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PREFACE 

These notes have been written for undergraduate students 

in Surveying Engineering at the University of New Brunswick. The 

overall objective is the development of a set of practical models 

for the determination of astronomic azimuth, latitude and longitude 

that utilize observations made to celestial objects. It should be 

noted here that the emphasis in these notes is placed on the so

called second-order geodetic astronomy. This fact is reflected 

in the treatment of some of the subject matter. To facilitate 

the development of models, several major topics are covered, namely 

celestial coordinate systems and their relationships with terrestrial 

coordinate systems, variations in the celestial coordinates of a 

celestial body, time systems, timekeeping, and time dissemination. 

Finally, the reader should be aware of the fact that much 

of the information contained herein has been extracted from three 

primary references, namely Mueller [1969], Robbins [1976], and 

Krakiwsky and Wells [1971]. These, and several other's, are referenced 

extensively throughout these notes. 

D.B. Thomson. 
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1. INTRODUCTION 

Astronomy is defined as [Morris~ 19751 "The scientific 

study of the universe beyond the earth~ especially the observation, 

calculation, and theoretical interpretation of the positions, dimensions, 

distribution~ motion, composition, and evolution of celestial bodies and 

phenomena". Astronomy is the oldest of the natural sciences dating back to 

ancient Chinese and Babylonian civilizations. Prior to 1609, when the 

telescope was invented, the naked eye was used for measurements. 

Geodetic astronomy, on the other hand, is described as [Mueller, 

1969] the art and science for determining, by astronomical observations, 

the positions of points on the earth and the azimuths of the geodetic lines 

connecting such points. When referring to its use in surveying, the terms 

practical or positional astronomy are often used. The fundamental concepts 

and basic principles of "spherical astronomy", which is the basis for geodetic 

astronomy, were developed principally by the Greeks, and were well established 

by the 2nd century A.D. 

The treatment of geodetic astronomy in these notes is aimed at 

the needs of undergraduate surveying engineers. To emphasise the needs, listed 

below are ten reasons for studying this subject matter: 

(i) a knowledge of celestial coordinate systems, transformations 

amongst them, and variations in each of them; 

(ii) celestial coordinate systems define the "linkll between satellite 

and terrestrial coordinate systems; 

(iii) the concepts of time for geodetic purposes are developed; 

(iv) tidal studies require a knowledge of geodetic astronomy; 

1 
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(v) when dealing with new technologies (e.g. inertial survey systems) 

an understanding of the local astronomic coordinate system is 

essential; 

(vi) astronomic coordinates of terrain points, which are expressed 

in a "natural" coordinate system, are important when studying 

3-D terrestrial networks; 

(vii) astrondmically determined azimuths provide orientation for 

terrestrial networks; 

(viii) the determination of astrogeodetic deflections of the vertical 

are useful for geoid determination, which in turn may be required 

for the rigorous treatment of terrestrial observations such as 

distances, directions, and angles; 

(ix) geodetic astronomy is useful for the determination of the origin 

and orientation of independent surveys in remote regions; 

(x) geodetic astronomy is essential for.the demarcation of astro

nomically defined boundaries. 

1.1 Basic definitions 

In our daily work as surveyors, we commonly deal with three different 

surfaces when referring to the figure of the earth: (i) the terrain, (ii) 

an ellipsoid, and (iii) the geoid. 

The physical surface of the earth is one that is extremely difficult 

to model analytically. It is common practice to do survey computations on a 

less complex and modelable surface. The terrain is, of course, that surface 

on or from which all terrestrially based observations are made. 

The most common figure of the earth in use, since it best approxi

mates the earth's size and shape is a biaxial ellipsoid. It is a purely 
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mathematical figure, defined by the parameters a (semi-major axis) b (semi

minor axis) or a and f (flattening), where f=(a-b)/a (Figure 1-1). This figure 

is commonly referred to as a "reference ellipsoid", but one should note that 

there are many of these for the whole earth or parts thereof. The use of a 

biaxial ellipsoid gives rise to the use of curvilinear geodetic coordinates -

<P (latitude), A (longitude) ,and h (ellipsoidal height) (Figure 1-2). Obviously, 

since this ellipsoid is a "mathematical" figure of the earth, its position and 

orientation within the earth body is chosen at will. Conventionally, it has 

been positioned non-geocentrically, but the trend is now to have a geocentric 

datum (reference ellipsoid). Conventional orientation is to have parallel~m of 

the tertiary (:Z) axis with the mean rotation axis of the earth, and parallelism' 

of the primary (X) axis with the plane of the Greenwich Mean Astronomic 

Mer:t.dian. 

Equipotential surfaces (Figure 1-3), of which there are an infinite 

number for the earth, can be represented mathematically. They account for the 

physical properties of the earth such as mass, mass distribution, and rotation, 

and are "real" or physical surfaces of the earth. The common equipotential 

surface used is the geoid, defined as [Mueller, 1969] " t hat equipotential 

surface that most nearly coincides with the undisturbed mean surface of the 

oceans". Associated with these equipotential surfaces is the plumhline 

(Figure 1~3). It is a line of force that is everywhere normal to the equipo

tential surfaces; thus, it is a spatial curve. 

We now turn to definitions of some fundamental quantities in geodetic 

astronomy namely, the astronomic latitude (4)), astronomic longitude (A), and 

orthometricheight (H). These quantities are sometimes referred to as 

"natural" coordinates, since, by definition, they are given in terms of the 
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"real" (physical) properties of the earth. 

Astronomic latitude (~) is defined as the angle between the 

astronomic normal (gravity vertical) (tangent to the plumb1ine a.t the point 

of interest) and the plane of the instantaneous equator measured in the 

astronomic meridian plane (Figure 1 ... 4). Astronomic longitude (/I.) is the 

angle between the Greenwich Mean Astronomic Meridian and the astronomic 

meridian plane measured in the plane of the instantaneous equator (Figure 

1 ... 4). 

The orthometr1c height (H), is the height of the point of interest 

.above the geoid, measured along the plumbline, as obtained from spirit 

leveling and en route gravity observations (Figure 1-3). Finally, after some 

reductions of ~ and A for polar motion and plumb line curvature, one obtains . 

the "reduced" astronomic coordinates (~, A, H) referring to the geoid and the 

mean rotation axis of the earth (more will be said about this last point in 

these notes). 

We are now in a position to examine the relationship between the 

Geodetic and Astronomic coordinates. This is an important step for surveyors. 

Observations are made in the natural system; astronomic coordinates are expressed 

in the same natural system; therefore, to use this information for computations 

in a geodetic system, the relationships must be known. 

The astro-geodetic (relative) deflection of the vertical (a) at a 

point is the angle between the astronomic normal at that point and the normal 

to the reference ellipsoid at the corresponding point (the point may be on 

the terrain (at) or on the geoid{s ) (Figure 1-5). 
g 

e is normally split into 

t~o components, ~ - meridian and n - prime vertical (Figure 1-6). Mathema-

tically, the components are given by 

~ = ~- !fl, 
n = (A-A) cos !fl, 

(1-1) 

(1-2) 
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which yields the geodetic-astronomic coordinate relationships we were seeking. 

The geoida1 height (N) is the distance between the geoid and a 

reference ellipsoid, measured along an ellipsoidal normal (Figure 1-5). 

Mathematically, N is given by (with an error of less than 1mm) tie1sianen 

and Moritz, 1967] 

N = h-H. (1-3) 

Finally, we turn our attention to the azimuths of geodetic lines 

between points. A geodetic azimuth (a), on the surface of a reference 

ellipsoid, is the clockwise angle from north between the geodetic meridian 

of i and the tangent to the ellipsoidal surface curve of shortest distance 

(the geodesic) between i and j (Figure 1-7). The astronomic azimuth (A) 

is the angle between the astronomic meridian plane of i and the astronomic 

normal plane of i through j (Figure 1-8), measured clockwise from north. 

The relationship between these A and a is given by the 

Laplace Azimuth equation [e.g. Heiskanen and Moritz~ 1967] 

(A-a) = ntan~ + (~sina - ncosa) cot z, (1-4) 

in which z is the zenith distance. Note that the geodetic azimuth, a, must 

also be corrected for the height of target (skew-normal) and normal section -

geodesic separation. 
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2. CELESTIAL COORDINATE SYSTEMS 

Celestial coordinate systems are used to define the coordinates of 

celestial bodies such as stars. There are four main celestial coordinate 

systems - the ecliptic,'rightascelision, hour angle, and horizon - each 

of which are examined in detail in this chapter. There are two fundamental 

differences between celestial coordinate systems and terrestrial and orbital 

coordinate systems. First, as'a consequence of the great distances involved, 

only directions are considered in celestial coordinate sytems. This means 

that all vector quantities dealt with can be considered to be unit vectors. 

The second difference is that celestial geometry is spherical rather than 

ellipsoidal which simplifies the mathematical relationships involved. 

2.1 The Celestial Sphere 

The distance from the earth to the nearest star is more than 109 

earth radii, thus the dimensions of the earth can be considered as negligible 

compared to the distances to the stars. For example, the closest star is 

estimated to be 4 light years (40xl012 km) from the earth (a CENTAURI), while 
" 

others are VEGA at 30 light years, a USAE MINORIS (Polaris) at 50 light 

years. Our sun is only 8.25 light minutes (155xl06 km) from the earth. As 

a consequence of those great distances, stars, considered to be moving at 

near the velocity of light, are perceived by an observer on earth to be moving 

very little. Therefore, the relationship between the earth and stars can be 

closely approximated by considering the stars all to be equidistant from the 

earth and lying on the surface of a celestial sphere, the dimension of which 

is so large that the earth, and indeed the solar system, can be considered 

to be a dimensionless point at its centre. Although this point may be 

14 
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considered dimensionless, relationships between directions on the earth 

and in the solar system can be extended to the· celestial sphere. 

The instantaneous rotation axis of the earth intersects the 

celestial sphere at the north and south celestial poles (NCP and SCP 

respectively) (Figure 2-1). The earth's equitorial plane extented outwara 

intersects the celestial sphere at the celestial equator (Figure 2-1). 

The vertical (local-astronomic normal) intersects the celestial sphere at 

a point above the observer, the zenith, and a point beneath. the observer, 

the nadir (Figure 2-1). A great circle containing the poles, and is thus 

perpendicular to the celestial equator, is called an hour circle (Figure 2-1). 

The observer's vertical plane, containing the poles, is the hour circle through 

the zenith and is the observer's 'celestial meridian (~igure 2-1). A small 

circle parallel to the celestial equator is called a celestial parallel. Another 

very important plane is that which is normal to the local astronomic vertical 

and contains the observer (centre of the celestial sphere); it is the 

celestial horizon (Figure 2-1). The plane normal to the horizon passing 

through the zenith is the vertical plane. A small circle parallel to the 

celestial horizon is called an almucantar~ The vertical plane normal to the 

celestial meridian is called the prime vertical. The intersection points of 

the prime vertical and the celestial horizon are the ~ and west points. 

Due to the rotation of the earth, the zenith (nadir), vertical 

planes, almucantars, the celestial horizon and meridian continuously change 

their positions on the celestial sphere, the effects of which will be studied 

later. If at any instant we select a point S on the celestial sphere (a star), 

then the celestial meridian and the hour and vertical circles form a spherical 

triangle called the astronomic triangle of S. Its verticies are the zenith 
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(Z), the north celestial pole (NCP) and S(Figure 2-2). 

There are also some important features on the celestial sphere 

related the revolution of the earth about the sun, or in the reversed concept, 

the apparent motion of the sun about the earth. The most important of these 

is the ecliptic, which may be described as the approximate (within 2" [Mueller, 

1969]) apparent path of the sun about the earth.(Figure 2-3). The ecliptic 

intersects the celestial equator in a line connecting theeqtiinoxes. The 

vernal equinox is that point intersection where the apparent sun crosses the 

celestial equator from south to north. The other equinox is the autumnal 

equinox. The acute angle between the celestial equator and the ecliptic is 

termed the obliquity of the ecliptic (e:=23°27') (Figure 2-3). The points at 

90 0 from either equinox are the points where the sun reaches its greatest 

angular distance from the celestial equator, and they are the summer solstice 

(north) and winter solstice (south). 

In closing this section we should note that the celestial sphere 

is only an approximation of the true relationship between the stars and an 

observer onthe earth's surface. Like all approximations, a number of corrections 

are required to give a precise representation of the true relationship. These 

corrections represent the facts that: the stars are not stationary points 

on the celestial sphere but are really moving (proper motion); the earth's 

rotation axis is not stationary with respect to the stars (precesion, nutation); 

the earth is displaced from the centre of the celestial sphere (which is taken 

as the centre of the sun) and the observer is displaced from the mass centre 

of the earth (parallax); the earth is in motion around the centre of the 

celestial sphere (aberration); and directions measured through the earth's 

atmosphere are bent by refraction. All of these effects are discussed in 



19 

I -
AUTUMNAL I .". .". -

SUMMER 
SOLSTICE 

_ ~QLEN~X\_I __ ---
.". "'" I .... '" 

.~ 

1\ 
\-----o::~--I-OBL IQ U I TV 

---~~~~V~E-R-NAL OF THE 
I EQU INOX (¥) ECLIPTIC 
t 

I 

I 
I 

SCP 

. Figure 2-3 

Sun's Apparent Motion 



20 

detail in these notes. 

2.2 Celestial Coordinate Systems 

Celestial coordinate systems are used to define the positions of 

stars on the celestial sphere. Remembering that the distances to the stars 

are very great, and in fact can be considered equal thus allowing us to 

treat the celestial sphere as a unit sphere, positions are defined by directions 

only. One component or curva1inear coordinate is reckoned from a primary 

reference plane and is measured perpendicular to it, the other from a 

secondary reference p1an~· and is measured in the primary plane. 

In these notes, two methods of describing positions are given. The 

first is by a set of cur valin ear coordinates, the second by a unit vector 

in three dimensional space expressed as a function of the curva1inear 

coordinates. 

2.2.1 Horizon System 

The primary reference plane is the celestial horizon, the secondary 

is the observer's celestial meridian (Figure 2-4). This system is used to 

describe the position of a celestial body in a system peculiar to a topogra

phically located observer. The direction to the celestial body S is defined 

by the a1titude(a) and azimuth (A) (Figure 2-4). The altitude is the angle 

between the celestial horizon and the point S measured in the plane of the 

vertical circle (0° - 90°). The complimentary angle z =90-a, is called the 

zenith distance. The azimuth A is the angle between the observer's celestial 

meridian and the vertical circle through S measured in a clockwise direction 

(north to east) in the plane of the celestial horizon (0° - 360°). 
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To determine the unit vector of the point S in terms of a and A, we 

must first define the origin and the three axes of the coordinate system. 

The origin is the he1iocentre (centre of mass of the sun [e.g. Eichorn, 1974]~. 

The primary pole (Z) is the observer's zenith (astronomic normal or gravity 

vertical). The primary axis (X) is directed towards the north point. The 

secondary (Y) axis is chosen so that the system is left-handed (Figure 2-5 

illustrates this coordinate system). Note that although the horizon system 

is used to describe the position of a celestial body in a system peculiar to 

a topographically located observer, the system is heliocentric and not 

topocentric. 

The unit vector describing the position of S is given by 

[
cosa COSAJ 
cosa sinA 

sina 

T Conversely, a and A, in terms of [X,Y,Z] are (Figure 2-5) 

-1 a = sin Z, 

-1 Y 
A = tan (IX). 

2.2.2 Hour Angle System 

(2-1) 

(2-2) 

(2-3) 

The primary refer~nce plane is the celestial eguator, the secondary 

is the hour circle containing the zenith (obserser's celestial meridian). The 

direction to a celestial body S on the celestial sphere is given by the 

declination (0) and hour angle (h). The declination is the angle between the 

ce1ectia1 equator and the body S, measured from 00 to 90 0 in the plane of the 

hour circle through S. The complement of the declination is called the 

polar distance. The hour angle is the angle between the hour circle of S 

* Throughout these notes, wemake'the valid approximation heliocentre = 
barycentre of our solar system. 
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and the observer's celestial meridian (hour circle), and is measured from 

h h o to 24 , in a clockwise direction (west, in the direction of the star's 

apparent daily motion) in the plane of the celestial equator. Figure 2-6 

illustrates the hour angle system's curva1inear coordinates. 

To define the unit vector of S in the hour angle system, we define 

the coordinate system as follows (Figure 2-6). The origin is the he1iocentre. 

The primary plane is the equatorial plane, the secondary plane is the celestial 

meridian plane of the observer. The primary pole (Z) is the NCP, the primary 

axis (X-axis) is the intersection of the equatorial and observer's celestial 

meridian planes. The Y-axis is chosen so that the system is left-handed. 

