy at the surface of the Earth in the real 

space. 

 

- Transformation of the real space gravity anomalies into the Helmert gravity anomalies (referred 

to the Earth’s surface) 

 

- Solution to Dirichlet’s inverse boundary value problem by applying the Poisson integral equation, 

i.e., the downward continuation of the gravity anomalies from the Earth’s surface onto the geoid. 

 

- Reformulation of the geodetic boundary-value problem by decomposition of Helmert’s gravity 

field into the low-frequency  and high-frequency part of the gravity field. 
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- Solution to the Stokes boundary value problem for the high-frequency Helmert gravity field (by 

using the modified spheroidal Stokes’ kernel) and the evaluation of the Helmert reference 

spheroid (by using the “satellite-only” spherical harmonics). 

-  

- Transformation of the geoid from the Helmert gravity space back into the real space. 

 

 
 

Fig. 1: The quantities involved in the real and Helmert’s spaces 

 

 

2. Formulation of fundamental formula of physical geodesy 

 

2.1  Real space  

 

In the classical sense of Gauss and Listing (1873), the geoid is defined as an equipotential surface 

with the gravity potential value oW . Gauss (1828) defined this surface in the strict mathematical 

sense as a surface which is intersected everywhere by directions of gravity at right angle and which 

best approximates the mean sea level over the whole Earth.  

In order to estimate the geoid shape a reference field (so called normal field) generated by the 

reference ellipsoid of revolution is introduced. The normal potential on this reference ellipsoid is 

chosen to be equal to the actual potential on the geoid. 

 

The disturbing gravity potential  ,tT r  , which is reckoned at the Earth’s surface, is defined as a 

difference of the Earth’s gravity potential  ,tW r   and the normal gravity potential  ,tU r   

generated by the geocentric reference ellipsoid (of which parameters: 
o

U , o
ω , and  o

GM  are equal 
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to the fundamental physical parameters of the Earth: 
o

W , ω , and GM ; where GM  is the geocentric 

gravitational constant, ω  is the mean angular velocity of the Earth’s spin,  oW ,gW r   is the 

gravity potential referred to the geoid surface  
g

r:
O

, and  oU ,oU r   is the normal 

gravity potential referred to the surface of the geocentric reference ellipsoid  
o

r:
O

 , so that  

 

        , , ,T r W r U r     .                                                     (2.1) 

 

The geocentric position  ,r  is represented by the geocentric radius r  and the geocentric 

direction  , , where   and   are the geocentric spherical coordinates, and 
O

  stands for the 

geocentric total solid angle  π2,0,2/π,2/π   . The geocentric radius of the Earth’s 

surface  
t

r  is given (with an accuracy of a few millimeters) by the geocentric radius of the geoid 

surface  
g

r , plus the orthometric height  OH , i.e.         OHrr
gt .

 

If the topographic and atmospheric attractions were completely absent, then T would be 

harmonic above the geoid surface and the Laplace equation would be satisfied. 

 

                                 2 , 0
g

T r r r    .        (2.2) 

 

Once T is known on the geoid, the separation between the reference ellipsoid and the geoid can be 

obtained by the Bruns formula (Bruns, 1878) 

 

 
 
 

,
g

o

T r
N




 


,                          (2.3) 

 

where  ,
g

T r   is the disturbing potential on the geoid and 
o

  is the normal gravity on the 

reference ellipsoid. The problem is now reduced to the determination of T on and outside the geoid. 

To determine  ,T r  , the boundary value problem of the third kind outside the geoid has to be 

solved. In this problem the gravity anomalies on the geoid itself serve as the boundary values. 

To find a relation between the disturbing potential and the gravity anomalies, the radial 

derivative of the disturbing potential is introduced: 

 

     , , ,T r W r U r

r r r

     
 

  
.                         (2.4) 

 

The above expression, evaluated at the earth’s surface, can be approximated by (cf. Vanicek et al 

1999) 

 

 
         

,
, , , , ,

t

t t g t t g t

r r

T r
g r r r g r r

r
 

   


 
           


,           (2.5) 
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where the difference between the actual gravity  ,tg r 
 
and the normal gravity  ,tr   is the 

gravity disturbance  ,
t

g r  , and  ,
g t

r

   is the ellipsoidal correctcion to the gravity 

disturbance. 

The gravity disturbance is usually not considered to be a measurable quantity on the surface 

of the Earth. Therefore the gravity disturbance has to be transformed to gravity anomaly, which is 

still the most widely available data type. Gravity anomaly  ,tg r  : 

 

            N, ,t t og r g r r H          ,                       (2.6) 

 

is related to the gravity disturbance  ,g r   by the following formula (Vaníček et al., 1999) 

 

               N, , ,t t t og r g r r r H              ,           (2.7) 

 

where )(N H  is the normal height (Molodensky, 1945). 

The difference of the normal gravity  ,tr   referred to the Earth’s surface and the normal gravity 

     NHr
o
  referred to the telluroid 

 
    NHr

o
  can be expressed using the Bruns formula  

 

     
 

 

 
 

 

 

   
N

N

, , ,
,

n n
t t

t

t o

or r r r

r r T r
r r H

r H

   
   

 
   

  
              

,        (2.8) 

 

where    is the height anomaly (Molodensky et al., 1960), and   n/,   r

 

 is the normal 

gravity gradient. 

Applying the spherical approximation, then Eq. (2.8) becomes (Vaníček and Martinec, 1994) 

 

 
 

 

 

     
   nN

, , 2
, ,

n
t

t

t t

tor r

r T r
T r r

rr H

 


 
 

 
    

    

,                                 (2.9) 

 

where  n ,tr 
 
is the ellipsoidal correction for the spherical approximation  

 

Substituting Eqns. (2.5) and (2.9) into Eq. (2.7), the fundamental formula of physical geodesy 

takes the following form (Vaníček et al., 1999) 

 

  
 

 
 

   n

( , ) 2
, , , ,

t

t g t t t

tr r

T r
g r r T r r

r r
 

 

 
         

 
.           (2.10) 

 

The above equation, formulated for the real space, can be applied in Helmert’s space for the 

purpose of the computation of Helmert’s gravity anomaly. 
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2.2  Helmert space 

 

However, T in Eq. (2.1) does not satisfy the Laplace equation inside the topographical masses 

where the geoid is often located. Therefore in order to establish a harmonicity of the disturbing 

potential, the atmospheric and topographical masses have to be (mathematically) removed or 

replaced. This can be done by using Helmert’s second condensation method. 