The hour angle system rotates with the observer. The unit vector is 

[
XL [coso: COSh] 
Y • cos& sinh 

Z sinS 

and ~ and h are given by 

o = sin-1Z , 

-1 
h = tan (Y/x). 

2.2.3 Right Ascension System 

, (2-4) 

(2-S) 

(2-6) 

The right ascension system is the most important celestial system 

as it is in this system that star coordinates are published. It also serves 

as the connection between terrestrial, celestial, and orbital coordinate 

systems. The primary reference plane is the celestial equator and the secondary 

is the equinocta1 co1ure (the hour circle passing through the NCP and SCP 

and the vernal and autumnal equinoxes){Yigure 2-8). The direction to a star 

S is given by the right ascension (a) and declination (6), the latter of which 
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has already been defined (RA system). The right ascension is the angle 

between the hour circle of S and the equinoctal colure, measured from the 

vernal equinox to the east (counter clockwise) in the plane of the celestial 

h h equator from 0 to 24 • 

The right ascension system coordinate axes are defined as having 

a heliocentric origin, with the equatorial plane as the primary plane, the 

primary pole (Z) is the NCP, the primary axis (X) is the vernal equinox, 

and the Y-axis is chosen to make the system right-handed (Figure 2-9). The 

unit vector describing the direction of a body in the right-ascension system 

is 
: ... 

X cos' 0 cos<~ 

Y - cos 15 sino. , (2-7) 

Z 
RA sino 

and a and 0 are expressed as 
-1/<" 

a - tan (Y!X) , (2-8) 

15 = sin-lz (2-9) 

2.2;4 Ecliptic System 

The ecliptic system is the celestial coordinate system that is closest 

to being inertial, that is, motionless with respect to the stars. However, 

due to the effect of the planets on the earth-sun system, the ecliptic plane 

is slowly rotating (at '0".5 per year) about a slowly moving axis of rotation. 

The primary reference plane is the ecliptic, the secondary reference plane is 

the ecliptic meridian of the vernal equinox (contains the north and south 

ecliptic poles, the vernal and autumnal equinoxes) (Figure 2-10). The direction 
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to a point S on the celestial sphere .is given by the ecliptic latitude (B) 

and ecliptic longitude (A). The ecliptic latitude is the angle, measured 

in the ecliptic meridian plane of S, between the ecliptic and the normal OS 

(Figure 2~10). The ecliptic longitude is measured eastward in the ecliptic 

plane between the ecliptic meridian of the vernal equinox and the ecliptic 

meridian of S (Figure 2-10). 

The ecliptic system coordinate axes are specified as follows 

(Figure 2-11). The origin is heliocentric. The primary plane is the ecliptic 

plane and the primary pole (Z) is the NEP (north ecliptic pole). The primary 

axis (X) is the normal equinox, and the Y-axis is chosen to make the system 

right-handed. The unit vector to S is 

x 

Y = 

Z 

while B and A are given by 

S = 

A = 

2.2.5 Summary 

cosB COSA 

cosS sinA 

sinS 

-1 sin Z, 

-1 tan (y/X) 

, 

The most important characteristics of the coordinate systems, 

(2-10) 

(2-11) 

(2-12) 

expressed in terms of curva1inear coordinates, are given in Table 2-1. The 

most important characteristics of the cartesian coordinate systems are shown 

in Table 2-2 (Note: ~ and u in Table 2-2 denote the curvilinear coordinates 

measured in the primary reference plane and perpendicular to it respectively). 
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Reference Plane Parameters Measured from the 

System 
Primary Secondary Primary Secondary 

Horizon Celestial horizon Celestial meridian (half Alti.tude Azimuth 
containi.ng north pole) -90~!:a !:+900 00<A<3600 

(+toward zenith) (+east) 

Hour Celestial equa- Hour circle of ob- Declination Hour an~le 
Angle tor server's zentth (half -90°<15< +90° Oh~h~24h 

containing zenith) (+north) 00~h~360° 
(-+west) 

Right Celestial Equinoctical colure Declination Right Ascen 
Ascension equator (half containing -90°s.15s.+90° \ sion 

vernal equinox) (+north) Oh<a.<24h 
00~a.~360° 
(+east) 

Ecliptic Ecliptic Ecliptic meridan (Ecliptic) (Ecliptic) 
equinox (half con- Latitude Longitude 
taining vernal 90°<6<+90° 0°<:>'<360° 
equinox) (+n~rth) (+~a~t) 

CELESTIAL COORDINATE SYSTEMS [Mueller, 1969] 

TABLE 2-1 

Orientation of the Positive Axis 
System X Y Z )J u Left or Right 

(Secondary pole) (Primary pole) handed 

Horizon North point A .,. 90° Zenith A a left 

Intersection of 
the zenith's hour 

90°. 6h Hour angle circle with the h = North celestial h 15 left 
celestial equator pole 
on the zenith's 
side. 

Right ascension Vernal equinox a. .,. 90°= 6h North celestial a. 15 right 
pole 

Ecliptic Vernal equinox = 90° North ecliptic :>. 6 right 
pole 

CARTESIAN CELESTIAL COORDINATE SYSTEMS [Mueller, 1969] 

TABLE 2-2 
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2.3 Transformations Amongst Celestial Coordinate Systems 

Transformations amongst celestial coordinate systems is an important 

aspect of geodetic astronomy for it is through the transformation models that 

we arrive at the math models for astronomic position and azimuth determination, 

Two approaches to coordinate systems transformations are dealt with here: 

(i) the traditional approach, using spherical trigonometry, and (ii) a'more 

general approach using matrices that is particularly applicable to machine 

computations. The relationships that are developped here are between (i) 

the horizon and hour angle systems, (ii) the hour angle and right ascension 

systems, and (iii) the right ascension and ecliptic systems. With these math 

models, anyone system can then be related to any other system (e.g. right 

ascension and horizon systemS). 

Before developing the transformation models, several more quantities 

must be defined. To begin with, the already known quantities relating to the 

astronomic triangle are (Figure 2-12): 

(i) from the horizon system, the astronomic azimuth A and the 

altitude a or its compliment the zenith distance z=90-a, 

(ii) from the hour angle system, the hour angle h or its compli

ment 24-h, 

(iii) from the hour angle or right ascension systems, the declina

tion 0, or its compliment, the polar distance 90-0. 

The new quantities required to complete the astronomic triangle are 

the astronomic latitude ~ or its compliment 90-~, the difference in astronomic 

longitude 6A =As- Az (=24-h), and the parallactic angle p defined as the 

angle between the vertical circle and hour circle at S (Figure 2-12). 

The last quantity needed is Local Sidereal Time. (Note: this is 
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not a complete definition, but is introduced at this juncture to facilitate 

coordinate transformations. A complete discussion of sidereal time is presented 

in Chapter 4). 

To obtain a definition of Local Sidereal Time, we look at three 

meridians: (i) the observer's celestial meridian, (ii) the hour circle 

through S, and (iii) the equinoctal colure. Viewing the celestial sphere 

from the NCP, we see, on the equatorial plane, the following angles (Figure 

2-13): (i) the hour angle (h) between the celestial meridian and the hour 

circle (measured clockwise), (ii) the right ascension (a) between the equi-

noctal colure and the hour circle (measured counter clockwise), and (iii) 

a new quantity, the Local Sidereal Time (LST) measured clockwise from the 

celestial meridian to the equinoctal colure. LST is defined as the hour 

angle of the vernal equinox. 

2.3.1 Horizon - Hour Angle 

Looking first at the Hour Angle to Horizon system transformation, 

using a spherical trigonometric approach, we know that from the hour angle 

system we are given h and ~, and we must express these quantities as functions 

of the horizon system directions, a (or z) and A. Implicit in this trans-

formation is a knowledge of ~. 

From the spherical triangle (Figure 2-14), the law of sines yields 

or 

and finally 

sin(24-h) = sinA 
~~77~~ 

sinz sin(90-~) 

-sinh 
sinz 

sinA = ----cos~ 

sinA sinz = -sinh cos~ 

, (2-13) 

(2-14) 

(2-15) 
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The five parts formula of spherical trigonometry gives 

cosA sinz = cos(90-~)sin(90-~)-cos(90-~)sin(90-~)cos(24-h), 
or 

cosA sinz = sin6 cos~ - sin~ cos6 cosh 

Now, dividing (2-15) by (2-17) yields 

sini\. sinz 
cosA sinz = -sinh cos~ 

sin6 cos~ -sin~ coso cosh 

(2-16) 

(2-17) 

(2-18) 

which, after cancelling and collecting terms and dividing the numerator and 

denominator of the right-hand-side by coso yields 

tanA = -sinh 
tan~ cos~ -sin~ cosh 

, (2-19) 

or 

tanA = sinh (2-20) 
sin~ cosh - tano cos~ 

Finally, the cosine law gives 

cosz = cos(90-~)cos(90-9) + sin(90-~)sin(90-9)COs(24-h), (2-21) 

or 

cost = sin~ sino + cos~ coso cosh (2-22) 

Thus, through equations (2-20) and (2-22), we have the desired 

results - the quantities a (z) and A expressed as functions of 0 and h and a 

known latitude ~. 

The transformation Horizon to Hour Angle system (given a (=90-z), 

A, ~, compute h, 0) is done in a similar way using spherical trigonometry. 

The sine law yields 

coso sinh = -sinz sinA , (2-23) 

and five parts gives, 

coso cosh = cosz cos~ -sinz cosA sin~ (2-24) 
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After dividing (2-23) by (2-24), the result is 

tanh _ __~ __ s7i=nA~ ________ ~ 
cosA sin~ -cotz cos~ (2-25) 

Finally,the cosine law yields 

sineS = cosz sin~ + sinz cosA cos~ (2-26) 

Equations (2-25) and (2-26) are the desired results - hand eS expressed 

solely as functions of a(=90-z),A, and ~. 

Another approach to the solution of these transformations 

is to use rotation matrices. First, both systems are heliocentric and left-

handed. From Figure 2-15, we can see that YHA is coincident with -YH (or YH 

coincident with -YHA), thus they are different by 180°. Also from Figure 

2-15, ~, ZH' ZHA' and ~ all lie in the plane of the celestial meridian. 

ZH an~ ~ are also separated by (90-~) and are different by 180°. 

transformation, then, of HA to H is given simply by 

x x 

The 

y = (2-27) 

Z H Z HA 

or giving the fully expanded form of each of the rotation matrices 

X cos180° sin1800 0 cos(90-~) 0 -sin(90-~) X 

Y = -s.in1800 cos180° 0 0 1 0 Y . (2-28) 

Z 
H 0 0 1 sin(90-~) 0 cos (90-11» ZHA 

The effect of the first rotation, R2 (90-11», is to bring ZHA into coincidence 

with ZH' and ~ into the same plane as ~ (the horizon plane). The second 

rotation, R3 (1800), brings ~ and YHA into coincidence with ~ and YH 

respectively, thus completing the transformation. 
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The reverse transformation - Horizon to Hour Angle - is simply 

the inverse* of (2-27), namely 

= (2-29) 

H 

2.3.2 Hour Angle - Right Ascension 

Dealing first with the spherical trigonometric approach, it is 

evident from Figure 2-16 that 

LST = h + a. (2-30) 

Furthermore, in both the Hour Angle and Right Ascension systems, 

the declination 0 is one of the star coordinates. To transform the Hour Angle 

coordinates to coordinates in the Right Ascension system (assuming LST is 

known) we have 

a = LST-h (2-31) 

0=0 (2-32) 

Similarly, the hour angle system coordinates expressed as functions of right 

aS,cension system coordinates are simply 

h = LST-a (2-33) 

0=0 (2-34) 

For a matrix approach, we again examine Figure 2-16. Note that both systems 

are heliocentric, ZHA= ZRA' and ~, YHA,' ~, and YRA all lie in the plane 

*Note: For rotation matrices, which are orthogonal, the .. f~t1owing rules 
apply. If x=Ry, then y=R-1x ; also (Ri Rj )-l = ~lRi' and 
'R-1 '(S) == R(-S). 
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of the celestial equator. The differences are that the HA system is left-

handed, the RA system right-handed, and XHA and ~ are separated by the 

LST. The Right Ascension system, in terms of the hour angle system, is 

given by 

or, with R3(-LST) and the ,reflection matrix P2 expanded, 

[x] [ cos(-LST) sin(-LST) 

~ ~ -Sin(~LST) COS(~LST) ~] [~ 
o 

-1 

o 

(2-35) 

(2-36) 

The reflection matrix, P2, changes the handedness of the hour angle system 

(from left to right), and the rotation R3 (-LST) brings XHA and YHA into coin

cidence with ~ and YRA respectively. 

The inverse trans~ormation is simply 

(2-37) 

2.3.3 Right Ascension - Ecliptic 

For the spherical trigonometric approach to the Right Ascension -

Ecliptic system transformations, we look at the spherical triangle with vertices 

NEP, NCP, and S in .Figure 2~17. The transformation of the Ecliptic coordinates 

B, 6 (€ assumed known) to the Right Ascension coordinates a, 0, utilizes the 

same procedure as in 2.3.1. 
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The sine rule of spherical trigonometry yields 

coso cosa == cos~ cosA 

and the five parts rule 

coso sina = cos~ sinA COSE - sinS sinE 

Dividing (2-39) by (2-38) yields the desired result 

tana = 

From the cosine rule 

sinA COSE - tanS SinE 
cosA 

sino = cos~ sinA sinE + sinS COSE , 

which completes the transformation of the Ecliptic system to the Right 

Ascension system. 

(2-38) 

(2-39) 

(2-40) 

(2-41) 

Using the same rules of spherical trigonometry (sine, five-parts, 

cosine), the inverse transformation (Right Ascension to Ecliptic) is given 

by 

cosS co.sA == coso cosa , 

cosS sinA = coso sina COSE + sino sinE , 

which, after dividing (2-43) by (2-42) yields 

and 

tanA == 
sina COSE + tano sinE 

cosa 

sinS = -coso sina sinE + sino COSE • 

(2-42) 

(2-43) 

(2-44) 

(2-45) 

From Figure 2-17, it is evident that the difference between the 

E and RA cartesian systems is simply the obliquity of the ecliptic, E, which 

separates the ZE and ZRA' and YE and YRA axes, the pairs of which lie in the 

same planes. 
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The transformations then are given by 

[:lll = R (-e:) 
1 [~L (2-46) 

and 

[:] == Rl(e:) [~] II (2-47) 

E 

2.3.4 Summary 

Figure 2-18 and Table 2-3 summarize the transformations amongst 

celestial coordinate systems. Note that in Figure 2-18, the quantities that 

we must know to effect the various transformations are highlighted. In addition, 

Figure 2-18 highlights the expansion of the Right Ascension system to account 

for the motions of the coordinate systems in time and space as mentioned in 

the introduction to this chapter. These effects are covered in detail in 

Chapter 3. 

Table 2-3 highlights the matrix approach to the transformations 

amongst celestial coordinate systems. 

2.4 Special Star Positions 

Certain positions of stars on the celestial sphere are given "special" 

names. As shall be seen later, some of the math models for astronomic position 

and azimuth determination are based on some of the special positions that 

stars attain. 
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Figure 2-19 shows the behavior of stars as they move in an apparent 

east to west path about the earth, as seen by an observer (Z) situated some

where between the equator and the north pole (0~~S9d). Referring to Figure 

2-19: 

1. North Circumpolar Stars that (a) never cross the prime vertical, 
(b) cross the prime vertical. 

These stars, (a) and (b), are visible at all times to a 
northern observer. 

2. Equatorial stars rise above and set below the celestial horizon 

(a) more time above the horizon than below, 
(b) equal times above and below the horizon, 
(c) more times below the horizon than above. 

3. South Circumpolar Stars never rise for a northern observer. 

For an observer in the southern hemisphere (O~~~;:99i, the explanations 

of 1, 2, 3 above are reversed. Two special cases are (1) Z located on the 

equator, thus the observer will see 1/2 the paths of all stars, and (2) Z 

located at a pole, thus the observer sees all stars in that polar hemisphere 

as they appear to move in circles about the zenith (=po1e). 

2.4.1 Rising and Setting of Stars 

The ability to determine the visibility of any star is fundamental 

to geodetic astronomy. To establish a star observing program, one must ensure 

that the chosen stars will be above the horizon during the desired observation 

period. 

Declination 

From Figure 2-20, we see that for an observer in the northern 

hemisphere, a north star, to be on or above the horizon - must have 

a declination given by 
o 

c5~90-~ , (2-48) 
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and a south star that will rise at some time, must have a declination 

(2-49) 

Thus, the condition for rising and setting of a star is 

o 0 
90-IP>e>4>-90. (2-50) 

For example, at Fredericton, where IP= 46°N, the declination of a star must 

always satisfy the condition (2-50), namely 

in order that the star will be visible at some time; that is, the star will 

rise and set. If 15>44°, the star will never set (it will always be a visible 

circumpolar star), and if 15<-44°, the star will never rise (a south circumpolar 

star). 

Hour Angle 

Now that the limits for the declinations of stars for rising and 

setting have been defined, we must consider at what hour angle these events 

will occur. 

From the transformation of the Hour Angle to Horizon curvalinear 

coordinates (Section 2.3.1, (2-22» 

cosz = sine sin4> + cose cosh cos4> • 

For rising and setting,· z=90o, and the above equation reduces to 

sine sin IP + cose cosh coslP = 0, (2-51) 

which, after rearrangement of terms yields 

cosh = -tane tan4> • (2-52) 

The star's apparent motion across the celestial sphere is from east 

to west. For a star that rises and sets, there are two solutions to equation 

(2-52): the smaller solution designates setting, the larger solution designates 

rising (Figures 2-21, 2-22). The following example illustrates this point. 
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Figure 2-22 
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At ~=46°, we wish to investigate the possible use of two stars for 

an observation program. Their declinations are 01=35°, 02=50°. From equation 

(2-50), 

44°<°2< - 44°. 

The first star, since it satisfies (2-50), will rise and set. The second star, 

since 02> 44°, never sets - it is a north circumpolar star to our observer. 

Continuing with the first star, equation (2-52) yields 

coshl = -tan35° tan46° 

or 

which is the hour angle for setting. The hour angle for rising is 

hr = (24h_£s) = l4h 54m 05~78. 
1 1 

Azimuth 

At what azimuth will a star rise or set? From the sine law in the 

Hour Anglet:o Horizon system trans-fomtion. (equation (2-15» 

sinz sinA = -coso sinh. 

With z=900 for rising and setting, then 

sinA = -coso sinh. (2-53) 

There are, of course, two solutions (Figures 2-23 and 2-24): one 

using hr and one using hS• Using the previous example for star 1 (01=35°, 

~=46°, h~ = 9h 05m 54~22, h~ = 14h 54m 05~78), one gets 

Similarly 

SinA~ = -cos 35° sin 223~524l, 

Ar = 34° 20' 27~64. 
1 

AS = 325° 39' 32~36. 
1 
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The following set of rules apply for the hour angles and azimuths of rising 

and setting stars [Mueller, 1969]: 

Northern Stars ·t<5>OO) Rise 12h<h<18h 00<A<900 

Set 6h<h<12h 2700<A<360° 

Equatorial Stars (<5=0°) Rise h=18h A=900 

Set h= 6h A=270° 

Southern Stars Rise 18h<h<24h 900<A<l800 

Set Oh<h< 6h 1800<A<2700 

2.4.2 Culmination (Transit) 

When a star's hour circle is coincident with the observer's celestial 

meridian, it is said to culminate or transit. Upper culmination (UC) is defined 

as being on the zenith side of the hour circle, and can occur north or south 

of the zenith (Figure 2-25a and 2.-25b). When UC occurs north of Z, the zenith 

distance is given as (Figure 25a) 

z = <5-~ • (2-54) 

The zenith distance of UC south of Z is 

z = 41-<5 • (2-55) 

Lower Culmination (LC) (Figure 2-25c) is on the nadir side of the hour circle, 

and for a northern observer, always occurs north of the zenith. The zenith 

distance at LC is 

z = 180- (<5+41 ) • 

Recalling the examples given in 2.4.1 (~=46o,<51 =35°, <5 2=50°), 

then for the first star 

which is south of the zenith, and 

(2-56) 
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LC 
zl = 180 -(ol+~) = 99° 

which means that the star will not be visible (z>900). 

For the second star, one obtains 

UC 
z2 = 02-~ = 4° , 

both of which will be north of the zenith. The hour angle at culmination 

is h = Oh for all upper culminations, and h = l2h for all lower culminations. 

The azimuths at culmination are as follows: A = 0° for all Upper Culminations 

north of Z and all Lower Culminations; A = 180° for all Upper Culminations 

south of the zenith. 

Recalling the Hour Angle - Right Ascension coordinate transformations, 

we had (equation (2-30) 

LST = h+a • 

Since h = Oh for Upper Culminations and h = l2h for Lower Culminations, 

2.4.3. Prime Vertical Crossing 

LSTUC = 
LC 

LST = 

(l , 

For a star to reach the prime vertical (Figure 2-26) 

(2-57) 

(2-58) 

(2-59) 

To compute the zenith distance of a prime vertical crossing, recall 

from the Horizon to Hour Angle transformation (via) the cosine rule, equation (2-26) 

that 

sino = coszsin~ + sinz cosA cos~ 

For a prime vertical crossing in the east, A=90° ~ltitude increasing), and 

for a prime vertical crossing in the west, A=270° (altitUde decreasing), 



PRIME VERTICAL· 
CROSSING (WEST) 

62 

Figure 2--26 

Prime Vertical Crossine 



63 

we get 

COSE 
'sino =--
sin\l> = sin~ cosecl%> (2-60) 

The hour angle of a prime vertical crossing is computed as follows. From the 

cosine rule of the Hour Angle to Horizon transformation (equation (2-22» 

cosz = sino sinl%> + coso cosh cosl%> • 

Substituting (2-60) in the above for cosine z yields 

or 

sino 
sinl%> = sino sinl%> + coso cosh cosl%> • 

2 
sino = sino sin~ + coso cosh cos~ sinl%> • 

Now, (2-61) reduces to 

or 

and finally 

sino cosh = --~~~~--~~ coso cqsl%> sinl%> 

cosh = 

cosh = tano cotl%> 

2 
sino sin I%> 

coso cosl%> sinl%> 

2 
tano ( cos I%> ) 

cosl%> sinl%> 

(2-61) 

(2-62) 

As with the determination of the rising and setting of a star, there are two 

values for h - prime vertical eastern crossing (18h<h<24h) and prime vertical 

western crossing (Oh<h<6h). Continuing with the previous examples (01 = 35°, 

O2 = 50°), it is immediately evident that the second star will not cross the 

The first star will cross the prime vertical 

(0<01< 46°), with azimuths A=900 (eastern) and A=270° (western). The zenith 

distance for both crossings will be (equation 2-60) 

sin 35° 
cosz1 = sin 46° 

z = 37° 07' 14~8. 1 

The hour angles of western and eastern crossings are respectively (equation 2-62) 
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2.4.4. Elongation 
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W 
cosh2 = tanl5 cot~ 

= tan 35° cot 46° , 

~ = 47~45397 = 3h09m48~9 
I 

When the parallactic angle (p) is 90°, that is, the hour circle and 

vertical circle are normal to each other, the star is said to be at elongation 

(Figure 1-27). Elongation can occur on both sides of the observer's celestial 

meridian, but only with stars that do not cross the prime vertical. Thus, 

the condition for elongation is that 

15>!%> • (2-63) 

From the astronomic triangle (Figure 2-27), the sine law yields 

or 

sinA sinp 
sin(90-15)= ~s~in~(9~0~-~!%>~) , 

sinA = sinp cosl5 
cos!%> 

Since at elongation, p=900, (2-64) becomes 

sinA = cosl5 sec!%> • 

(2-64) 

(2-65) 

For eastern elongation, it is obvious that 00<A<900, and for western 

elongation 2700<A<360° •. 

To solve for the zenith distance and hour angle at elongation, one 

proceeds as follows. Using the cosine law with the astronomic triangle 

(Figure 1-27), one gets 

cos(90-!%» = cos(90-o)cosz+sinz sin(90-o)cosp , (2-66) 
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and when p=90°, cosp=O, then 

cosz = sin~cosec~ • (2-67) 

Now, substituting the above expression for cosz (2-67) in the Hour 

Angle to Horizon coordinate transformation expression ,(2-22), namely 

cosz = sin~ sin~ + cos~ cosh cos~ 

yields 

sin~ 

sin& = sin~ sin~ + cos~ cosh cos~ 

which, on rearranging terms gives 
2 

cosh = 
sin~ - sin,~ sin~ 

cosl5 sinl5 cos~ 

Further manipulation of (2-68) leads to 

l-sin26 ~ cos20 cosh = tan~ ( ) = tan~ ( ) cos6sin& cos& sin& , 

and finally 

cosh = tan~ cot& • 

, 

, 

:(2-68) 

(2-69) 

Note that as with the azimuth at elongation, one will have an eastern and 

western value for the hour angle. 

Continuing with the previous examples ~ ~1=35°, 02=50°, and ~=46° -

we see that for the first star, &l<~' thus it does not elongate. For the second 

star~ &2>~ (500~46°), thus eastern and western elongations will occur. The 

azimuths, zenith, distance, and hour angles for the second star are as follows: 

SinA~ = cos6 sec~ == cos 50° sec 46° , 

AE == 67° 43' 04~7 , 
2 

AW = 360° _AW == 292° 16' 55~3'; 
2 2 

cosZ == sin~ cosec~ = sin 46° cosec 50°. , 

z == 20° 06' 37~3 ; 
2 

tan~ coto == tan 46° cot 50° 



3 • TIME SYSTEMS 

In the beginning of Chapter 2, it was pointed out that the 

position of a star on the celestial sphere, in any of the four coordinates 

systems, is valid for only one instant of time T. Due to many factors 

Ce.g. earth's motions, motions of stars), the celestial coordinates are 

subject to change with time. To fully understand these variations, one 

must be familiar with the time systems that are used. 

To describe time systems, there are three basic definitions that 

have to be stated. An epoch is a particular instant of time used to define 

the instant of occurance of some phenomenon or observation. A time 

interval is the time elapsed between two epochs, and is measured in some time 

scale. For civil time (the time used for everyday purposes) the units of 

a time scale (e.g. seconds) are considered fixed in length. With astronomic 

time systems, the units vary in length for each system. The adopted unit 

of time should be related to some repetitive physical phenomenon so that it 

can be easily and reliably established. The phenomenon should be free, or 

capable of being freed, from short period irregularities to permit 

interpolation and extrapolation by man-made time-keeping devices. 

There are three basic time systems: 

<.1) Sidereal and Universal Time, based on the diurnal rotation of 

the earth and determined by star observations, 

(2) Atomic Time, based on the period of electro magnetic oscillations 

produced by the quantum transition of the atom of Caesium 133, 

(3) Ephemeris Time, defined via the orbital motion of the earth about 

the sun. 

Ephemeris time is used mainly in the field of celestial mechanics 

and is of little interest in geodetic astronomy. Sidereal and Universal 

67 
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times are the most useful for geodetic purposes. They are related to each 

other via ri90rouS formulae, thus the use of one or the other is purely 

a matter of convenience. All broadcast time si9na1s 'are derived from Atomi 

time, thus the relationship between Atomic time and Sidereal or universal 

time is important for geodetic astronomy. 

3.1 Sidereal Time 

The fundamental unit of the sidereal time interval is the mean 

sidereal day. This is defined as the interval between two successive upper 

transits of the mean vernal equinox (the position of T for which uniform 

precessional motion is accounted for and short period non-uniform nutation 

is removed) over some meridian (the effects of polar motion on the 

meridian are removed). The mean sidereal day is reckoned from Oh at upper 

transit, which is known as sidereal noon. The units are 1h = 60m , 
s s 

1m = 60s • Apparent (true) sidereal time (the position of T is affected 
s s 

by both precession and nutation), because of its variable (non-uniform) 

rate, is not used as a measure of time interval. Since the mean equinox 

is affected only be precession (nutation effects are removed), the mean 

sidereal day is 0~0084 shorter than the actual rotation period of the 
s 

earth. 

From the above definition of the fundamental unit of the 

sidereal time interval, we see that sidereal time is directly related to 

the rotation of the earth - equal an9les of an9Ular motion correspond to 

equal intervals of sidereal time. The sidereal epoch is numerically 

measured by the hour angle of the vernal equinox. The hour angle of the 

true vernal equinox (position of T affected by precession and nutation) 

is termed Local Apparent Sidereal Time (LAST). When the hour angle 
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measured is that at the Greenwich mean astronomic meridian (GHA), it is 

called Greenwich Apparent Sidereal Time (GAST). Note that the use of the 

Greenwich meridian as.a reference meridian for time systems is one of 

convenience and uniformity. This convenience and uniformity gives us 

the direct relationships between time and longitude, as well as the 

simplicity of publishing star coordinates that are independent of, but 

directly related to, the longitude of an observer. The local hour angle 

of the mean vernal equinox is called Local Mean Sidereal Time (LMST), and 

the Greenwich hour a,ng1e of the mean vernal equinox is the Greenwich Mean 

Sidereal Time (GMST). The difference between LAST and LMST, or equivalently, 

GAST and GMST, is called the Equation of the Equinoxes (Eq. E), namely 

Eq.E = LAST ~ LMST = GAST - GMST. (3-1) 

LAST, LMST, GAST, GMST, and Eq.E are all shown in Figure 3-1. 

The equation of the equinoxes is due to nutation and varies 

periodically with a maximum amplitude near 1s (Figure 3-2). It is 
f,; 

tabulated for Oh U.T. (see 3.2) for each day of the year, in the Astromica1 

Almanac (AA), formerly called the American Ephemeris and Nautical Almanac (AENA) 

[U.S. Naval Observatory, 1980]. 

To obtain the relationships between Local and Greenwich times, 

we require the longitude (II.) of a place. Then, from Figure 3-3, it can 

be seen that 

LMST = GMST + A ( 3-2) 

LAST = GAST + A , (3-3) 

in which A is the "reduced" astronomic longitude of the local meridian 

(corrections for polar motion have been made) measured east from the 

Greenwich meridian. 
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Figure 3-1 

Sidereal Time Epochs 
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Equation of Equinoxes (OhUT , 1966) 
[Mueller. 1969] 
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For the purpose of tabulating certain quantities with arguements 

of sidereal time, the concept of Greenwich Sidereal pate (G.S.D.) and 

Greenwich Sidereal Day Number are used. The G.S.D. is the number of mean 

sidereal days that have elapsed on the Greenwich mean astronomic meridian 

since the beginning of the sidereal day that was in progress at Greenwich 

noon on Jan. 1, 4713 B.C. The integral part of the G.S.D. is the Greenwich 

Sidereal Day Number, and the fractional part is the GMST expressed as a 

fraction of a day. Figure 3-4, which is part of one of the tables from 

AA shows the G.S.D. 
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UNIVERSAL AND SIDEREAL TIMES, 1981 

G. SIDEREAL TIME Equation of U.T. at OhG.M.S.T. 
Date: lulian (G. H. A. of the Equinolt) Equinoxes G.S.D. (Greenwich Transit of 

OhU.T, Date Apparent Mean atOhU.T. OhG.S.T. the Mean Equinox) 

244 .h m I • I 245 h m I 

Ian. 0 4604.5 6 38 17.1886 17.9594 -0.7708 1299.0 Ian. 0 17 1851.3829 
1 4605.5 6 42 13.7431 14.5148 .7717 1300.0 1 17 14 55.4734 
2 4606.5 6 46 10.2993 11.0702 .7708 1301.0 2 17 10 59.5639 
3 4607.5 6 50 06.8575 07.6255 .7681 1302.0 3 17 07 03.6545 
4 4608.5 6 54 03.4174 04.1809 .7635 1303.0 4 17 0307.7450 

5 4609.5 6 57 59.9787 60.7363 -0.7576 1304.0 5 16 59 11.8356 
6 4610.5 7 01 56.5407 57.2916 .7510 1305.0 6 16 55 15.9261 
7 4611.5 7 05 53.1023 53.8470 .7447 1306.0 7 16 51 20.0166 
8 4612.5 7 09 49.6626 50.4024 .7398 1307.0 8 16 4724.1072 
9 4613.5 7 13 46.2207 . 46.9577 .7370 1308.0 9 16 43 28.1977 

10 4614.5 7 17 42.7763 43.5131 -0.7368 1309.0 10 16 39 32.2882 
11 461S.5 7 21 39.3297 40.0685 .7387 1310.0 11 16 35 36.,3788 
12 4616.5 7 25 35.8817 36.6238 .7421 1311.0 12 16 31 40.4693 
13 4617.5 7 29 32.4335 33.1792 .7457 1312.0 13 16 2744.5598 
14 4618.5 7 33 28.9864 29.7346 .7481 1313.0 14 16 23 48.6504 

15 4619.5 7 37 25.5415 26.2899 -0.7484 1314.0 IS 16 19 52.7409 
16 4620.5 7 41 22.0994 22.8453 .7459 1315.0 16 16. IS 56.8314 
17 4621.5 7 45 18.6598 19.4006 .7409 1316.0 17 16 1200.9220 
18 4622.5 7 49 15.2219 15.9560 .7341 1317.0 18 16 0805.0125 
19 4623.5 7 53 11.7843 12.5114 .7271 1318.0 19 16 04 09.1030 