When the masses are condensed to a layer that is located right on the geoid, the Earth’s gravity 

field will slightly change. The space obtained after such a condensation is called the Helmert space. 

The quantities given in the Helmert space will be denoted by superscript h .  

Helmert’s gravity potential is defined as follows 

 

                            , , , ,h t aW r W r V r V r        ,                       (2.11) 

 

where  ,tV r   is the residual topographical potential, which is the difference between the 

potential of the topographical masses and the potential of the condensation layer 

 

                                 , , ,t t cV r V r V r      .           (2.12) 

 

Similarly,  ,aV r   is defined as the residual atmospheric potential,  which is obtained by 

subtracting the potential of the atmospheric condensation layer from the potential of the 

atmospheric masses, i.e  

 

                                        , , ,a a caV r V r V r      .                                                           (2.13) 

 

By subtracting the normal reference field U from equation (2.4), the disturbing potential in 

Helmert’s space becomes 

 

                            , , , , , ,h h t aT r W r U r T r V r V r            .                   (2.14) 

 

It has been shown (Vanicek and Martinec 1994) that the Helmert’s disturbing potential is harmonic 

in every point outside the geoid – this is rather obvious from the fact that mass density above the 

geoid is equal to zero everywhere, so that the Laplace equation 

 

 2 , 0h

g
T r r r               (2.15) 

 

holds everywhere above the geoid level.  

 

 

The Helmert gravity  ,h

tg r   on the earth surface is obtained from the observed gravity g  on the 

earth surface, by adding the direct topographical effect  ,t

tA r   and the direct atmospheric effect 

 ,a

tA r   (referred to the earth surface): 
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       , , , ,h t a

t t t tg r g r A r A r        .        (2.16) 

 

The direct topographical effect (DTE) on gravity is a residual quantity. It is obtained by subtracting 

the gravitational attraction of the condensed topographical masses from the  the attraction of 

topographical masses. It should be evaluated on the earth surface. Analogously, the direct 

atmospheric effect (DAE) on gravity is the gravitational attraction of the whole atmosphere minus 

the gravitational attraction of the condensed atmosphere. The direct effect is obtained by taking the 

radial derivative of the residual topographical and atmospheric potentials (Eqs. (2.12) and (2.13)): 

 

 
     

   
, , ,

, , ,

t t c

t t tt t c

t t t

V r V r V r
A r A r A r

r r r




     
       

  
,   (2.17a) 

 
     

   
, , ,

, , ,

a a ca

t t ta a ca

t t t

V r V r V r
A r A r A r

r r r




     
       

  
.    (2.17b) 

 

More details on the estimation of  ,t

tA r   and  ,a

tA r   will be given in Sections 3.1. and 3.2. 

By analogy with Eq. (2.5) the Helmert gravity disturbance is defined as the negative gradient of the 

Helmert disturbing gravity potential and the ellipsoidal correction to the gravity disturbance, i.e.  

 

 
 

           
,

, , , , , , ,

h

th t a

t g t t t g t t t

T r
g r r g r r r A r A r

r
 

     
 

              


 

(2.18) 

 

The relation between the Helmert gravity disturbance and the Helmert gravity anomaly  ,h

tg r   

can be obtained from the boundary condition (cf. Eq. (2.10)):   

 

 
 

 
 

 

 ,( , ) ( , )
, ,

( , )
t t

hh
th

t g t o

tr r r r

T rT r r
g r r

r r r H






   

   
      

   
                               (2.19)

 

 

Considering Eqs. (2.8), (2.14) and (2.18) one arrives at (cf. Vanicek et al 1999, Eq. 37)  

 

         
 

 

 

   

 

 

 

   

       
 

 

   

   

       

N

N

N

N

N

, ,
, , ,

n

, ,

n

, ,,
, ,

n

, , , ,

t

t

t

th h

t t t o

or r

h

t

or r

t a

t th

t t o

or r

t a

t g t t t

r T r
g r g r r r H

r H

r T r

r H

V r V rr
g r r r H

r H

g r r A r A r

 
   

 

 

 

  
   

 

  

 

 

 

 
                 

 
 

    

                    

            
 

 

   

   
N

N

, ,,

n
t

t a

t t

o

or r

V r V rr
r H

r H

  
 

 
 

              

 

(2.20) 
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The Helmert anomaly can be expressed via commonly used free-air anomalies  ,FA

tg r   (see 

e.g. Heiskanen and Moritz, 1967), 

 

   
 

     o o
,

, , ( , ) , ( , ) 0.3086FA

o o

r
g r g r r H g r r H

n


   

 
           

          (2.21)
 

 

Applying also the spherical approximation from Eq. (2.9) one arrives at   

 

               
2 2

, , , , , , , ,h FA t a t a

t t t t g t t t n t

t t

g r g r A r A r r V r V r r
r r

                     

 (2.22)

 

 

In Eq. (2.22), the second term on the right-hand side is the direct topographic effect on the 

gravitational attraction, the third term represents the direct atmospheric effect on the gravitational 

attraction, the fourth term is the ellipsoidal correction to gravity disturbance, the fifth term is the 

secondary indirect topographic effect (SITE) on the gravitational attraction, the sixth term is the 

secondary indirect atmospheric effect (negligible in practical computations), the last term is the 

ellipsoidal correction for spherical approximation.  

 

2.2.1. Geoid – quasigeoid correction 

 

If in Eq. (2.21) the Helmert orthometric heights (rather than normal heights) are used, the so-called 

“geoid-quasigeoid correction” has to be applied to the boundary condition formulated in the 

Helmert space (Vanicek et al 1999). The geoid-quasigeoid correction, i.e. due to the difference of 

the normal and orthometric heights, can be approximately described as a function of the simple 

Bouguer gravity anomaly  ,B

tg r  , see (Martinec, 1993), 

 

         
  

 
o

t
rg

HHH



SB

OON ,                                (2.23) 

 

where  
o

 is the normal gravity referred to the ellipsoid surface. 

The formula for the simple Bouguer gravity anomaly   
t

rgSB  reads (Heiskanen and Moritz, 

1967) 

 

                O

o

OSB ρGπ2 HHrrgrg
ott
 ,                  (2.24) 

 

where G  is Newton’s gravitational constant. The third term on the right-hand side of Eq. (2.13) 

stands for the gravitational attraction generated by the infinite Bouguer plate (of mean 

topographical density 
o

ρ  and thickness equal to the orthometric height  OH  of the computation 

point). The geoid-quasigeoid correction can be expressed as  
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  
 

 

 

    









t

rro

t
rgH

r
r

o

SBO

n

,1 




                                                                                        

                 
 

    



t

t

rgH
r

SBO2
,                                                      (2.25) 

 

The Helmert gravity anomaly, Eq. (2.22), with the geoid-quasigeoid correction is computed as 

 

             
2 2

, , , , , , ,h FA t a t a

t t t t g t t n t

t t

g r g r A r A r V r V r r
r r

                      

(2.26) 

 

 

2.2.2. A comment on the ellipsodial corrections 

 

To solve the Stokes boundary value problem, the gravity anomalies referred to the Earth’s surface 

have to be downward continued onto the geoid surface. For this reason, the external gravitational 

field above the geoid has to be harmonic. In the Helmert space the product  hg r   is harmonic 

(Vanicek and Martinec, 1994). Note the presence of the two ellipsoidal corrections in the 

expressions (2.22) and (2.26).  

Wong (2001) showed that ellipsoidal corrections are harmonic. Moreover, if the ellipsoidal 

form of a function is harmonic then so is its spherical form. Thus, the downward continuation can 

conventionally be processed with the “spherical” Helmert anomalies (i.e. without considering the 

ellipsoidal corrections g  and n ). It means that the Helmert gravity anomalies do not need be 

corrected for the ellipsoidal correction before DWC. The appropriate ellipsoidal corrections are 

added to the Helmert anomalies only on the geoid level. Note that this is done in the Helmert space 

rather than in the real space. More details on evaluation of the ellipsoidal corrections will be given 

in Section 5.  

 

 

3.1. Treatment of the atmospheric effects  

 

To evaluate the Helmert anomalies  h ,tg r   referred to the Earth’s surface according to Eq. 

(2.22), the effects of the atmospheric and topographical masses on the gravitational attraction, i.e., 

the direct and secondary indirect atmospheric and topographical effects, have to be evaluated at the 

Earth surface. 

According to Eq. (2.13) the residual gravitational potential of the atmospheric masses  ,t

tV r   is 

given by the difference of the gravitational potential  ,a

t
V r   of atmospheric masses and the 

gravitational potential  ,ca

t
V r   of atmospheric masses condensed onto the geoid (Vanicek et al 

1999).  

Considering the radially distributed atmospheric density  ra  and under the spherical 

approximation of the geoid surface (   Rgr   , where 3 2 baR   is the mean radius of the Earth, 
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Bomford, 1971), the gravitational potential  ,a

tV r   of the atmospheric masses reads (Novák, 

2000) 

 

           
 

lim

O

O

r
1 2

R
, G , , , d da a

t t
r H

V r r l r r r r 

   


              ,          (3.1) 

 

where 
lim

r  is the upper limit of the atmosphere,   rrl  ,,,

 

denotes the spatial distance between 

the  computation point  ,r  and integration points  ,r  

 

:,,,
O

 rr          ,cos2,,, 22  rrrrrrl ,                     (3.2) 

 

and the spherical distance  ,  is given by the cosine theorem  

 

:π,0                         coscoscossinsin,cos .                     (3.3) 

 

Formally, the Earth’s atmospheric masses can be split into the spherical shell between the upper 

limit of the topography 
limO

HR:  ;   O

lim
maxH H , and the upper limit of the 

atmosphere (~ 50 km), and the atmospheric roughness term between the Earth’s surface and the 

upper limit of the topography (Novák, 2000). 

The gravitational potential  ,rV a  of the atmospheric masses is then expressed by (Novák, 2000) 

 

                    
 

lim

O

O

R H
1 2

R
, G , , , d da a

t t
r H

V r r l r r r r 




   


               

             




 
O

limr

limHR

21 dd,,,G
r

t

a rrrrlr  .                     (3.4) 

 

 

The gravitational potential of the condensed atmospheric masses  ,ca

tV r   referred to the earth 

surface reads (Novák, 2000) 

 

              
O

2 1, G R , , ,R dca a

t tV r l r 



          ,                                         (3.5) 

 

where  a  is the surface density of the condensed atmospheric masses. 

According to the principle of the mass-conservation condensation of the atmospheric masses, the 

atmospheric surface density  a  is defined by (Novák, 2000) 

 

       
  


limr

OR

2

2
d

R

1

Hr

aa rrr .                                 (3.6) 

 

Substituting Eq. (3.6) to Eq. (3.5), the gravitational potential  ,ca

tV r   of the condensed 

atmospheric masses takes the following form (Novák, 2000) 
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                          
 

lim

O

O

r
2 1

R
, G d , , ,R dca a

t t
r H

V r r r r l r 

   


            .                    (3.7) 

 

Dividing the integration domain of the atmospheric surface density  a  into the atmospheric 

spherical shell between the upper limit of the topography and the upper limit of the atmosphere, 

and the atmospheric roughness term between the Earth’s surface and the upper limit of the 

topography (Novák, 2000) 

 

                                
 

  






limr

limHR

2

2

limHR

OR

2

2
d

R

1
d

R

1

r

a

Hr

aa rrrrrr  ,                             (3.8) 

 

the gravitational potential  ,RcaV  of the condensed atmospheric masses in Eq. (5.4) becomes 

(Novák, 2000)  

 

              
          

 

lim

O

O

R H
2 1

R
, G d , , ,R dca a

t
r H

V r r r r l r 




   


             

            
lim

lim

O

r
2 1

R H
G d , , ,R da

r
r r r l r 

 


           .                    (3.9) 

 

Combining Eqs. (3.4) and (3.9) an expression for computing the secondary indirect atmospheric 

effect,  
2

,a

t

t

V r
r
  , can be derived. However, the magnitude of this effect is negligible in the 

practical computations. 