20 4624.5 7 57 08.3457 09.0667 -0.7210 1319.0 20 16 0013.1936 
21 4625.5 8 01 04.9050 05.6221 .7171 1320.0 21 15 56 17.2841 
22 4626.5 8 05 01.4618 02.1775 .7157 1321.0 22 15 52 21.3746 
23 4627.5 8 08 58.0160 58.7328 .7168 1322.0 23 15 48 25.4652 
24 4628.5 8 12 54.5682 55.2882 . .7199 1323.0 24 IS 4429.5557 

25 4629.5 8 16 51.1192 51.8436 -0.7243 1324.0 25 15 40 33.6462 
26 4630.5 8 20 47.6698 48.3989 .7291 1325.0 26 15 36 37.7368 
27 4631.5 8 24 44.2208 44.9543 .7335 1326.0 27 15 3241.8273 
28 4632.5 8 28 40.7728 41.5097 .7368 1327.0 28 15 2845.9178 
29 4633.5 8 32 37.3264 38.0650 .7386 1328.0 29 15 24 50.0084 

30 4634.5 8 36 33.8818 34.6204 -0.7386 1329.0 30 15 20 54.0989 
31 4635.5 8 40 30.4389 31.1758 .7368 1330.0 31 15 1658.1894 

Feb. 1 4636.5 8 44 26.9975 27.7311 .7336 1331.0 Feb.' I 15 1302.2800 
2 4637.5 8 48 23.5571 24.2865 .7294 1332.0 2 15 09 06.3705 
3 4638.5 8 52 20.1168 20.8418 .7251 1333.0 3 15 05 10.4610 

4 4639.5 8 56 16.6755 17.3972 -0.7217 1334.0 4 15 01 14.5516 
5 4640.5 ·9 00 13.2323 13.9526 .7203 1335.0 5 14 57 18.6421 
6 4641.5 9 04 09.7865 10.5079 .7215 1336.0 6 14 53 22.7326 
7 4642.5 9 08 06.3381 07.0633 .7252 1337.0 7 14 49 26.8232 
8 4643.5 9 12 02.8879 03.6187 .7307 1338.0 8 14 45 30.9137 

9 4644.5 9 15 59.4372 60.1740 -0.7369 1339.0 9 14 41 35.0042 
10 4645.5 9 19 55.9872 56.7294 .7422 1340.0 10 14 37 39.0948 
11 4646.5 9 23 52.5392 53.2848 .7455 1341.0 11 14 3343.1853 
12 4647.5 9 27 49.0938 49.8401 .7463 1342.0 12 14 2947.2758 
13 464S.5 9 31 45.6509 46.3955 .7445 1343.0 13 14 2551.3664 

14 4649.5 9 35 42.2098 42.9509 -0.7411 1344.0 14 14 21 55.4569 
15 4650.5 9 39 38.7693 39.5062 -0.7369 1345.0 15 14 1759.5474 

Figure 3-4. [M, 1981*] 
(*This and other dates in figure titles refer to year of 
application, not year of publication). 
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3.2 Universal (Solar) Time 

The fundamental measure of the universal time interval is the 

mean solar day defined as the interval between two consecutive transits 

of a mean (fictitious) sun over a meridian. The mean sun is used in place 

of the true sun since one of our prerequisites for a time system is the 

uniformity of the associated physical phenomena. The motion of the true 

sun is non-uniform due to the varying velocity of the earth in its 

elliptical orbit about the sun and hence is not used as the physical 

basis for a precise timekeeping system. The mean sun is characterized 

by uniform sidereal motion along the equator. The right ascension (a ) m 

of the mean sun, which characterizes the solar motion through which mean 

solar time is determined, has been given by Simon Newcomb as IMueller, 1969] 

a m 
+ 0~0929 t 2 

m 
+ ••• 

in which t is elapsed time in Julian centuries of 36525 mean solar days 
m 

which have elapsed since the standard epoch of UT of 1900 January 0.5 UT. 

Solar time is related to the apparent diurnal motion of the sun 

as seen by an observer on the earth. This motion is due in part to our 

motion in orbit about the sun and in part to the rotation of the earth 

about its polar axis. The epoch of apparent (true) solar time for any 

meridian is (Figure 3-5) 

TT = h s 
(3-5) 

in which h is the hour angle of the true sun. The l2h is added for 
s 

h convenience so that 0 TT occurs at night (lower transit) to conform with 

civil timekeeping practice. 

The epoch of mean solar time for any meridian is (Figure 3-5) 

MT = h 
m 

(3-6) 

(3-4) 
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Figure 3-5 

Universal (5 1 ) . o ar T~me 
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in which h is the hour angle of the mean sun. If the hour angles of the 
m 

true and mean suns are referred to Greenwich (h G h G ), the times are 
s' m 

Greenwich True Time (GTT) and Greenwich Mean Time (GMT) or Universal Time (UT) 

respectively (Figure 3-5). 

The difference between true and mean solar times at a given 

instant is termed the Equation of Time (Eq.T.). From Figure 3-5 

Eq.T. = TT-MT (3-7) 

and 
Eq.T. = GTT - UT. (3-8) 

m The equation of time reaches absolute values of up to 16. Figure 3-6 

shows Eq.T. for a one year interval. 

Mean and true solar times are related to the astronomic longitude 

of an observer by (Figure 3-7) 

MT=UT+A (3-9) 

and 
TT = GTT + A (3-10) 

The time required by the mean sun to make two consecutive 

passages over the mean vernal equinox is the tropical year. The time 

required by the mean sun to make a complete circuit of the equator is 

termed the sidereal year. These are given by 

1 tropical year = 365.242 198 79 mean solar days, 

1 sidereal year = 365.256 360 42 mean solar days. 

Since neither of the above years contain and intergral number of mean 

solar days, civil calendars use either a Julian yea~ in which 

d d h 1 Juliam year = 365.25 mean solar days = 365 6 , 

or the presently used Gregorian calendar which has 365.2425 mean solar days. 

For astronomic purposes, the astronomic year begins at Oh UT on 31 

December of the previous calendar year. This epoch is denoted by the 

d astronomic date January 0.0 UT. 
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Figure 3-6 

Equation of Time (Oh UT, 1966) 
[Hueller, 1969] 



79 

Figure 3-7 

Solar Ti me and Longitude 

TRUE SUN 

MEAN SUN 



so 

corresponding to the Greenwich Sidereal Date (GSD) is the Julian 

Date (JD). The"JD is the number of mean solar days that have elapsed 

since l2h UT on January 1 (January l~S UT) 4713 Be. For the standard 

d astronomic epoch of 1900 January 0.5 UT, JD = 2 415 020.0. The conversions 

between GSD and JD are 

GSD = 0.671 + 1.00273790~3 JD , (3-11) 

JD = -0.669 + 0.9972695664 GSD • (3-12) 

3.2.1 Standard (Zone) Time 

To avoid the confusion of everyone keeping the mean time of 

their meridian, civil time is based on a "zone" concept. The standard 

time over a particular region of longitude corresponds to the mean time 

of a particular meridian. In general, the world is divided into 24 zones 

of 150 (61\.) each. Zone 0 has the Greenwich meridian as its "standard" 

o 
meridian, and the zone extends 7)2 on either side of Greenwich. The time 

zones are numbered -1, -2, •••• , -12 east, and +1, +2, ••• , +12 west. 

Note that zone 12 is divided into two parts, 7~°in extent each, on either 

side of the International Date Line (lSOoE). All of this is portrayed in 

Figure 3-S. 

Universal time is related to Zone Time (ZT) by 

UT = ZT + liZ , (3-13) 

in which liZ is the zonal correction. Care should be taken with liZ, 

particularly in regions where summer time or daylight saving time is used 

during the spring-summer-fall parts of the year. The effect is a lh 

advance of regular ZT. 

3.3 Relationships Between Sidereal and Solar Time Epochs and Intervals 

We will deal first with the relationship between time epochs. 
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MT = 12h + h . , 
111 

where hm is the hour angle of the mean sun while from' Figure 3-9 

which yields 

or 

h 
LMST = NT + (am - 12 ) 

(3-14) 

(3-15) 

(3-16) 

Equations (3-15) and (3-16) represent the transformations of LMST to MT and 

vice-versa respectively. 
G 

If we replace MT,hm, and LMST with GMT,nm ' and. 

GMST respectively, then 

or = GMST - (3-17) 

and· GMST= UT + (3-18) 

.. - --. 

For practical computations we used tabulated quantities. 
..... h . -

For example-c- (am -. ·12 ). is tabulated in the Astronomcal Almanac (AA) ;_. 

and the quantity' (am ">12h + Eq.· E) is tabulated in the 

Star Almanac for Land Surveyors (SALS). Thus for simplicity we should 

always convert MT to UT and LMST to GMST. We should note. of course, that the 

relationships shown (3-15), (3-16), (3-17), (3-18) relate mean solar and 

mean sidereal times. To relate true solar time with apparent sidereal time: 

(i) . compute mean solar time (MT = TT - Eq.T or OT = GTT - Eq.T.), 

(ii) compute mean sidereal time «3-16) or (3-18», 

(iii) compute apparent sidereal time (LAST = Eq.E + LMST or GAST = 

• 
Eq.E. + GMST). 

To relate apparent sidereal time with true solar time, the inverse procedure 

is used. For illustrative purposes, two numerical examples are used. 
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S4 

(note that the 

appropriate tabulated values can be found in Figures 3~lO, 3-11, 3-12, 

and 3-13). 

Example #1 (using SALS) 

Given: MT = ISh 21m 4l~OO 

Feb. 14, 1981 

II. = 66 0 3S- 2S" W 

compute: LAST 

MT Ish 21m 4l~OO 

A (_66 0 3S' 28") 

UT (=MT - II.) 

h h h m s 
R(a - 12 + Eq.E.) at IS UT:9 38 .39.6 

m 

~R for 4h 4Sm l4~S7: 47~4 
h 

(a - 12 + Eq.E.) 
m 

GAST (=UT + ( am - 12h) + Eq.E) 

GAST 

11. (_66 0 38' 2S") 

LAST (GAST + II.) 

- -
, ..: :~' ~~:. ::---.-: ~ 

"'4h 26m 33~S7 

22h 4Sm l4~87 

gh 3f' 27~O 
32h -2m 41~87 

_24h 

sh 2f1 41~87 
_4h 26m 33~S7 

4h .Om 8~OO 



Example #2 (using AA) 

h m s Given: MT = 18 21 41.00 

Feb. 14, 1981 

A = 66° 38' 28"W 

Compute: . LAST 

MT 

A (-66° 3S' 2S") 

UT (=MT - A) 

(a - l2h) (GMST) at Oh UT: 
m 

Add 

Sidereal interval equivalent to 

85 

(multiply UT interval by 1.002 737 9093): 

GMST at 22h 4Sm 14~S7 UT 

GMST 

Eq. E 

GAST (= GMST + Eq. E) 

A (-66° 3S' 2S") 

LAST (= GAST + A) 

ISh 21m 4l~00 

-4h 26m 33~S7 

22h 4Sm l4~87 

9h 35m 42~95 

22h 51m 59~64 

32h 27m 42~59 

24h 

8h 27m 42~59 

- 0~74 

Sh 27m 4l~S5 

- 4h 26m 33~S7 

4h 01m 07~9S 
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SUN-FEBRUARY, 1981 

U.T. 
eI it 
1 0 

R Dec. 'E U.T. R Dec, E 

Sun. 6 
12 
18 

2 0 
Mon. 6 

][2 

18 

3. 0 
Tues. 6 

:1[2 

18 

... 0 
Wed. 6 

ll2 
](8 

5 0 
Thur.6 

%2 
%8 

.6 0 

Fri. 6 
%2 
IS 

'1 0 
Sat. 6 

%2 
x8 

8 0 

Sun. 6 
X2 
](8 

24 

ta rn S 

844 27.0 

45 26•1 

4625'3 
47 24-4 

84823,6 
49 22-7 
5021 •8 
51 21-0 

. 85220- 1 

53 19'3 
54 18'4 

. 55 17-5 

85616'7 . 
57 IS-S 
58 15-0 

859 14.1 

900 13'2 

01 12'4 
02 n·s 
03 10•6 

904 09,8 
05 08-9 
06 08'1 
Cfl Cfl'2 

9 0806'3 
09 oS'S 
1004-6 
II °3.8 

9 1202-9 
13°2 '° 
14 01 •2 

.15 00'3 
9 IS 59'4 

Sun's S.D. I6!:e 

II m, eI II 
II 4625,8 9 ~ 

4623'721 Mon. 6 

462I '7 2O 

4619'7 20 
19 

12 

%8 

II 46 17·8 10 0 

4615'91: Tues.6 
4614'11 X2 

46 12-4:~ %8 
II 46 10-6 6 xx 0 

4609'016' Wed.6 
46 0'.7-1 16 %2 
4605.81 %8 

IS 
II 4604',3' X2 0 

4602•8 IS Thur.6 
4601'414 
4600'1 13 

13 

12 
18 

II 45 58.8' X3 0 

45 57-5 :! Fri. 6 
4556'3 x:z 

u 8 45 5S'! II . X 

114554'0 10 

4553'0 10 

. 45 p·o 10 

4551 •0 9 

II 45 50 '1 8 
4,5 49'3 8 
4548'5 8 
4547-7 7 

II 45 47'° 6 
4546'4 6 
4545.8 6 
4545'2 

.114544" s 

X"I 0 
Sat. 6 

J2 
x8 

IS 0 
Sun. 6 

%2 
%8 

](6 0 

Mon. 6 

SUNRISE 

b m • 

9 IS 59'4 
1658.6 
1757'7 
IS 56-8 

9 1956'° 
20 55.1 
21 54-3 . 
2253'4 

9 2 352 -5 
2451'7 
2550 -8 
26 5°-0 

9 2749- 1 
28 48'2 

2947'4 
3°46'5 

931 45-7 
. 32 44-8 
3343'9 
3443- 1 

93542 •2 

36 41 '3 
3740 '5 
38 39'.6 

93938-8 
40 37-9 
41 37.0 

42 36.2 

94335'3 
44 34'5 
4533-6 
46 32 -7 

94731-9 

It m & 

II 45 44'7 
4544'3 : 
4543'9 .. 
4543'5 3 

II 45 43.2 . 
4543.0 2 
45 42 .8 1 

4542 •6 2 
I 

114542 -5 
4542 '5 0 

45 42 -5 0 

4542-5 0 
I 

II 4542,6 
4542 -8 2 

4543-0 2 

4543-2 2 
3 

H 45 43'S 
4543,8 J 
45 44-2 of , 

4544'7 : . 

u 4545.1 6' 
4545'7 6 i 
4546'3 6' 
4546'9 I 

7 
II 4547·6 

4548'3 7 

45 49'0 ~ f 
4549-8 ! 

9j 

II 455°'7 
4551•6 9 
4552 '5 9 
4553-5'° 

II 45 54.6 " 

Date South Latitude North Latitude 
00· . 51" so· 1ft' 40· .10" 20· JO· o· .o',·:we )0" 40· 'U- 50" 55° 60" 

Feb. 
x 
6. 

I> II II '" 
3'9 IH 4'7 4'9 
4.2 4'5 4,g S-l{ 
4-4 4-7 S·o 5-2 

4-6 4-9 s-! 5'3 
;,u: 4.8 5.1 5-3 5'4 
:7;6 S'O 5-3 5-4 5-5 

JI 5'3 S-4 S'S 5-7 

II " h .. h 
5'2 5-5 5-7 6·0 6,2 
5'2 S'S 5.8 6-0 6-2 
S-3 5.6 5.8 6'0 6,2 

S'S 
5'5 
5-7 

5-7 5'9 6'0 6·2 
5-7 5'9 6-0 6,2 
5.8 5'9 6-0 6·2, 

" h." , 
6-4 6·6 6·8 7'Z 
6'4 6-6 6·8 7'1 
6'3 6'5 6'7 7'0 

it h '" iii 
7'3 7·6 7'9 8'2 
7-2, 7-5 7-7 8,1 
7'1 7'3 7'S 7·8 

6-3 6·S 6'7 6'9 7-0 7.2 7'3 7.6 
6'3 6-4 6·6 6·8 6'9 7-0 7';: 7'4 
6'3 6'4 6·S 6'7 6-7 6·8 7-0 "1 

S'7 5'9 6·0 6·1 6'2 6'2 6'3 6-4 6·S 6·6 6'7 6·8 6'9 

F:igUrE! 3-10 [SALS, 1981] 
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INTERPOLATION TABLE :FOR R 
MUTUAL CO);VERSION OF INTERVALS OF SOLAR AND SIDEREAL TJ:l..JE 

sol31" LI R sidereal J solar LJR sidereal 

4b 4b 4b 4b 

solar LJR sidereal 

5b 5h 

solar LJR sidereal 
Sb Sb 

In cr;lir(l/ C'(l;I.'S muntl. 