The gravitational attraction of the atmospheric spherical shell at the inner point 
lim

HR r  is equal 

to zero (Mac Millan, 1930) 

 

                         
  

0dd
,,,

G 2

O

limr

limHR

limHR

1





 








rr
r

rrl
r

r

r

a 
 .                    (3.10) 

 

Therefore, the direct atmospheric effect on the gravitational attraction is given by the radial 

derivative of the gravitational potential of the atmospheric spherical roughness term (Novák, 2000)  

 

        
 

 

 
  

 
 










 












dd
,,,

G
, 2

O

limHR

OR

1

rr
r

rrl
r

r

rV

Hr

trr

a

trr

a 
 .                    (3.11) 

 

The radial derivative of the inverse spatial distance reads (Martinec, 1998) 

 

                                  
  

 

   
    rrl

rr

r

rrl

t

t

rr t














,,,

,cos,,,
3

1




.                                      (3.12) 

 

The gravitational attraction of the condensed atmospheric masses reads  
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 

 
 

 

lim

O

O

1
R H

2

R

, , ,R,
G d d

t

ca

a

r H

r r r

l rV r
r r r

r r







   


            
    

                                                  
 lim

lim

O

1
r

2

R H

, , ,R
G d da

r

r

l r
r r r

r






 


        
  .      (3.13) 

 

Considering that the gravitational attraction of the spherical condensation layer with the surface 

atmospheric density σ
a
(Ω) at the outer point above the condensation layer (i..e. r>R) is equal to a 

constant (Mac Millan, 1930)  

 

 
 

 
lim lim

lim lim

O

1 2
r r

2 2

2R H R H

, , ,R
G d d 4 da a

r r

r

l r R
r r r r r r

r r


  



    


            
          (3.14) 

 

The final expression for the direct atmospheric effect becomes thus 

 

 

 

 
 

 
 

   
 

 
 

lim

O

O

lim lim

O
lim

O

1
R H

2

R

12
r R H

2 2

2 R H R

, , ,,
G d d

, , ,R
4 d G d d

t t

t

a

a

r H

r r r r

a a

r r H

rr r

l r rV r
r r r

r r

l rR
r r r r r r

r r





  




   
   




      
  

            
 

            


 

  
(3.15)

. 
There is an alternative approach to account for the direct atmospheric effect. The International 

Association of Geodesy (IAG) recommends that the effect of the atmospheric masses may be 

directly reduced on gravity anomalies at the computation point (Moritz 1992). This method 

considers the direct gravity effect (maximum at the sea level, +0.87 mGal) only. However, many 

datasets ignore the IAG recommendation. Therefore, before applying Eq. (3.15) one has to be 

aware whether thr IAG atmospheric effect is (or is not) applied to the gravity data to be used in 

geoid computations.

  

3.2. Treatment of the topographical effects 

 

Note the gravitational potential and attraction of the condensed topographical are evaluated at the 

earths surface. The topographic potential can be evaluated from the classical Newtonian 

integration, i.e,  

 

       
 O

O

R
1 2

R
, G ρ ' , , , d d

H
t

t t
r

V r l r r r r
 






             
                                      (3.16)

 

 

The radial integral of the inverse special distance    1 , , ,tl r r        multiplied by r
’2

 can be 

described by the analytical form (Gradstein and Ryzhik, 1980, see also Martinec 1993)  
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              


        (3.17) 

 

Alternatively, in the computations of all topographical effects the earth’s topomasses can be split 

into the Bouguer shell attraction, and the spherical roughness term. This approach has been 

introduced to eliminate the singularity which may occur in the vicinity of the computation points 

when integrating with a high-resolution data-set.  

The gravitational potential  ,t

tV r 

 

of the topographical masses in the secondary indirect 

topographical effect (the fourth term on the right-hand side of Eq. 2.22) is given by (Martinec and 

Vaníček, 1994b; Martinec, 1998) 
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The first term on the right-hand side of Eq. (3.18) is the gravitational potential of the spherical 

Bouguer shell (of mean topographical density 
o

ρ  and thickness equal to the orthometric height 

 OH  of the computation point  ,r ), see Wichiencharoen (1982). The second term stands for 

the gravitational potential of the spherical roughness term, and the third term represents the 

effect of the anomalous topographical density    distribution on the gravitational 

potential. 

 

The direct topographical effect on the gravitational attraction reads (Martinec and Vaníček, 1994a; 

Martinec, 1998) 
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The first term on the right-hand side of Eq. (3.19) is the negative value of the gravitational 

attraction of the spherical Bouguer shell (Wichiencharoen, 1982). The second term stands for the 

negative value of the gravitational attraction of the spherical roughness term, i.e., the spherical 
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terrain correction, and the third term represents the negative value of the effect of the anomalous 

topographical density    distribution on the gravitational attraction. 

 

The gravitational potential  ,ct

tV r   of the condensed topographical masses is given by (Martinec, 

1998) 
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          ,                                    (3.20) 

 

where    is the surface density of the condensed topographical masses  
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According to Martinec (1998) the gravitational potential  ,RctV  of the condensed topographical 

masses in Eq. (3.20) can be expressed as  
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where the first term on the right-hand side is the gravitational potential of the condensed 

spherical material single layer, the second term stands for the gravitational potential of the 

spherical roughness term of the condensed topographical masses, and the third term represents 

the effect of the anomalous condensed topographical density distribution on the gravitational 

potential. 

 

The gravitational attraction of the condensed topographical masses is defined as the negative radial 

derivative of the gravitational potential  ,rV ct . The radial derivative of the gravitational potential 

 ,rV ct  of the condensed topographical masses reads  
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The gravitational attraction of the condensed topographical masses can further be expressed as (cf. 

Eq. (3.22))  
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where the first term on the right-hand side is the gravitational attraction of the condensed 

spherical Bouguer shell, the second term stands for the gravitational attraction of the spherical 

roughness term of the condensed topographical masses, and the third term represents the effect 

of the anomalous condensed topographical density distribution on the gravitational 

attraction. 

   

Considering the gravitational potential  ,t
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In order to obtain the residual direct topographical effect in the Helmert space the attraction of 

condensation layer (at the surface!) is subtracted from attraction of topographical masses. 

Note that the gravitational attraction of the spherical Bouguer shell (referred to the Earth surface, 

see the first term of Eq. (3.19)) and the attraction of the spherical condensation layer (that is given 

by the first term on th eright hand side of Eq. (3.24)) are equal. Thus they cancel each other 

efficiently out when computing the direct topographic effect, i.e. (cf. Martinec and Vaníček, 1994) 
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 (3.26) 

 

The first term in the right hand side of Eq. (3.26) is the so called “ spherical terrain correction”, and 

th second term stands for the ”spherical condensed terrain correction” (Martinec and Vanicek 
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1994). The third and fourth terms represent together the contribution of the laterally varying 

topographical density to the direct topographic effect.  