Add.1R to s.olar time intt"n' .. l (It"ft-hJnd argument) to oh1 .. in sidereal time inlaya!. 
Subtract 111< from sidereal time intcn'"l (ril(ht-h:md argument) to obtain sob. time inten'al, 

FIGURE 3-11 [SALS,. 1981] 
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UNIVERSAL AND SIDEREAL TIMES, 1981 

G. SIDEREAL TIME Equation of I U.T. at OhG.M.S.T. 
Date Julian (G. H. A. of the Equinox) Equinoxes G. S. D. I (Greenwich Transit of 

ObU.T. Date Apparent Mean atOhU.T. OhG.S.T. the Mean Equinox) 

244 b m • • • 245 h m • 
Jan. 0 4604.5 6 38 17.1886 17.9594 -0.7708 1299.0 Jan. 0 17 1851.3829 

1 4605.5 6 42 13.7431 14.5148 .7717 1300.0 1 17 1455.4734 
2 4606.5 6 46 10.2993 11.0702 .7708 1301.0 2 17 10 59.5639 
3 4607.5 6 50 06.8575 07.6255 .7681 1302.0 3 17 0703.6545 
4 4608.5 6 54 03.4174 04.1809 .7635 1303.0 4 17 0307.7450 

5 4609.s 6 .57 59.9787 60.7363 -0.7576 1304.0 S 16 59 11.8356 
6 4610.5 7 01 56.5407 57.2916 .7510 1305.0 6 16 55 15.9261 
7 4611.5 7 05 53.1023 53.8470 .7447 1306.0 7 16 5120.0166 
8 4612.5 7 09 49.6626 50.4024 .7398 1307.0 8 16 47 24.1072 
9 4613.5 7 13 46.2207' 46.9577 .7370 1308.0 9 16 43 28.1977 

10 4614.5 7 17 42.7763 43.5131 -0.7368 1309.0 10 16 39 32.2882 
11 4615.5 7 21 39.3297 40.0685 .7387 1310.0 11 16 3536.3788 
12 4616.5 7 25 35.8817 36.6238 .7421 1311.0 12 16 31 40.4693 
13 4617.5 7 29 32.4335 33.1792 .7457 1312.0 13 16 2744.s598 
14 4618.5 7 33 28.9864 29.7346 .7481 1313.0 14 16 2348.6504 

IS 4619.5 7 37 25.5415 26.2899 -0.7484 1314.0 15 16 19 52.7409 
16 4620.5 7 41 22.0994 22.8453 .7459 1315.0 16 16 15 56.8314 
17 462l.S 7 45 18.6598 19.4006 .7409 1316.0 17 16 12 00.9220 
18 4622.5 7 49 15.2219 . t5.9560 .7341 1317.0 18 16 0805.0125 
19 4623.5 7 53 11.7843 12.5114 .7271 1318.0 19 16 0409.1030 

20 4624.5 7 57 08.3457 09.0667 -0.7210 1319.0 20 16 00 13.1936 
21 4625.5 8 01 04.9050 05.6221 .7171 1320.0 21 IS 56 17.2841 
22 4626.5 8 05 01.4618 02.1775 .7157 1321.0 22 15 5221.3746 
23 4627.5 8 08 58.0160 58.7328 .7168 1322.0 23 15 48 25.4652 
24 4628.5 8 12 54.5682 55.2882 .7199 1323.0 24 15 4429.5557 

25 4629.5 8 16 51.1192 51.8436 -0.7243 1324.0 25 15 4033.6462 
26 4630.5 8 20 47.6698 48.3989 .7291 1325.0 26 15 3637.7368 
27 4631.5 8 24 44.2208 44.9543 .7335 1326.0 27 15 3241.8273 
28 4632.5 8 28 40.7728 41.5097 .7368 1327.0 28 15 2845.9178 
29 4633.5 8 32 37.3264 38.0650 .7386 1328.0 29 IS 24 50.0084 

30 4634.5 8 36 33.8818 34.6204 -0.7386 1329.0 30 15 2054.0989 
31 4635.5 8 40 30.4389 31.1758 .7368 1330.0 31 15 1658.1894 

Feb. I 4636.5 8 44 26.9975 27.7311 .7336 1331.0 Feb. • 15 1302.2800 
2 4637.5 8 48 23.5571 24.2865 .7294 1332.0 2 15 09 06.3705 
3 4638.5 8 52 20.1168 20.8418 .7251 1333.0 3 15 05 10.4610 

4 4639.5 8 56 16.6755 17.3972 -0.7217 . 1334.0 4 15 0 I 14.5516 
5 4640.5 .9 00 13.2323 13.9526 .7203 1335.0 5 14 57 18.6421 
6 4641.5 9 04 09.7865 10.5079 .7215 1336.0 6 14 53 22.7326 
7 4642.5 9 08 06.3381 07.0633 .7252 1337.0 7 14 49 26.8232 
8 4643.5 9 12 02.8879 03.6187 .7307 .1338.0. 8 14 45 30.9137 

9 4644.5 9 15 59.4372 60.1740 -0.7369 1339.0 9 14 41 35.0042 
10 4645.5 9 19 55.9872 56.7294 .7422 1340.0 10 14 3739.0948 
11 4646.5 9 23 52.5392 53.2848 .7455 1341.0 II 14 33 43.1853 
12 4647.5 9 27 49.0938 49.8401 .7463 1342.0 12 142947.2758 
13 4648.5 9 31 45.6509 46.3955 .7445 1343.0 13 14 25 51.3664 

14 4649.5 9 35 42.2098 42.9509 -0.74t1 1344.0 14 14 21 55.4569 
IS 4650.5 9 39 38.7693 39.5962 -0.7369 1345.0 15 14 17 59.5474 

Figure 3-12a [AA, 1981] 
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UNIVERSAL AND SIDEREAL TIMES p 1981 

G. SIDEREAL TIME Equation of U.T. at OhG.M.S.T. 
Date Julian (G. H. A. of the Equinox) Equinoxes G.S.D. (Greenwich Transit of 

OhU.T. Date Apparent Mean at O~U.T. O'G.S.T. tbe Mean Equinox) 

244 h m • • • 245 , . m • 
Feb. 15 4650.5 9 39 38.7693 39.5062 -0.7369 1345.0 Feb. 15 14 1759.5474 

16 4651.5 9 43 35.3282 36.0616 .7334 1346.0 16 14 1403.6380 
17 4652.5 9 47 31.8854 32.6169 .7315 1347.0 17 14 1007.7285 
.18 4653.5 9 51 28.4403 29.1723 .7320 1348.0 18 14 0611.8191 
19 4654.5 9 55 24.9927 25.7277 .7350 1349.0 19 14 02 15.9096 

20 4655.5 9 59 21.5429 22.2830 -0.7401 1350.0 20 13 58 20.0001 
21 4656.5 10 03 18.0916 18.8384 .7468 1351.0 21 13 54 24.0~07 
22 4657.5 10 07 14.6396 15.3938 .7541 1352.0 22 13 5028.1812 
23 4658.5 10 11 11.1878 11.9491 .7613 1353.0 23 13 4632.2717 
24 4659.5 10 15 07.7369 08.5045 .7676 1354.0 24 13 42 36.3623 

25 4660.5 10 19 04.2874 05.0599 -0.7725 1355.0 25 13 38 40.4528 
26 4661.5 10 23 00.8396 01.6152 .7756 1356.0 26 13 34 44.5433 
27 4662.5 10 26 57.3936 58.1706 .7770 1357.0 27 t3 30 48.6339 
28 4663.5 10 30 53.9492 54.7260 .7768 1358.0 28 13 2652.7244 

Mar. 1 4664.5 10 34 50.5059 51.2813 .7754 1359.0 Mar. I 13 2256.8149 

2 4665.5 10 38 47.0631 47.8367 -0.7735 1360.0 '2 13· 1900.9055 
3 4666.5 10 42 43.6199 44.3921 .7721 1361.0 3 13 1504.9960 
4 4667.5 10 46 40.1753 40.9474 .7721 1362.0 4 13 11 09.0865 
5 4668.5 10 50 36.7284 37.5028 .7743 1363.0 5 t3 07 13.1771 
6 4669.5 10 54 33.2790 34.0581 .• 7792 1364.0 6 t3 03 17.2676 

7 4670.5 10 58 29.8272 30.6135 -0.7863 . 1365.0 7 12 5921.3581 
8 4671.5 11 02 26.3744 27.1689 .7945 1366.0 8 12 5525.4487 
9 4672.5 11 06 22.9220 23.7242 .8022 1367.0 9 12 51 29.5392 

10 4673.5 11 10 19.4715 20.2796 .8081 1368.0 10 12 47 33.6297 
11 4674.5 11 14 16.0238 16.8350 .8112 1369.0 II 12 4337.7203 

12 4675.5 11 18 12.5788 13.3903 -0.8115 1370.0 12 12 3941.8108 
13 4676.5 11 22 09.1358 09.9457 .8099 1371.0 13 12 35 45.9013 
14 4677.5 11 26 05.6937 06.5011 .8074 1372.0 14 12 31 49.9919 
15 4678.5 11 30 02.2512 03.0564 .8053 1373.0 IS 12 27 54.0824 
16 4679.5 11 33 58.8072 59.6118 .8046 1374.0 16 12 23 58.1729 

17 4680.5 11 37 55.3611 56.1672 -0.8060 1375.0 17 12 2002.2635 
18 468t.S 11 41 51.9127 52.7225 .8098 1376.0 18 12 1606.3540 
19 4682.5 II 45 48.4621 49.2779 .8158 1377.0 19 12 1210.4445 
20 4683.5 11 49 45.0099 45.8333 .8234 1378.0 20 12 08 14.5351 
21 4684.5 11 53 4t.S568 42.3886 .8318 1379.0 21 12 04 18.6256 

22 4685.5 11 57 38.1038 38.9440 -0.8402 1380.0 22 12 0022.7161 
23 4686.5 12 01 34.6515 35.4993 .8478 1381.0 23 II 5626.8067 
24 4687.5 12 OS 31.2006 32.0547· .854l 1382.0 24 11 5230.8972 
25 4688.5 12 09 27.7515 28.6101 .8586 1383.0 2511 4834.9877 
26 4689.5 12 13 24.3042 25.1654 .8613 1384.0 26 11 4439.0783 

27 4690.5 12 17 20.8585 21.7208 -0.8623 1385.0 2711 4043.1688 
28 4691.5 12 21 17.4142 18.2762 .8619 1386.0 28 It 3647.2593 
29 4692.5 12 25 13.9707 14.8315 .8609 1387.0 29 II 3251.3499 
30 4693.5 12 29 10.5270 tl.3869 .8599 1388.0 30 II 2855.4404 
31 4694.5 12 33 07.0825 07.9423 .8597 1389.0 31 11 2459.5309 

Apr. 1 4695.5 12 37 03.6363 04.4976 -0.8614 1390.0 Apr. 1 11 2103.6215 
2 4696.5 12 41 00.1877 01.0530 -0.8653 1391.0 2 11 1707.7120 

Figure 3-12h [AA, 1981] 
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UNIVERSAL AND SIDEREAL TIMES. 1981 

G. SIDEREAL TIME Equation or U.T. at OhG.M.S.T. 
Date Julian (G. H. A. or the Equinox) Equinoxes G.S.D. (Greenwich Transit or 

OhU.T. Date Apparent Mean aIOhU.T. OhG.S.T. the Mean Equinox) 

244 b m • • • 245 b ... • 
Apr. 1 4695.5 12 37 03.6363 04.4976 -0.8614 1390.0 Apr. I 11 21 03.6215 

2 4696.5 12 41 00.1877 01.0530 .8653 1391.0 2 11 1707.7120 
3 4697.5 12 44 56.7368 57.6084 .8716 1392.0 3 II 13 11.8026 
4 4698.5 12 48 53.2843 54.1637 .8795 1393.0 4 II 09 15.8931 
5 4699.5 12 52 49.8316 50.7191 .8875 1394.0 5 \I OS 19.9836 

6 47005 12 56 46.3804 47.2745 -0.8941 1395.0 6 II 01 24.0742 
7 4701.5 13 00 42.9320 43.8298 .8978 1396.0 7 10 5728.1647 
8 4702.5 13 04 39.4869 40.3852 .8983 1397.0 8 10 53 32.2552 
9 4703.5 13 OS 36.0443 36.9405 .S962 1398.0 9 10 49 36.345S 

10 47045 13 12 32.6032 33.4959 .8927 1399.0 10 10 45 40.4363 

11 4705.5 13 16 29.1620 30.0513 -0.8893 1400.0 11 10 41 44.5268 
12 4706.5 13 20 25.7194 ~6.6066 .8872 1401.0 12 10 3748.6174. 
13 4707.5 13 24 22.2748 23.1620 .8872 1402.0 13 10 33 52.7079 
14 4708.5 13 28 18.8277 19.7174 .8896 1403.0 14 10 29 56.7984 
IS 4709.5 13 32 15.3785 16.2727 .8942 1404.0 IS 10 2600.8890 

16 4710.5 13 36 11.9276 12.8281 -0.9005 1405.0 16 10 22 04.9795 
17 4711.5 13 40 08.4757 09.3835 .9077 1406.0 17 10 180.9.0700 
18 4712.5 13 44 05.0237 05.9388 .9151 1407.0 18 10 14 13.1606 
19 47135 13 48 01.5724 02.4942 .9218 140S.0 19 10 1017.2511 
20 4714.5 13 51 58.1224 59.0496 .9272 1409.0 20 10 06 21.3416 

21 4715.5 13 55 .54.6740 55.6049 -0.9309 1410.0 21 10 02 25.4322 
22 4716.5 13 59 51.2276 52.1603 .9327 1411.0 22 9 5829.5227 
23 4717.5 14 03 47.7830 4S.7157 .9326 1412.0 23 9 5433.6132 
24 4718.5 14 07 44.3399 45.2710 .9311 1413.0 24 9 5037.7038 
25 4719.5 14 11 40.8977 41.8264 .9287 1414.0 2.S 9 4641.7943 

26 4720.5 14 15 37.4556 38.3817 -0.9261 1415.0 26 9 4245.8848 
27 472t.S 14 19 34.0130 34.9371 .9241 1416.0 27 9 3849.9754 
2S 4722.5 14 23 30.5689 31.4925 .9236 1417.0 28 9 3454.0659 
29 4723.5 14 27 27.1229 28.0478 .9249 1418.0 29 9 3058.1564 
30 4724.5 14 31 23.6746 24.6032 .9286 1419.0 30 9 2702.2470 

May 1 4725.5 14 35 20.2245 21.1586 -0.9340 1420.0 May 1 9 2306.3375 
2 4726.5 14 39 16.7736 17.7139 .9403 1421.0 2 9 1910.4280 
3 4127.5 14 43 13.3235 14.2693 .9458 1422.0 3 9 15 14.5186 

" 4728.5 14 47 09.8758 10.8247 .9488 1423.0 4 9 11 18.6091 
5 4129.5 14 51 06.4315 07.3800 .9485 1424.0 S .9 07 22.6996 

6 4730.5 14 55 02.9904 03.9354 -0.9450 1425.0 6 9 0326.7902 
7 4731.5 14 58 59.5516 60.490S .9392 1426.0 7 8 5930.8807 
8 4732.5 15 02 56.1133 57.0461 .9328 1427.0 8 8 5534.9712 
9 4733.5 IS 06 52.6741 53.6015 .9274 1428.0 9 8 51 39.0618 

10 4734.5 IS 10 49.2327 50.1568 .9241 1429.0 10 8 4743.1523 

11 4735.5 IS 14 45.7888 46.7122 -0.9234 1430.0 " 8 4347.2428 
12 4736.5 IS 18 42.3425 43.2676 .925' 1431.0 12 8 3951.3334 
13 4737.5 IS 22 38.8942 39.8229 .9287 1432.0 13 8 3555.4239 
14 4738.5 IS 26 35.4447 36.3783 .9336 1433.0 14 8 31 59.5144 
15 4739.5 IS 30 31.9949 32.9337 .9387 1434.0 IS 8 2803.6050 

16 4740.5 IS 34 28.5456 29.4890 -0.9434 1435.0 16 8 2407.6955 
17 4741.5 IS 38 25.0974 26.0444 -0.9470 1436.0 17 8 2011.7S61 

Figure 3-12c [AA, 1981] 
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We now turn our attention to the relationship of the sidereal 

and solar time intervals. The direction of the sun in space, relative to 

the geocentre, varies due to the earth's orbital motion about the sun. The 

result is that the mean solar day is longer than the mean sidereal day by 

approximately 4 minutes. After working out rates of change per day, one 

obtains 

ld (5) = 23h 56m 04~09054 (M) , ~d (M) = 24h 03m 56~55536 (5), 

lh (5) = 59m 50~17044 (M) , Ih (M) = 1h OOm 09~85647 (5), 

1m (5) = 59~83617 (M) , 1m (M) = Olm OO~l6427 (5), 

1s (5) 
s 

eM) IS (M)· = Ol~OO273 (5), = . 0.99727 , 

in which 5 and M refer to mean sidereal· and mean solar times respectively. 

These numbers are derived from the fact that a tropical (solar) year contains 

366.2422 mean sidereal day~ or 365.2422 mean so~ar days. The ratio·s.are 

then 

mean solar time interval = (365.2422/366.2422) = 0.997 269 566 4x mean 

sidereal time interval, 

mean sidereal time interval = (366.2422/365.2422) = 1.002 737 909x 

mean solar time interval. 

The usefulness of a knowledge of the intervals is given in the following 

numerical example. 
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Example #3 (using 'M) 

Given: LAST = 4h OOm 04~30 

Feb. 14, 1981 

A = 66° 3S' 2S"W 

compute: ZT 

LAST 4h Oom 04~30 

A (-66 0 38' 28") 

GAST (=LAST - A) 

h 
Eq.E. (0 U.T. Feb. 14, 1981) 

GMST (=GAST - Eq.E.) 

GMST at Oh U.T., Feb. 14, 1981· 9h 3? 42:95 

Mean Sidereal Interval (GMST ii GMSTl 
,,(,LU. T. 

U.T.(mean sidereal interval x 0.997 269 566 4) 

ZT (= UT - ~Z) 

"4h 26m 33~S7 

Sh 26m 3S~17 

-{)~74 

Sh 26m 38~9l 

4h 

lsh 47'1'f1ll~37 
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3.4 Irregularities of Rotational Time Systems 

Sidereal and Universal time systems are based on the rotation of 

the earth; thus, they are subject to irregularities caused by (i) changes 

in the rotation rate of the earth, we' and (ii) changes in the position of 

the rotation axis (polar motion). The differences are expressed in terms 

of Universal time as follows: 

UTa is UT deduced from observations, is affected by changes in W 
e 

and polar motion, thus is an irregular time system. 

UTI is defined as UTa corrected for polar motion, thus it represents 

the true angular motion of the earth and is the system to be 

used for geodetic astronomy (note that it is an irregular time 

system due to variations in w·) • 
e 

UT2 is defined as UTI corrected for seasonal variations in w . This e 

time system is non-uniform because w is slowly decreasing due e 

to the drag of tidal forces and other reasons. 

UTC Universal Time Coordinated is the internationally agreed upon 

time system which is transmitted by most radio time stations. 

UTC has a defined relationship to International Atomic Time 

(IAT), as well as .. to UT2 and to UTI. 

More information on UTe, UTI, and UT2, particularly applicable 

to timekeeping for astronomic purposes, is given in chapter 4. 

3.5 Atomic Time System 

Atomic time is based on the electromagnetic oscillations 

produced by the quantum transition of an atom. In 1967, the International 

committee for Weights and Measures defined the atomic second (time interval) 

as "the duration of 9 192 631 770 periods of radiation corresponding to 
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the transition between the two hyper-fine levels of the fundamental state 

of the atom of Caesium 133"jRobbins, 1976J. Atomic frequency standards 

are the most acurate standards in current use with stabilities of one or 

. 1012 d '1" f . 1014 b . d two parts ~n common, an stab~ ~t~es 0 two parts ~n a ta~ne 

from. the mean of sixteen specially selected caesium standards at ·the us 

Naval Observatory. 

Various atomic time systems with different epochs are in use. 

The internationally accepted one is called International Atomic Time, 

which is based on the weighted means of atomic clock systems. throughout the 

world. The work required to define IAT is carried out by BIH (Bureau 

International de l'Heure) in Paris IRobbins, 1976]. IAT, through its 

relationship with UTC, is the basis for radio broadcast time signals. 



4. TIME DISSEIUNATION, TIME-KEEPING, TIME RECORDING 

4.1 Time Dissemination 

As has been noted several times already, celestial coordinate 

systems are subject to change with time. To make use of catalogued 

positions of celestial bodies for position and azimuth determination at 

any epoch, we require a measure of the epoch relative to the catalogued 

epoch. In the interests of homogeneity, it is in our best interest if on 

a world-wide bases everyone uses the same time scale. 

Time signals are broadcast by more than 30 stations around the 

world, with propagation frequencies in either the HF (1 to 50 MHz) or LF 

(10 to 100 KHz) ranges. The HF (high frequency) tend to be more useful 

for surveying purposes as a simple commercial radio receiver can be used. 

The LF (low frequency) signal are more accurate since errors due to 

propagation delay can be more easily accounted for. 

In North America, the two most commonly used time signals are 

those broadcast by WWV, Boulder, Colorado (2.5 MHz,S MHz, 10 MHz, 15 MHz, 

20 MHz) and CHU, Ottawa (3.330 MHz, 7.335 MHz, 14.670 MHz). 

The broadcast signal is called Universal Time Coordinated (UTC). 

UTC is a system of seconds of atomic time, that is IS UTC is lSAT to the 

accuracy of atomic time and it is constant • h '.At 1972 January lOUT, 

. . UTCwas ... deUned . .to. belAT . minus . 1Us .exactly ..... ,w.'Ihe quantit.,y: ~.(l.AT":,,UTC), 

called DAT, will always be an integral number due to the introduction of 

the "leap second" (see below). 

The time we are interested in is UTI. The value, (UTI-UTe) is 

denoted DUTI and never exceeds the value 0~9. The value DUTl is predicted 

and published by BIH. Precise values are published one month in arear~. 

95 
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In addition, DUTI can be disseminated from certain time signal transmissions 

The code for transmission of DUTI by CHU is given in Figure 4-1. 

TAl is currently gaining on UTI at a rate of about one 

s 
second per year. To keep DUTI within the specified 0.9, UTe is 

decreased by exactly IS at certain time~. The introduction of this 

"leap second" is illustrated in Figure 4 ... 2. Note that provisions for a 

negative leap second are given, should it ever become necessary. 

All major observatories of the world transmit UTC with an error 

of less than O~OOI , most with errors less than O~OOO 3. The propagation 

delay of high frequency signals reaches values in the order of O.Sms. 

Since geodetic observations rarely have an accuracy of better than 

s 0.01 or 10 ms, an error of 0.5 ms is of little consequence. For further 

information on the subject of propagation delay, the reader is referred 

to, for example, Robbins [1976]. The various time signals consist 

essentially of: 

(i) short pulses emitted every second, the beginning of the 

pulse signalling the beginning of the second, 

,(ii) each minute marked by some type of stress (eg. for CHU, the 

zero second marker of each minute is longer; for wwv, the 

59th second marker is omitted)p 

(iii) at periodic intervals, station identification, time, and date 

are announced in morse code, voice, or both, 

(iv) DUTl is indicated by accentuation of an appropriate number 

of the first 15 seconds of every minute. 
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A positive value of DUT1 will be indicated by emphasizing a number (n) 
of consecutive seconds markers following the minute warker from seconds markers 
one to seconds marker (n) inclusive; (n) being an integer from 1 to 8 'inclusive. 

DUT1 = (n x O.l)s 

A negative value of DUT1 will be indicated by e~phasizing a'number 
(m) of consecutive seconds markers following the minute marker from seconds 
marker nine to seconds marker (8 + m) inclusive; (m) being an integer from 
1 to 8 inclusive. 

DUT1 = - {m x O.l)s 

A zero value of DUTI will be indicated by the absence of emphasized 
seconds markers • 

The appropriate seconds markers may be emphasized, for example, 
by lengthening, doubling, splitting, or tone modulation of the normal 
seconds markers. 

EXAMPLES 

EMPHASIZED 
MI NUTE SECONDS 

MARKERS 
MARKER , ___ ----A ..... ---..,., 

o 

MINUTE 
M'ARKER 

DUTI = + 0.55 

DUTI = - 0.25 

EMPHASIZED SECONDS MARKERS 
r-A-. 

I 
I 
I 
I 

LIMIT OF CODED SEQUENCE --I 
I 

Figure 4-1 

Code for the Transmission of DUT1 
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A positive or negative leap second, when required, should be the 
last second of a UTe month, but;,preierenceshould be,' given to the end of December 

and June and second preference to the end of March and September. 1(,. positive leap 
second begins at 23h 59,m. 60S a~d ends.~tOh Om O\of~he ~ir~t day of' the following 
month~ In the case of anegat1.ve leap second, 23 59 58 w:Lll be followed one 
second later by Oh Om Os of the first day of the following month .. 

. ... 

I 

Taking account of what h~s been said in t~e preceding paragraph, 
the dating of events in the vicinity of a leap second shall be effected in 
the manner indicated in the following figures: 

I I 

POSITIVE LEAP SECOND 

EVENT 

t 
~lEAP 

I : I I 

SECOND 

I 

DESIGNATION OF THE 
DATE OF THE EVENT 

. ~h m s . 
30 JUNE, 23 59 60.6 UTe 

56 51 58 59 60 I 0 1 2 3 4s 

30 JUNE, 23h59m 1 JULY OhOm 
~ 

NEGATIVE LEAP SECOND 

DESIGNATION OF THE 

EVENT DATE OF THE EVENT 

t t m s 
I I . I a I I I I I 30 JUNE, 23 59 58.9 UTC 

56 57 58 0 1 2 3 4 5 6 

30 JUNE, 23h59m ~I~ 1 JULY ohom 

Fir.;ure 4-2 

Dating of Events in the Vicinity of A Leap Second 
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4.2 Time~Keeping and Recording 

Time reception, before the advent of radio, was by means of the 

telegraph. Since the 1930's, the radio receiver has been used almost 

exclusively in geodetic astronomy. Time signals are received and amplified, 

after which they are used as a means of determining the exact time of an 

observation. Direct comparison of a time signal with the instant of 

observation is not made in practice - a clock (chronometer) is used as an 

intermediate means of timekeeping. Usually, several comparisons of clock 

time with UTe are made during periods when direction observations are not 

taking place. The direction obs~rvations are subsequently compared to 

clock time. 

The most practical receiver to use is a commercial portable 

radio with a shortwave (HF) band. In areas where reception is difficult, 

a marine or aeronautical radio with a good antenna may become necessary. 

The chronometer or clock used should be one that is very stable, 

that is, it should have a constant rate. There are three broad 

categories of clock that may be used: 

(1) Atomic clocks, 
(2) Quartz crystal clock, 
(3) Mechanical clock. 

Atomic clocks are primarily laboratory instruments, are very 

costly, and have an accuracy that is superfluous for geodetic purposes. 

Quartz crystal clocks are the preferred clocks. They are portable, stable 

(accuracy of 1 part in 107 to 1 part in 1012), but do require a source of 

electricity. This type of time-keeper is normally used for geodetic 

purposes, in conjunction with a time-recorder, (e.g. chronograph) where 

an accuracy of O~OOI or better is required. Mechanical clocks, with 
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accuracies in the order of 1 part in 106 , suffice for many surveying needs 

(eg. where an accuracy of O~l is required). They are subject to 

mechanical failure and sudden variations in rate, but' they are portable 

and independent of an outside source of electricity. The most common and 

useful mechanical clock is a stop watch, reading to O~l, with two sweep 

seconds hands. One should note that many of the new watches - mechanical, 

electronic, quartz crystal - combine the portable-stable criteria and the 

stop watch capabilities, and should not be overlooked. With any of these 

latter devices, time-recording is manual, and the observing procedure is 

audio-visual. 

4.3 Time Observations 

In many instances, the set of observations made for the astronomic 

determination of position and azimuth includes the accurate determination 

and recording of time. While in many cases,(latitudeand azimuth 

mathematical models and associated star observing programs can be devised 

to minimize the effects of random and systematic errors in time, the 

errors in time always have a direct effect on longitude (e.g. if time is 

s in error by 0.1, the error in A will be 1~'5). 

The timekeeping device that is most effective for general 

surveying purposes is the stop watch, most often a stop watch with a mean 

solar rate (sidereal rate chronometers are available). The five desireable 

elements for the stop watch are lRobbins, 1976]: 

(i) two sweep seconds hands, 

(ii) a start-stop-reset button which operates both hands together, 

resetting them to zero, 
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(iii) a stop-reset button which operates on the secondary seconds 

hand only, resetting it to coincidence with the main hand 

which is unaffected by the operation of this button, 

(iv) reading to 0~1, 

(v) a rate sufficiently uniform over at least one half an hour 

to ensure that linear interpolation over this period does not 

s give an error greater than 0.1. 

A recommended time observing procedure is as follows [Robbins, 1976]: 

(i) start the watch close to a whole minute of time as given by 

the radio time signal, 

(ii) stop the secondary hand on a whole time signal second, record 

the reading and reset. A mean of five readings of time 

differences (see below) will give the 6T of the stop watch at 

the time of comparison. 

(iii) stop the secondary hand the instant the celestral body is in 

the desired position in the telescope (this is done by the 

observer). Record the reading and reset. 

(iv) repeat (iii) as direction observations are made. 

(v) 
m repeat (ii) periodically (at least every 30 ) so that the 

clock rate for each time observation· can be determined. 

The clock correction (6T) and clock rate (61T) are important 

parts of the determination of time for astronomic position and azimuth 

determination. Designating the time read on our watch as T, then the 

zone time (broadcast, for example, by CHU) of an observation can be 

stated as 

ZT =·T + t:.T (4-1) 
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In (4-ll! it is assumed that ~T is constant. ~T will usually not be 

constant but changes should occur.at a uniform rate, bolT. Then boT is 

given by 

where 

~T,~T are clock corrections at times T, T , 
o 0 

~lT is the change in ~T per unit of time, 

the clock (chronometer) rate. 

(4-2) 

The clock correction, ~T for any time of observation, is determined via 

a simple linear interpolation as follows: 

(i) using the radio and clock comparisons made before, during, and 

after the observing program, compute ~T for each by 

~T, = ZT, - T, 
1 1 1 

(4-3) 

(ii) Compute the time difference, boZT, '+1 between time comparisons 
1,1 

by 

~ZTi,i+l = ZTi +l - ZTi (4-4) 

(iii) Compute the differences between successive clock corrections 

corresponding to the differences ~ZT, '+1 ' namely 
1,1. 

boT, , 1= ~T '+1- boT, 1.,1.+ 1. 1 

(iv) Compute the clock rate per mean solar hour by 

~ T = 1 

~T, '+1 1,1. 

~ZT, '+1 1.,1 

tv) Record the results in a convenient and usable form 

(e.g. table of values, graph). 

(4-5) 

(4-6) 
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This time determination process is illustrated by the following example. 

Clock Correction and Clock Rate 

(i) Determination of ZT of stop watch 

ZT (radio) Stop Watch (T) ~T, (Radio-Stop watch) 
1 

gh 13m OO~O Oh OOm OO~O gh 13m OO~O 

13m 15~0 OOm 14~8 gh 13m 00~2 

13m 45~0 OOm 45~2 gh 12m 59~8 

gh 14m OO~O Oh Olm OO~O gh 13m OO~O 

14m 30~0 Olm 29~9 gh 13m 00~1 

ZT of beginning = (i~T,)/i = gh 13m oo~b 
i=l 1 

This procedure is to be repeated for each time comparison with 

the radio time signal. 

(ii) Record of time comparisons; determination of clock rate. 

ZT Clock ~ T 
(radio) (stop watch) ~ZT, '+1 ~T ~T. '+1 (~/h) 

TIME (T) 
1,1 0 1,1 

gh13mOO~O ohOomOO~O 
Oh28mOO~0 

gh13mOO~0 

gh41mOO~0 Oh27m59~2 gh13mOO~8 
00~8 1.7 

10h30mOO~0 Ih16m57~7 
Oh49mOO~0 

gh13m02~3 
01~5 1.8 

llh33mOO~0 2h19m55~7 
Ih03mOO~0 

gh13m04~3 
02~0 1.g 
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(iii) Graph of Clock (stop watch) Correction ~T 

-t:i -
."..,-

• 

CLOCK TIME (To) 

(iv) Determination of the true zone time of a direction observation. 

Observed Time (stop watch): 

What is true ZT ? 