 

 

4.   Dirichlet’s boundary value problem and downward continuation  

 

Once the Helmert gravity anomaly field is evaluated on the earth surface (obtained by Eq. (2.22) or 

Eq. (2.26), minus the ellipsoidal corrections, which will be accounted for at the geoid level) it has 

to be continued to the boundary, in our case geoid. This process is called downward continuation of 

the Helmert gravity anomaly. 

The downward continuation is evaluated by the inverse operation to the Poisson integral equation. 

The Poisson integral is given by the following formula (Kellogg, 1929)   
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where     R,,,K  
t

r  is the spherical Poisson integral kernel (e.g., Sun and Vaníček, 1998) 
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and   ,cosP
n

  are the Legendre polynomials (Hobson, 1931). 

The discrete form of the Poisson integral equation, of which the generic form is the Fredholm 

integral equation of the first kind, can be expressed as (Martinec, 1996; Huang, 2002) 
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where  ,h

tr Δg  is the vector of the gravity anomalies referred to the Earth’s surface,  R,h Δg  

is the vector of the gravity anomalies referred to the geoid surface (approximated again by the 

reference sphere of radius R ), and     R,,,  
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rK  is the matrix of the values of the Poisson 

integral kernel multiplied by the factor  
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r/R , by constant π4/1 , and also by the size of the 

discretized surface element  cos . 

 

According to Jacobi’s iteration approach (Ralston, 1965) for a solution of the system of linear 

algebraic equations, the matrix     R,,,  
t

rK  is expressed in the form 
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where E  is the unit matrix.  

Substituting Eq. (4.4) into Eq. (4.3), the following system of the linear algebraic equations is 

subsequently obtained (Martinec, 1996) 
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The system of the linear equations in Eq. (4.5) can be solved iteratively starting with the vector 

  FA

tr Δg  of the geoid-generated gravity anomalies referred to the Earth’s surface  
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The k-th stage of iteration ( 0k )  
k

,RNT
Δg  is carried out according to the equation (Martinec, 

1996) 
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When the difference of results from two successive steps    
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   Δg Δg  is smaller 

than some tolerance  , the iterative process stops. The result of this operation yields the solution of 

Eq. (4.3), see Martinec (1996), 
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where k  is the final number of iteration steps.  

 

The Poisson downward continuation is known to be a unstable problem. Due to the instability, 

existing errors in   h

tr Δg  may appear magnified in the solution. However, when mean values 

are used instead of point values, this problem is somewhat alleviated, as the mean values do not 

exhibit the highest frequencies. 

 

 

5.  Ellipsoidal corrections  

 

As already mentioned, that according to Wong’s (2001) investigations one may add the ellipsoidal 

correction at the geoid level.  

In order to obtain ellipsoidal anomalies from spherical type of anomalies (both referred to the geoid 

level) the following expression can be used  
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                                            (5.1) 

 

where   is geocentric co-latitude and 2e  is the eccentricity of the reference ellipsoid. The second 

term in the left-hand side is the ellipsoidal correction to the gravity disturbance, and the last term is 

the ellipsoidal correction for the spherical approximation. 
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Conveniently, the disturbing potential   trT  (outside of topographic masses) can be estimated 

from spherical – harmonic models of geopotential:  
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Analogeously, the first derivative of the disturbing potential can be estimated via first derivative of 

the Legendre associated functions, as   
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Note that T
H
 in Eq. (5.2) denotes “Helmertized” disturbing potential (i.e., since T

H
 is referred to the 

geoid level then the contribution of topographic masses and DWC need be accounted for). For the 

“Helmertization”  the spherical-harmonic coefficients of topoheights can be used (for more details 

see Section 6).  

 

 

6.  Reference field and spheroid in Helmert’s gravity space 

 

To solve the Stokes boundary value problem, the gravity anomalies over the entire Earth are 

required. To reduce the truncation errors, i.e., the far-zone contribution in the Stokes integration, 

the low and high-frequency parts of Helmert’s gravity field are defined (Vaníček and Sjöberg, 

1991). 

 

The reference gravity field of degree n  is described by the reference gravity potential ),(
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rW  

as follows (Vaníček et al., 1995) 
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where  
mn,

W  denote the geopotential coefficients of the harmonic expansion of the Earth’s 

gravity field,  
mn,

Y  are the normalized spherical functions of degree n  and order m ; 
o

a  is an 

arbitrary parameter of length (usually the major semi-axis of the geocentric reference ellipsoid), 

and n  stands for the maximum degree of retained harmonics.  

 

In the Helmert gravity space the reference gravity potential ),(H

ref
rW  reads  
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where ),(
ref

rV t  is the reference residual gravitational potential of the topographical masses, 

and ),(
ref

rV a  is the reference residual gravitational potential of the atmospheric masses. 
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6.1 Reference residual gravitational potential of topographical masses 

 

The reference residual gravitational potential of the topographical masses ),(
ref

rV t  is defined as 

the difference of the reference gravitational potential of the topographical masses ),(
ref

rV t  

(Vaníček et al., 1995) 
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(6.3) 

 

and the reference gravitational potential of the condensed topographical masses ),(
ref

rV ct

 
(Novák, 2000) 
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For the space 
limO

HR:  r  outside the Brillouin sphere (minimal geocentric sphere 

containing all the Earth’s mass) the reference gravitational potential ),(
ref

rV t  of the topographical 

masses in Eq. (6.3) takes the following form (Vaníček et al., 1995) 
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Differencing the reference gravitational potential ),(
ref

rV t  of the topographical masses, see Eq. 

(6.5), and the reference gravitational potential ),(
ref

rV ct  of the condensed topographical masses, see 

Eq. (6.4), the reference residual gravitational potential ),(
ref

rV t  of the topographical masses 

becomes (Novák, 2000) 
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Since for   RO H  the summation over k  converges very quickly (Vaníček et al., 1995), Eq. 

(6.6) can be rewritten into the following form (Novák, 2000) 
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Expressing the surface harmonics of the orthometric height as  
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the reference residual gravitational potential ),(
ref

rV t  of the topographical masses finally becomes 

(Novák, 2000) 
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6.2 Reference residual gravitational potential of atmospheric masses 

 

The reference gravitational potential of the atmospheric masses
 

),(
ref

rV a  is expressed in the 

following form (Novák, 2000) 
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The atmospheric density  ra  can be expressed by (Sjöberg, 1998; Novák, 2000) 
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where a

o
ρ  is the atmospheric density at the sea level, and the positive integer constant   

( ...,2,1 ) determines the radial atmospheric density distribution model. 