From the graph: h m s ~T at ZT observed = 9 13 01.6 

ZT (true) = Oh S2m 28~8 + gh 13m 01~6 

= 10h OSm 30~4 

Using ~T = ~To + (Ti +1 - Ti)~lT yields 

6T = gh 13m OO~8 + (O~40803) 1.8 = gh 13m Ol~S 

ZT(true) = Oh S2m 28~8 + gh 13m 01~6 

= 10h OSm 30~3 • 
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In closing this section, the reader is cautioned that the 

methods described here for time determination are not adequate for precise 

(e.g. first-order) determinations of astronomic azimuth and position. Such 

s work requires an accuracy in time of 0.01 or better. For details, the 

reader is referred to, for example, Mueller I1969J or Robbins 11976]. 



5. STAR CATALOGUES AND EPHEMERIDES 

5.1 Star Catalogues-

Star catalo9Ues contain the listing of the positions of stars in 

a unique coordinate system. The positions are generally given in the mean 

right ascension coordinate system for a particular epoch T. Besides 
o 

listing the right ascensions and declinations, star catalogues identify 

each star by number and/or name, and should give their proper motions. 

Some catalogues also include annual and secular variations. Other 

pertinent data sometimes given are estimates of the standard errors of the 

coordinates and their variations, and star magnitudes. (Magnitude is an 

estimate of a star's brightness given on a numerical scale varying from 

-2 for a bright star to +15 for a dim star). 

There are two main types of catalogues: (i) Observation 

catalogues containing the results of particular observing programs, and 

(ii) compilation catalogues containing data from a selection of catalogues 

(observation and/or other compilation catalogues). The latter group are 

of interest to us for position and azimuth determination. Several 

compilation catalogues contain accurate star coordinates for a well-

distributed (about the celestial sphere) selection of stars. These 

catalogues are called fundamental catalogues and the star coordinates 

contained therein define a fundamental coordinate system. Three of these 

catalogues are described briefly below. 

The Fourth Fundamental Catalogue (FK4) IFricke and Kopff, 1963] 

was produced by the Astronomischen Rechen Institute of Heidelberg, 

Germany in 1963. It was compiled from 158 different observation catalogues 

and contains coordinates for 1535 stars for the epochs 1950.0 and 1975.0. 

106 
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A supplement to :the FK4, with star coordinates for 1950.0, contains .!2!!1 

additional stars. These additions were drawn mainly form the N30 

catalogue. It should be noted that the FK4 system ha's been accepted 

internationally as being the best available, and all star coordinates 

should be expressed in this system. 

The General or Boss General Catalogue (Ge, or BC) [Boss, 1937), 

compiled from two hundred fifty observation catalogues, contains star 

coordinates for 33 342 stars for the epoch 1950.0. The present accuracy 

of the coordinates in this catalogue are somewhat doubtful. GC-FK4 

correction tables are available, but are of doubtful value due to the 

errors in the GC coordinates. 

The Normal System N30 (N30) IMorgan, 1952] is a catalogue of 

5268 Standard Stars with coordinates for the epoch 1950.0. Although 

more accurate than the Ge, it is not of FK4 quality. 

For geodetic purposes, the most useful catalogue is the 

Apparent Places of Fundamental Stars (APFS) IAstronomische Rechen

Institutes, Heidelberg, 1979]. This is an annual volume containing the 

apparent places of the FK4 stars, tabulated at 10-day intervals. As the 

name implies, the published coordinates have not been corrected for short 

period nutation terms that must be applied before the coordinates are used 

for position and azimuth determination. For all but latitude observations 

there are sufficient stars in this publication. For the stringent star

pairing required for latitude determinations there are often insufficient 

stars to fulfill a first-order observation program. In such cases, the 

FK4 supplement should be referred to and the coordinates rigorously updated 

from 1950.0 to the date of observation. 
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5.2 . E;phemexoides and Almanacs 

Ephemerides and l\lmanacs are annual volumes containing 

info:rmation of interest to surveyors and others (e.g. mariners) involved 

with "practical" astronomy. They contain the coordinates of selected 

stars, tabulated for short intervals of time, and may also contain some or 

all of the following information: motions of the sun, moon, and planets 

of our solar system, eclipses, occultations, tides, times of sunrises and 

sunsets, astronomic refraction, conversions of time and angular measures. 

The Astronomical Almanac (AA) [U.S. Naval Observatory, Nautical Almanac 
. , 

, Office, 1980]. ,(formerly,. published ,j;l1.thelJittted" States -as·'the· American Ephemeris and 

Nautical Almanac and in 'the United Kingdom as the Astronomical Ephemeris) is the only 

one of geodeticinte;-e~t:.· It'contai;lJs~amongst' other things~ the mean I?lac~s of 1475 

s'tars- catalogued for the "beginning of theye'ar' of'irtteres"t, (e~ g~ 1981.0), plus the 

information required to update the star coordinates to the time of 

observation. All of the information given is fully explained in a 

section at the end of each AA. Parts of three tables are given here -

Figures 5-1, 5-2, 5-3, - that are of interest to us. Each table is self-

explanatory since the info:rmationhas been previously explained. An extra 

note concerning Figure 5-1 is as follows. Recall from equation (3-18) that 

GMST = UT + (a - l2h). 
m 

Now, since the tabulated values are for ohUT, and ST is the hour angle of 

the vernal equinox, then 

GAST at OhUT 

GMST at OhUT 

= 

= 

(a - l2h 
m 

(a 
m 

+ Eq. E), 

For more detailed information, the interested reader should study a recent 

copy of AA. 
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UNIVERSAL AND SIDEREAL TIMES. 1981 

G. SIDEREAL TIME Equation of U.T. at OhG.M.S.T. 
Date Julian (G. H. A. of the Equinox) Equinoxes G.S.D. (Greenwich Transit of 

OhU.T. Date Apparent Mean atOhU.T. OhG.S.T. the ~fean Equinox) 

244 .11 III • I • 245 II m • 
Jan. 0 4604.5 6 38 17.1886 17.9594 -0.7708 1299.0 Jan. 0 17 1851.3829 

1 4605.5 6 42 13.7431 14.5148 .7717 1300.0 1 17 1455.4734 
2 4606.5 6 46 10.2993 11.0702 .7708 1301.0 2 17 1059.5639 
3 4607.5 6 50 06.8575 07.6255 .7681 1302.0 3 17 07 03.6545 
4 4608.5 6 54 03.4174 04.1809 .7635 1303.0 4 17 0307.7450 

5 4609.5 6 57 59.9787 60.7363 -0.7576 1304.0 5 16 59 11.8356 
6 4610.5 7 01 56.5407 57.2916 .7510 1305.0 6 16 55 15.9261 
7 4611.5 7 05 53.1023 53.8470 .7447 1306.0 7 16 51 20.0166 
8 4612.5 7 09 49.6626 50.4024 .7398 1307.0 8 16 47 24.1072 
9 4613.5 7 13 46.2207· 46.9577 .7370 1308.0 9 16 4328.1977 

/ 

10 4614.5 7 17 42.7763 43.5131 -0.7368 1309.0 10 16 39 32.2882 
11 4615.5 7 21 39.3297 40.0685 .7387 1310.0 11 16 35 36.3788 
12 4616.5 7 25 35.8817 36.6238 .7421 1311.0 12 16 31 40.4693 
13 4617.5 7 29 32.4335 33.1792 .7457 1312.0 t3 16 27 44.5598 
14 4618.5 7 33 28.9864 29.7346 .7481 1313.0 14 16 23 48.6504 

15 4619.5 ·7 37 25.5415 26.2899 -0.7484 1314.0 IS 16 1.9 52.7409 
16 4620.5 7 41 22.0994 22.8453 .7459 1315.0 16 16 15 56.8314 
17 4621.5 7 45 18.6598 19.4006 .7409 1316.0 17 16 1200.9220 
18 4622.5 7 49 15.2219 15.9560 .7341 1317.0 18 16 08 05.0125 
19 4623.5 7 53 11.7843 12.5114 .7271 1318.0 19 16 04 09.1030 

20 4624.5 7 57 08.3457 09.0667 -0.7210 1319.0 20 16 00 13.1936 
21 4625.5 . 8 01 04.9050 05.6221 .7171 1320.0 21 15 56 17.2841 
22 4626.5 8 05 01.4618 02.1775 .7157 1321.0 22 15 52 21.3746 
23 4627.5 8 08 58.0160 58.7328 .7168 1322.0 23 IS 48 25.4652 
24 4628.5 8 12 54.5682 55.2882 .7199 1323.0 24 IS ·44 29.5557 

25 4629.5 8 16 51.1192 51.8436 -0.7243 1324.0 25 15 40 33.6462 
26 4630.5 8 20 47.6698 48.3989 .7291 1325.0 26 15 3637.7368 
27 4631.5 8 24 44.2208 44.9543 .7335 1326.0 27 15 3241.8273 
28 4632.5 8 28 40.7728 41.5097 .7368 1327.0 28 15 2845.9178 
29 4633.5 8 32 37.3264 38.0650 .7386 1328.0 29 15 2450.0084 

30 4634.5 8 36 33.8818 34.6204 -0.7386 1329.0 30 15 2054.0989 
31 4635.5 8 40 30.4389 31.1758 .7368 1330.0 31 15 1658.1894 

Feb. I 4636.5 8 44 26.9975 27.7311 .7336 1331.0 Feb. I IS 1302.2800 
2 4637.5 8 48 23.5571 24.2865 .7294 1332.0 2 15 09 06.3705 

3 4638.5 8 52 20.1168 20.8418 .7251 1333.0 3 15 05 10.4610 

4 4639.5 8 56 16.6755 17.3972 -0.7217 1334.0 4 15 01 14.5516 
5 4640.5 9 00 J3.2323 13.9526 .7203 1335.0 .s 14 57 18.6421 
6 4641.5 9 04 09.7865 10.5079 .7215 1336.0 6 14 53 22.7326 
7 4642.5 9 08 06.3381 07.0633 .7252 1337.0 7 14 '4926.8232 
8 4643.5 9 12'02.8879 03.6187 .7307 1338.0 8 14 45 30.9137 

9 4644.5 9 15 59.4372 60.1740 -0.7369 1339.0 9 14 4135.004·2 
10 4645.5 9 19 55.9872 56.7294 .7422 1340.0 10 14 37 39.0948 
11 4646.5 9 23 52.5392 53.2848 .7455 1341.0 11 14 3343.1853 
12 4647.5 9 27 49.0938 49.8401 .7463 1342.0 12 14 2947.2758 

13 4648.5 9 31 45.6509 46.3955 .7445 1343.0 13 14 2551.3664 

14 4649.5 9 35 42.2098 42.9509 -0.7411 1344.0 14 14 21 55.4569 
15 4650.5 9 39 38.7693 39.5062 -0.7369 1345.0 15 14 17 59.5474 

Figure 5-1 [AA, 1981] 
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BRIGHT STARS, 1981.0 

Name B.S. 
Right 

Declination Notes V B-V Spectral Type Ascension 
h DI • 0 . .. 

B Ocl 9OS4 000 38.2 -77 10 14 F,V 4.78 +1.27 K2 III 
30 Psc 90S9 000 59.1 - 607 11 F,V 4.41 +1.63 M3 III 
2 Cet 9098 002 46.0 -17 26 30 F,V 4.55 -0.05 B9 IV 

33 Psc 3 004 21.7 -54850 F 4.61 +1.04 Kl III 
21 a And IS 007 24.1 +28 59 08 F 2.06 -0.11 B9p 

11 fJ Cas 21 008 09.3 +59 02 42 F.S 2.27 +0.34 F2 III-IV 
E Phe 25 o OS 27.0 -45 51 08 F 3.S8 +1.03 KO III 

22 And 27 009 19.6 +45 58 00 F 5.03 +0.40 F2 II 
B Sci 35 o 10 46.1 -35 14 22 F 5.25 +0.44 dF4 

88 y Peg 39 o 12 15.3 +15 04 41 F,S,V 2.83 -0.23 B21V 

89 " Peg 45 o 13 37.0 +200604 F,S 4.80 +1.57 M2 III 
7 Cet 48 o 13 40.5 -1902 17 4.44 +1.66 MI 111 

2S fT And 68 o 17 19.8 +36 40 4S F 4.52 +0.05 A2 V 
8 , Cet 74 o 18 27.5 - 8 55 45 F 3.S6 +1.22 Kl.S III 

t Tuc 77 o 19 OS.3 -64 59 11 F 4.23 +0.58 F9 V 

41 Psc 80 o 19 37.1 + 805 OS F 5.37 +1.34 gK3 
27 p And 82 o 20 06.9 +37 51 49 F 5.18 +0.42 F6 IV 

fJ Hyi 98 o 24 46.4 -77 21 41 F 2.80 +0.62 Gl IV 
Ie Phe 100 o 25 16.2 -43 47 07 3.94 +0.17 A5 Vn 
a Phe 99 025 20.S -4224 33 F 2.39 +1.09 KO IlIb 

118 o 29 25.7 -23 53 34 F 5.19 +0.12 A5 Vn 
AI Phc 125 o 30 30.1 -48 54 30 F 4.77 +0.02 AO V 
fJlTuc 126 030 40.8 -63 03 46 4.37 -0.07 B9 V 

IS Ie Cas 130 o 31 54.5 +62 49 38 F,S 4.16 +0.14 Bl la 
29 'II' And 154 o 35 51.7 +33 3654 F 4.36 -0.14 BS V 

17 t Cas 153 o 35 54.3 +53 47 33 F 3.66 -0.20 B2 IV 
157 o 36 19.8 +35 17 43 S 5.48 +0.88 G3 11 

30 E And 163 037 32.8 +29 12 32 F 4.37 +0.87 G8 IlIp 
31 8 And 165 o 38 18.5 +3045 26 F,S 3.27 +1.28 K3 III 
18 a Cas 168 o 39 25.2 +562600 F,V 2.23 +1.17 KO- IlIa 

". Phe 180 040 25.8 -46 11 21 F 4.59 +0.97 G8 III 
'1 Phc 191 042 30.2 -57 34 02 F,D 4.36 +0.00 B9 Vp 

16 fJ Cel 188 042 38.1 -1805 27 F 2.04 +1.02 Kl JJl 
22 0 Cas 193 043 39.6 +48 10 50 F 4.54 -0.07 B5 III 
34 , And 21S 046 19.7 +24 09 51 F,V 4.06 +1.12 KIll 

63 8 Psc 224 o 47 41.7 + 728 55 F 4.43 +1.50 K5 III 
A Hyi 236 o 47 56.1 -75 01 36 F 5.07 +1.37 K4 III 

24 .., Cas 219 047 56.5 +57 42 55 S 3.44 +0.57 GO V 
64 Psc 225 047 58.6 +16 50 18 F 5.07 +0.51 F8 V 
35 " And 226 04845.6 +40 58 33 F 4.53 -0.15 B5 V 

19 4I"Cct 235 049 10.4 -104447 F 5.I9 +0.50 F8 V 
233 049 33.6 +64 OS 40 F,C 5.39 +0.49 gGO + A5 

20 Cct 248 o 52 02.1 - I 14 50 F 4.77 +1.57 MO- Ula 
A"Tuc 270 o 54 18.0 -69 37 47 F 5.45 +1.09 K2 III 

27 y Cas 264 055 33.0 +6036 51 F,V 2.47 -0.15 BO.S IYel 

37 ". And 269 o 55 41.6 +38 23 48 F 3.87 +0.13 A5 V 
38 .., And 271 o 56 11.3 +23 18 56 4.42 +0.94 G8 Ill-IV 

a Sci 280 o 57 41.4 -29 27 36 F.S 4.31 -0.16 B7 III (C II) 
71 E Psc 294 I 01 57.3 + 7 47 17 F 4.28 +0.96 KO III 

fJ Phe 322 I OS 14.2 -46 49 13 2 3.31 +0.89 G8 III 

Figure 5-2 [AA, 1981] 
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BRIGHT STARS, 1981.0 

Nama B.S. 
Right 

Declination Notes V B-V Spectral Type Ascension 
II In I . , 

" 
285 1 05 54.1 +8609 22 F 4.25 +1.21 K2I11 , Tuc 332 1 06 33.7 -61 52 36 F 5.37 +0.88 05 III 

II Phe 331 1 06 55.8 -41 35 18 F,D 5.21 +0.16 -A3 IV/V 
30 p. Cas 321 1 0659.8 +54 49 40 F 5.17 +0.69 05 Vp 

, Phe 338 1 07 35.3 -55 20 50 V 3.92 -0.08 'B7 V 

31 'IJ Cet 334 I 07 38.0 -10 1658 F 3.45 +1.16 Kl III 
42 <I> And 335 1 08 23.5 +47 08 27 4.25 -0.07 87 III 
43 fJ And 337 1 08 39.8 +35 31 13 F 2.06 +1.58 MO lila 
33 8 Cas 343 I 09 56.2 +55 02 57 4.33 +0.17 A7 V 
84 X Psc: 351 1 10 25.7 +205602 F 4.66 +1.03 08 III 