If the integration over the geocentric radius r  from the Earth’s surface to the upper limit of the 

atmosphere is evaluated using the atmospheric model density from Eq. (6.11) 
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the reference gravitational potential ),(
ref

rV a  of the atmospheric masses is rewritten as (Novák, 

2000) 
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Applying the binomial theorem to the evaluation of the surface atmospheric density  a , see 

Novák (2000), 
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the reference gravitational potential of the condensed atmospheric masses  ,
ref

rV ca  takes the 

following form (Novák, 2000) 
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The reference residual gravitational potential of the atmospheric masses  ,
ref

rV a  is then obtained 

as the difference of the reference gravitational potential  ,
ref

rV a  of the atmospheric masses from 

Eq. (6.13), and the reference gravitational potential  ,
ref

rV ca  of the condensed atmospheric masses 

given by Eq. (6.15), so that (Novák, 2000) 
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6.3 Reference gravity potential in Helmert’s gravity space 

 

The reference gravity potential ),(H

ref
rW  in the Helmert gravity space given by Eq. (6.2) can be 

expressed by the following formula (Vaníček et al., 1995) 
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Since the summation in the expansion of Helmert’s reference gravity potential ),(H

ref
rW  is finite, 

i.e., the validity of this expression is not limited to the outside of the Brillouin sphere (in the case of 

the topographical effect) and to the upper limit of the atmosphere (in the case of the atmospheric 

effect), the series in Eq. (6.17) can be used at the geoid surface to evaluate the reference gravity 

field in the Helmert space (Vaníček et al., 1995). If this surface is unknown, the appropriate 

approximation of the geoid surface by the surface of the geocentric reference ellipsoid ( :
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Substituting (Vaníček et al., 1995) 

 

:...,,2,1,
O

nn      
 

  ...sinf11
a 2

1

o 
















n
r

n

g

,                 (6.19) 

 

into Eq. (6.17), Helmert’s reference gravity potential in the ellipsoidal approximation takes the 

following form (Vaníček et al., 1995) 
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6.4 Accounting for the differences of the GGM and GRS constants  

 

According to Vanicek and Kleusberg (1987) also the differences between the constants of the used 

GGM and adopted geodetic reference ellipsoid need be considered. 

Below, the subscript “G” at symbols is related to the EGM values, subscript “E” at some quantities 

will be related to the parameters of the geodetic reference ellipsoid of interest.  

The gravity potential WG can be computed as 
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Similarly, the gravitational potential of the normal ellipsoid, i.e. normal potential UE can be 

expressed as a harmonic series 
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The difference between the gravitational potentials of the GGM from Eq. (6.21) and the normal 

potential Eq. (6.22) at the same point on the geoid defines the disturbing potential TG as 
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where 
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The zero degree geoid undulation term is thus  

 

0
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                                                                              (6.25)  

 

At the compilation of the AUS-SEGM (Baran et al, submitted) the NASA GSFC and NIMA Joint 

Geopotential Model EGM96, complete to degree and order 360 (Lemoine et al. 1998) was used. 

The parameters of the Geodetic Reference System GRS-80 (Moritz 1992) are conventionally used 

in the geoid computations nowadays, the main characteristics of both models are compared in 

Table 1. 

 

Table 1 The parameters of the EGM96 and GRS-80 

 

Parameter 
EGM96 GRS-80 

Equatorial radius 6378136.3 m 6378137 m 

Gravity Mass constant 398600.4415  
3

2
km

s
 398600.5 

3

2
km

s
 

 

From the presented values and taking into account the following values R=6371 km and  = 981 

Gal, then the zero degree term becomes  

 

0 0.936G EGM GM
N m

r


                                                                                                     (6.26) 

 

 

 

6.5  Reference gravity anomaly and reference spheroid in Helmert’s gravity space 

 

According to the boundary condition (Heiskanen and Moritz, 1967), Helmert’s reference gravity 

anomaly   
g

rg H

ref

 

can be expressed as follows 
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where         
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 is Helmert’s reference disturbing gravity potential.  

 

The reference spheroid is given by the reference co-geoidal heights  H

ref
N . Applying the Bruns 

formula (Bruns, 1878), the reference co-geoidal height  H
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N  reads 

   

:
O

       
  
 

o

g
rT

N




H

refH

ref
.                     (6.28) 

 

 

 

7.   Stokes’ boundary value problem in Helmert’s gravity space 

 

The equipotential boundary surface in the Helmert gravity space, which is given by the co-geoidal 

heights  HN , can be evaluated from Helmert’s gravity anomalies   ,RHg  referred to the 

reference sphere of radius R  by applying the Stokes integral formula (Stokes, 1849) and the Bruns 

formula (Bruns, 1878) in the following equation (Heiskanen and Moritz, 1967)    

 

:
O

     
 

      


d,S,R
π4

R

O

H

o

H 


gN .                     (7.1) 

 

The homogenous spherical Stokes function   ,S , see Stokes (1849), is given by (e.g., 

Heiskanen and Moritz, 1967) 

 

:,
O

           
   

2

,
sin6

2

,
cosec1,cosP

1

12
,S

n
2










 








n n

n

 

 

            
   








 





2

,
sin

2

,
sinln,cos3,cos5 2 

 .             (7.2) 

 

To evaluate the co-geoidal height  HN  by a surface integration according to the Stokes integral 

in Eq. (7.1), the gravity anomalies   ,RHg  have to be known over the entire Earth. 

 

 

7.1 Spheroidal Stokes’ function 

 

In practice, the gravity anomalies over the entire Earth are not available. For this reason Vaníček 

and Kleusberg (1987) introduced the idea to separate the summation over n  in the Stokes function 

given by Eq. (7.2) into the low-degree part and the high-degree part: 

 

:,
O


  

        








 





,cosP
1

12
,cosP

1

12
,S

n
1

n
2


nn

n

n n

n

n

n
.              (7.3) 
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The second term on the right-hand side of Eq. (7.3) represents the spheroidal Stokes function 

  


,S
nn
 , see Vaníček and Kleusberg (1987); Vaníček and Featherstone (1998), 

 

:,
O

           



 






,cosP
1

12
,S

n
1

nn


nn n

n
.                                 (7.4) 

 

Considering Eq. (7.3), Eq. (7.1) becomes (Martinec, 1993) 

 

:
O

        
 

     



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
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1
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π4

R
n

2

H

o

HH

ref

H

O




n

n
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n

n
gNNN  

 
     




 





d,cosP
1

12
,R

π4

R
n

1

H

o O


 nn n

n
g .     (7.5) 

 

The reference co-geoid (spheroid) of degree n  is given by the reference co-geoidal heights 

 H

ref
N , and  



H

nn
N  represents the high-frequency (residual) co-geoid (Novák et al., 2001). 

According to this approach the reference spheroid determined from the satellite data is assumed 

(Vaníček and Kleusberg, 1987). The surface integration by the Stokes integral formula is employed 

to compute the high-frequency part of the co-geoid only from the terrestrial gravity data.  

 

 

7.2 Modified spheroidal Stokes’ function 

 

The integration domain 
O

  of the Stokes integral formula can be divided into the near-zone 

integration sub-domain 
oψ  (defined on the interval o

 ,0 ) and the far-zone integration sub-

domain 
oψO

  (on the interval π,
o

  ), see Vaníček and Kleusberg (1987). 

 

The near-zone contribution to the high-frequency co-geoidal height  


H

,
oψnn

N  reads (Martinec, 

1993) 

 

 :
O

                    
 

     




  d,S,R
π4

R
nn

H

o

H

,

oψ

oψ



gN

nn
,                   (7.6) 

 

and the far-zone contribution to the high-frequency co-geoidal height  


H

,
oψOnn

N  is given by  

 

:
O

       
 

     




  d,S,R
π4

R
nn

H

o

H

,

oψO

oψO



gN

nn .                  (7.7) 

 

According to Molodensky et al. (1960), Vaníček and Kleusberg (1987) proposed to modify the 

spheroidal Stokes function   


,S
nn
  so that the far-zone contribution (truncation error) 

 


H

,
oψOnn

N  is minimal in the least-squares sense. The modified spheroidal Stokes’s function 

  


,,S
nn


o

 is expressed by (Vaníček and Kleusberg, 1987)  
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    
   







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


,π,,,S

,,0,0
,,S

nn

nn

o

o

o



                                  (7.8)  

 

and then expanded into the series of the Legendre polynomials 

 

:π,0           









1

nnnn
,cosP,,Q

2

12
,,S

nn
oo

n
 ,             (7.9) 

 

where   ,,Q
n


o

 are the truncation coefficients for the modified spheroidal Stokes 

function   


,,S
nn


o

, see Molodensky et al. (1960). Multiplying Eq. (7.9) by the Legendre 

polynomials   ,cosP
m

 , i.e.,  

 

:π,0     

    

              

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2

12
,cosP,,S

m
1

nnmnn


nn
oo

n
,     (7.10)   

   

and integrating the result over the interval π,0 , the following expression is found  

 

       




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              


 





1

π

0

mnn
d,sin,cosP,cosP,,Q

2

12

nn
o

n



 .      (7.11) 

 

Using the orthogonality property of the Legendre polynomials (Hobson, 1931) 

 

:,π,0 mn                0d,sin,cosP,cosP
π

0

mn




 ,                  (7.12) 

 

:,π,0 mn         
12

2
d,sin,cosP

π

0

2

n



 n

 ,                                         (7.13) 

 

and substituting for   


,,S
nn


o

 in Eq. (7.8), the truncation coefficients   ,,Q
n


o

 of the 

modified spheroidal Stokes function become (Molodensky et al., 1960) 

 

:
O

              





π

0

nnnn
d,sin,cosP,,S,,Q




oo

.                      (7.14) 

 

 

7.3 Near-zone contribution to high-frequency co-geoid 

 

Helmert’s gravity anomaly referred to the geoid surface can be divided into the low-frequency 

(reference) gravity anomaly    


,R,R H

ref

H gg
nn

 and the high-frequency (residual) gravity 

anomaly  


,RH

nn
g . The low-frequency Helmert’s gravity anomalies   ,RH

ref
g  are evaluated 
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according to Eq. (6.21). The high-frequency Helmert’s gravity anomalies  


,H Rg
nn

 are evaluated 

by subtracting the reference gravity anomalies   ,RH

ref
g  from Helmert’s gravity anomalies 

computed according to Eq. (5.1).  

 

The near-zone contribution of the high-frequency Helmert’s gravity anomalies to the co-geoidal 

height  


H

, onn
N  is expressed by (Novák, 2000) 

 

:
O
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 

     

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R
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o

H

,
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


onnnn
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The Stokes integral is only weakly singular for the spherical distance 0  (Martinec, 1993). A 

classical method for treating a removable singularity consists of adding and subtracting the value of 

gravity anomaly at the singular point, see Martinec (1993), 

 

:
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7.4 Far-zone contribution to high-frequency co-geoid 

 

The far-zone contribution of the high-frequency Helmert’s gravity anomalies  


,RH

nn
g  to the co-

geoidal height  


H

,
oψOnn

N  is given by  

 

:
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If the gravity anomalies are not available over the entire Earth, the numerical computation can be 

done by using the following equation (Novák, 2000) 

 

:
O
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       
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H
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H
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n
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 8. Primary indirect effect  

 

After the evaluation of the Stokes boundary value problem in the Helmert gravity space the 

Helmert co-geoid is obtained. To find the geoid in the real space, the primary indirect topographical 

and atmospheric effects on the geoidal heights are evaluated (Vaníček and Martinec, 1994).  

 

Helmert’s disturbing gravity potential referred to the geoid surface (in the spherical approximation) 

reads  
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:
O

                 ,R,R,R,RH at VVTT  ,                      (8.1) 

 

where  ,RtV  is the residual gravitational potential of the topographical masses, and 

 ,RaV  is the residual gravitational potential of the atmospheric masses. 

 

The residual gravitational potential of the topographical masses  ,RtV  is defined as the 

difference of the gravitational potential  ,RtV  of the topographical masses and the 

gravitational potential  ,RctV  of the condensed topographical masses (Martinec et al., 1993) 

 

:
O

                        ,R,R,R cttt VVV .                            (8.2) 

 

The residual gravitational potential of the atmospheric masses  ,RaV  is given by the difference 

of the gravitational potential  ,RaV  of the atmospheric masses and the gravitational potential 

 ,RcaV  of the condensed atmospheric masses (Vaníček et al., 1999) 

 

:
O

                        ,R,R,R caaa VVV .                           (8.3) 

 

Applying the Bruns formula (1878) to the disturbing gravity potential  ,RT  and Helmert’s 

disturbing gravity potential  ,RHT , i.e.,  

 

:
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the relation between the geoidal height  N  and the co-geoidal height  HN  is obtained 

(Martinec, 1993)  
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

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
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H .       (8.6) 

 

The first term on the right-hand side of Eq. (8.6) is the primary indirect topographical effect on 

the geoidal heights, and the second term represents the primary indirect atmospheric effect on 

the geoidal heights. 

 

 

8.1 Primary indirect topographical effect 

 

The gravitational potential  ,RtV  of the topographical masses referred to the geoid surface is 

given by (Martinec, 1993)  
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:
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The gravitational potential  ,RctV  of the condensed topographical masses referred to the geoid 

surface reads (Martinec, 1993) 
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Substituting the gravitational potential  ,RtV  of the topographical masses from Eq. (8.7) and the 

gravitational potential  ,RctV  of the condensed topographical masses from Eq. (8.8) into the 

residual gravitational potential of the topographical masses  ,RtV  in Eq. (8.2), the primary 

indirect topographical effect on the geoidal heights takes the following form (Martinec, 1993) 
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8.2 Primary indirect atmospheric effect 

 

The gravitational potential  ,RaV  of the atmospheric masses referred to the geoid surface is 

given by (Novák, 2000) 
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The gravitational potential  ,RcaV  of the condensed atmospheric masses referred to the geoid 

surface reads (Novák, 2000)  
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Substituting Eqns. (8.10) and (8.11) into Eq. (8.3), the primary indirect atmospheric effect on the 

geoidal heights takes the following form 
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9.   Effect of Helmert’s condensation to the first degree term 

 

Conventionally, the mass center of the Earth is located at the origin of the coordinate system. Often 

the Helmert condensation is done under the condition that the topographical mass will be 

preserved. Due to this the mass-center of the Helmert body (a geoid model from the Stokes-

Helmert scheme) will be at a new location, with Cartesian coordinates as  follows 

Xh = (-0.006 ; -0.015 ; +0.002) [m] (Martinec (1998), p. 30). 

In other words, the maximum shift, 16 mm, of the Helmert body is toward geodetic Longitude ~ 

248° and geodetic latitude +7°. At this location one needs to introduce a correction to the Helmert 

geoidal heights: -16 mm.  

On the opposite site of the globe (i.e at B= -7° and L=68°) the correction to the Helmert body is 

+16 mm. 
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9.   Effect of Helmert’s condensation to the first degree term 

 

Conventionally, the mass center of the Earth is located at the origin of the coordinate system. Often the Helmert 

condensation is done under the condition that the topographical mass will be preserved. Due this the mass-center of the 

Helmert body (a geoid model from the Stokes-Helmert scheme) will be at a new location, which Cartesian coordinates 

are as  follows 

Xh = (-0.006 ; -0.015 ; +0.002) [m] (Martinec (1998), p. 30). 

In other words, the maximum shift, 16 mm, of the Helmert body is toward geodetic Longitude ~ 248° and geodetic 

latitude +7°. At this location one needs to introduce a correction to the Helmert geoidal heights: -16 mm.  

On the opposite site of the globe (i.e at B= -7° and L=68°) the correction to the Helmert body is +16 mm 

 

However, a double check shows that the magnitude and the direction of this shift differes slightly from the one of 

Martinec (1998). He has used a set of spherical-harmonic coefficients of the squared topographical heights. He claims 

that the following coefficients are originating from TUG-87  

(H^2)10 =  -0.847 e5 (Cnm) 

(H^2)11 =  -0.207e6 (Cnm) 

(H^2)11 =  +0.509e6 (Snm) 

 

The above coefficients are inserted into Eq. 2.17, the results are shown by Eq. 2.19 (both Martinec (1998) . 

As a matter of fact the TUG-87 coefficients (squared heights are as follows): 

 

  H2 (H. squred) coefficients up to 90/90 in m2 originated from TUG87 data 

   0  0   0.4464025065D+06   0.0000000000D+00 

   1  0  -0.2161658303D+05   0.0000000000D+00 

   1  1   0.8572045522D+05   0.2030582602D+06 

   2  0   0.2837114475D+06   0.0000000000D+00 

   2  1  -0.2092626193D+05   0.2064845705D+06 

   2  2  -0.2356146467D+06   0.3491766549D+05 

 

Well, considering the “correct” coefficients, then the triplet Xh of Cartesian coordinates becomes  

Xh = (+0.0022 ; -0.0053 ; +0.0004) Unit is metre [m] 

The magnitude of the above vector is equal to 6 mm (i.e. three times less than estimated in Martinec (1998) ). 

Now the maximum shift, 6 mm, of the Helmert body is toward geodetic Long ~ 292° and geodetic latitude +4° (South 

Venezuela). At this location one needs to introduce a correction to the Helmert geoidal heights: -6 mm. On the opposite 

site of the globe (i.e at B= -4° and L=112°, island Java) the correction to the Helmert body is +6 mm. 

a=6378137 %suur pooltelg GRS 

e2=0.006694380023 % GRS 

GEOID=ones(690*690)*10; 

N=a*((1-e2*sin(B*pi/180).*sin(B*pi/180)).^(-0.5)); 

X=(N+GEOID).*cos(B*pi/180).*cos(L*pi/180); 

Y=(N+GEOID).*cos(B*pi/180).*sin(L*pi/180); 

Z=(N*(1-e2)+GEOID).*sin(B*pi/180); 

%clear N 

 

% martinec (1998) page 31 

X_new=X-0.0022; 

Y_new=Y+0.0053; 

Z_new=Z-0.00042; 

 

P=sqrt(X_new.*X_new+Y_new.*Y_new); 

 

THETA=atan(Z_new./(P*sqrt(1-e2))); 

FI=atan((Z+a*e2*sin(THETA).*sin(THETA).*sin(THETA)./sqrt(1-e2))./(P-

a*e2*cos(THETA).*cos(THETA).*cos(THETA))); 

 

H=P./cos(FI)-N; 

mean(mean(H-GEOID)) 