83 T Psc: 352 1 10 36.6 +295921 F 4.51 +1.09 KO III·IV 
86 , Psc: 361 1 1244.2 + 728 31 F 4.86 +0.32 FO Vo 

Ie Tuc: 377 I 15 07.6 -68 58 37 4.86 +0.47 F6 IV 
89 Psc: 378 1 1649.0 + 3 3053 F 5.16 +0.07 A3 V 
90 " Psc: 383 1 18 25.1 +270953 F 4.76 +0.03 A2 V 

34 <I> Cas 382 1 18 52.5 +5807 56 S,M 4.98 +0.68 FO Ia 
46 ( And 390 1 21 12.9 +45 25 47 F 4.88 +1.08 KO III·IV 
45 8 Cet 402 1 23 04.3 - 8 1652 F 3.60 +1.06 KO IlIb 
37 3 Cas 403 1 24 33.6 +6008 13 F.S,V 2.68 +0.13 AS III·IV 
36 til Cas 399 1 24 34.4 +68 01 53 F 4.74 +1.05 KO II1 

94 Psc: 414 I 25 39.9 +1908 33 F 5.50 +1.11 SKI 
48 Co> And 417 1 26 30.7 +45 18 33 F 4.83 +0.42 FS V 

'Y Phe 429 I 27 32.5 -43 24 55 F 3.41 +1.57 K5+ lIb-lIla 
48 Cet 433 I 28 41.4 -21 43 38 F.7 5.12 +0.02 AI V 

3 Phe 440 1 30 27.7 -49 10 16 F 3.95 +0.99 KO lIIb 

99 'I Psc: 437 1 30 27.8 +15 1454 F,3 3.62 +0.97 G8 111 
50 " And 458 1 35 40.5 +41 18 39 F 4.09 +0.54 FS V 
51 And 464 1 36 49.1 +48 31 57 F 3.57 +1.28 K3 III 
40 Cas 456 1 36 58.2 +72 56 38 F,D 5.28 +0.96 08 It·III 

a Eri 472 1 37 00.5 -57 19 59 F 0.46 -0.16 83 Vp 

106 I' Psc: 489 1 40 26.4 + 5 23 31 F 4.44 +1.36 K3 III 
490 1 40 57.3 +35 09 01 F 5.40 -0.09 B9 IV·V 

f'( Scl 497 1 41 17.1 -32 25 21 F,M 5.26 +1.04 gKO 
500 1 41 45.8 - 347 08 F 4.99 +1.38 K3 II·III 

<I> Per 496 1 42 27.7 +5035 37 F,V 4.07 -0.04 B2 Ve4p 

52 T Cet 509 1 43 11.1 -1602 14 F 3.50 +0.72 G8 Vp 
llO 0 Psc 510 1 44 23.3 + 903 45 F,S 4.26 +0.96 G8 III 

E ScI 514 1 44 45.3 -25 08 50 F 5.31 +0.39 dFI 
513 1 45 01.9 - 54941 S 5.34 +1.52 K4 III 

S3 X Cet 531 I 48 39.0 -104648 F 4.67 +0.33 FlV 

55 , Cet 539 I 50 31.3 -102543 F 3.73 +1.14 K2 111 
2 a Tri 544 I 51 59.6 +2929 13 F 3.41 +0.49 F6 IV 

III ( Psc: 549 1 52 34.2 + 3 05 39 F 4.62 +0.94 KO J1l 
til Phe 555 1 52 53.1 -4623 43 F 4.41 +1.S9 M4III 

45 « Cas 542 1 53 00.8 +63 34 38 F 3.38 -0.15 B3 Vp 

<I>,Phe 558 1 53 34.7 -42 35 24 F S.1l -0.06 Ap 
6 IJ ,Ari 553 I 53 35.2 +2042 56 F 2.64 +0.13 A5 V 

1)' Hyi 570 I 54 27.1 -67 44 26 F 4.69 +0.95 G8.S 1lI 

)( Eri 566 I 5S 13.1 -SI 42 II F 3.70 +0.85 G8 nIb CN·2 
o Hyi S91 1 58 10.3 -61 3943 F 2.86 +0.28 FO V 

Figure 5-3 [AA, 1981} 
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The Star Almanac for Land Surveyor§ (SALS) rH.M. Nautical 

Almanac Office, 1_980], published annually, is expressly designed to meet 

the surveyor's requirements in astronomy. The main tables included are: 

(i) the Sun, in which the right ascension, declination, and 

equation of time are tabulated for 6-hourly intervals (see 

explanations below regarding Figure 5-4), 

(ji) the Stars, in which the apparent right ascension and 

declination of 685 stars are given for the beginning of each 

h 
~onth (e.g. 0 UT, March 1, 1981), 

(iii) Northern and Southern Circumpolar Stars (five of each), are 

listed separately, their apparent right ascensions and de-

clinations being given at lO-day intervals for the year, 

(iv) the Pole Star Table, a special table for Polaris (n Ursae 

Minoris) for use in specific math models for latitude and 

azimuth determinations. 

Also included in SALS are several supplementary tables, some of 

which are companions to those noted above (for interpolation purposes). 

Examples of three SALS tables are given in Figures 5-4, 5-5, and 5-6. 

Most of the information given has been explained previously, and the tables 

are self explanatory. Regarding the terms R and E in Figure 5-4, one 

should note that 

R= 

E = 

h 
(n - 12 + Eq.E) = 

m 
h 

Eq.T. - 12 • 

GAST at ohUT, 

The reader is cautioned that SALS is not suitable for use where 

first-order standards mus-t be met.<AA < may be used, but common practice 

is to use one of the fundamental catalogues and compute the updated star 

coordinates via procedures outlined in Chapter 6. 



U.T. 
d " 1 0 

Sun. 6 
12 
18 

2 0 

Mon. 6 
12 
18 

3. 0 
Tues. 6 

12 
18 

... 0 
Wed. 6 

12 
18 

5 0 
Thur.6 

:12 

18 

6 0 
Fri. 6 

12 
18 

7 0 
Sat. 6 

12 
18 

8 0 

Sun. 6 
12 
18 
24 
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SUN-FEBRUARY, 1981 

U.T •. 
d " 9 0 

Mon. 6 
12 ' 
18 

10 0 

Tues. 6 
:12 

. 18 

II 0 
Wed, 6 

:12 

:18 

1:Z 0 

Thur,6 
12 
18 

IJ 0 
Fri. 6 

12 
18 

14 0 
Sat. 6 

12 
18 

IS 0 
Sun. 6 

12 
18 

16 0 

Mon. 6 
12 
i8 
24 

R 

9 1956,0 
20 55'1 
21 54'3 
2253'4 

9 2352 '5 
2451'7 
2550,8 
26 5°'° 

9 2749.1 
28 48'2 

2947'4 
3°46'5 

,931 45'7 
32 44.8 
3343'9 
3443.1 

93542 •2 
36 41 '3 
3740'5 
38 39.6 

93938.8 
4°37'9 
41 37'0 
42 36.2 

94335'3 
44 34'5 
4533.6 
46 32 '7 

94731'9 

Dec. E 
.. m • 

II 4544'7 ' 
4544'3 : 
4543'9 4 
4543'5 3 

II 45 43'2 
4543.0 2 

4542 •8 2 

4542•6 2 
I 

I 1 4542'S 
4542 '5 0 

4542'5 0 

4542'5 0 
I 

II 45 42 ,6 
4542,8 2 

4543'0 2 

4543.2 2 
3 

II 4543'5 
4543,8 3 
4544'2 4 

5 4544'7 4 : 

II 4545.1 6 

4545'7 6 
4546'3 6 
4546'9 7 

II 45 47·6 
4548'3 7 

45 49'0 ~ 
4549.8 

9 
II 45 50'7 

4551•6 9 
4552'5 9 
4553'S 10 

114554.611 

Sun"s S.D, 16=2 SUNRISE 

Date 

Feb. 
60- 5S· 

" " :I 3'9 4'4 
6 4'2 4'5 

4'4 4-7 II 

South Latitude North Latitude 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ¢ ~ ~ ~ W 

II .. II " II II • 110 II • " II • II II 
4'7 4'9 5,2 5'5 5'7 6·0 6,2 6'4 6·6 6·8 7'2 7'3 7·6 7'9 8,% 
4.8 5.1 5'% 5'5 5.8 6·0 6·% 6'4 6,6 6·8 7·1 7.2 7'5 7'7 8'1 
5,0 5,2 S'J 5.6 5,8 6'0 6'2 6'J 6'5 6'7 7'0 7-I' 7'3 7'5 7,8 

16 4.6 4'9 5-1 5'3 5'5 5'7 5'9 6'0 6,2 
21 4.8 5'1 5'3 5'4 5'5 5'7 5'9 6·0 6'2 
:z6 5'0 5-3 5'4 5'5 5'7 5.8 5'9 6'0 6,2 

6'3 6'5 6'7 6'9 
6'3 6'4 6·6 6·8 
6'3 6'4 6'5 6'7 

7'0 7,2 7'3 7·6 
6'9 7'0 7·2 7'4 
6'7 6·8 7·0 7,1 

31 5'3 5'4 5'5 5'7 5'7 5'9 6'0 6,1 6·% 6,2 6'3 6'4 6'5 6·6 6'7 6-8 6'9 

Figure 5-4 [SALS, 1981J 
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RIGHT ASCENSION OF STARS, 1981 

No. Mag. R.A. Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Jan. 
II m • • • 

5' 4-3 221 25-0 23-3 21'7 
52 4'4 2. 26 17'3 16·6 15.8 
53 4-3 22.7 oS-6 oS'3 07.8 
54 4-0 238 30-3 29'9 29'5 
55 4'3 2. 39 18'5 16·8 15.2 

56 4'1 2. 39 55'0 54'4 53.8 
57 3.6 2. 42 IS·8 IS'4 18'0 
58 4.2 2. 42 54.1 53'4 52'7 
S9 4'4 2. 43 12'9 12'5 12'1 

60 4'4 243 54'7 54'3 53'9 

61 
62 
63 
64 
65 

51'S 51'4 50·8 
IS,S 17'9 17'0 
54-7 54'0 53.1 
29.8 29'5 29.0 

66 
6'] 
68 

2·8 301 
32 •6 32 '° 31'3 
17·1 16'7 16'3 
33'3 32.8 32'3 
25'4 24·6 23.8 
57'5 57'0 56'4 
56-0 55'5 54.8 

69 
70 

71 

72 

73 
74 
75 

76 
77 
78 
79 
80 

4'2 
3'9 
3-9 
4'3 
1'9 ' 

3.8 
3'7 
4'4 
4'3 
3-8 

81 4'3 
82 . 4'4 
83 3.1 

84 3'7 
85 3'9 

86 
S, 
88 
B9 
90 

3 01 
3 0 3 
3 0 3 
3 06 

30'] 41.8 'P'2 40'4 
3 u: 15'9 15-5 14'9 
3 18 40'4 4°-0 39'5 
3 19 10'5 09-9 09'2 
3 Z% 5S-2 57·6 56-8 

3 23 47'4 47-1 46-6 
3 26 oS-4 oS·o 07·6 
3 2 7 32'2 31 '4 3004 
3 29 49'5 49-1 48'7 
332' 02·2 01·8 01'3 

332. 57'1 56'7 56.1 
33S 54'3 53'9 53'5 
341 34.6 34'1 33'3 
342 20'4 20'1 19.6 
3 43 07·8 07-4 06·8 

343 
343 
343 
346 
346 

44'9 44·6 44. 1 

54'4 54'0 53-3 
59.1 57.8 56'3 
02·1 01'7 01·1 
21'4 21·1 20·6 

91 3'2 347 34'4 32'2 29'7 
9Z 3·8 348 02-1 01'7 01·2 
93 4'2 34f8 45-0 44'5 43.8 
94 2'9 352 56'4 56.1 55-5 
95 3'0 3 56 35-0 34.6 33-9 

¢ 3'2 3 57 oS·8 oS'5 oS·o 
97 4'0 357 44.1 43.8 43.2 
C)8 4'4 3 58 28,1 27'0 25'7 
99 3'9 3 59 37.8 37' 5 37'0 

100 3-9 402 oS-9 oS·6 oS'I 

• • • 
20·6 20·2 20·8 
15'3 15'2 15.6 
07'5 07·6 oS-o 
29.2 29' 1 29-5 
14'0 13'5 13'9 

53'3 53'2 53-5 
17-6 17·6 IS,O 

.52'1 52.1 52.6 
II'7 II'7 12-0 
53.6 53-5 53-9 

S0· 5 50'4 50'9 
16'3 16,2 16·S 
52 '5 52 '4 52 '9 
28·6 2S·6 28'9 
30'7 30 -5 30 ;8 

15'9 15.8 16'2 
31.8 31'7 32'° 
23.1 22'9 ~3'4 

55'9 55.8 56'2 
54'3 54.2 54.6 

• • s 
22·2 24.2 26,1 
16'5 17'7 18·8 
oS·8 09'7 10·6 
30'3 31.2 32.1 
15,'2 17.0 19'0 

54'3 55'4 56'5 
18·8 19-7 20·6 
53'7 55'0 56'3 
12·8 13'7 14·6 
54'7 55.6 56'5 

51'7 52'7 53'7 
18'0 19'5 20'9 
54'0 55'4 56.8 
29.6 30'5 31'4 
31.6 32.6 33'7 

16:9 17.8 18'7 
32'7 33.6 34.6 
24'5 25'9· 27'3 
57'1 58'3 59-4 
55'5 56'7 57.8 

39.8 39'7 40'1 41-2 42'5 43.8 
14'4 14'2 14'5 15'2 16,1 17.1 
39'0 38.8 39.1 39-7 40·6 41.6 
oS'5 oS'3 oS'5 09'2 10'3 II'4 
56.1 55'9 56'3 ,57'3 58.6 59'9 

46'2 46.1 46'4 47'1 48.0 48'9 
07'2 07'0 07'3 oS·o oS'9 09.8 
29'4 29'1 29'5 30'7 32'3 33'9 
48.2 48.1 48'4 . 49'0 50·0 50'9 
00'9 00'7 01'0 01·6 02'5 03'3 

55.6 55'4 55.6 56'2 57.1 58'1 
53.0 52'9 53.1 53'7 54.6 55'5 
32'7 32'4 32'7 33.6 34.8 36. I 
19.1 18'9 19'1 19'7 20·6 21'5 
06'3 06,1 06'4 07'1 oS'l 09'2 

43.6 43'4 43'7 44'4 45'3 46'3 
52'7 52'4 52'7 53'5 54'7 55.8 
55'0 54.1 54'1 54.8 56'2 58,° 
00·6 00'4 00'5 01'1 01'9 02'9 
20·1 19'9 20'1 20·8 21·8 22'7 

27'4 25'9 25.6 26·6 28-6 31.1 

00-7 00'5 00·8 01'5 02'4 03'4 
43'2 42'9 43'0 43·6 44-5 45'5 
55.0 54.8 55'0 55'7 56'7 57'7 
33'3 33'1 33'3 34'0 35.1 36'3 

07'5 07-2 07'4 07'9 oS-7 09.6 
42.6 42'4 42.6 43'3 44'3 45'4 
24'4 23·6 23'5 24- 1 25'4 26'9 
36.6 36'4 36'5 37·1 38,° 38-9 
07'7 07'4 -07·6 oS'2 09-0 09'9 

I I I 

27-5 28'0 27·6 
19'7 20'1 20·0 
11'3 II-7 u·8 
32.8 33'2 33'3 
20'5 21'1 20·8 

57'3 57'7 57'7 
21·2 21'7 21·8 
57·2 57'9 58. I 
15'3 15'7 15.8 
57-2 57'7 57'9 

54'4 55-0 55.2 
22·0 22·8 23'0 
57-8 58.6 58.8 
32'1 32.6 32'7 
34'S 35'0 35.1 

19'4 19'9 20·1 
35'3 35.8 36'0 
28'4 29'2 29'5 
60'3 60'9 61'2 
58'7 59'4 59'7 

44-9 45·6 46•0 

17'9 18'4 18·6 
42-3 42'9 43'1 
12'4 t 3.0 13-2 
61'0 61·8 62·2 

49.6 50·2 50-5 
10·6 11'1 II'4 
35'3 36'3 36'9 
51'7 52'2 52.6 
04'1 04·6 04'9 

58.8 59'4 59'7 
56.2 56.8 57- I 

37'2 38'0 38'5 
22'2 22·8 23.1 
10-1 10·8 II·2 

47·1 47·8 48'2 
56-9 57'7 58.2 
59' 5 60'5 60-7 
03'7 04'3 °4.6 
23.6 24'3 24-7 

33'5 34'9 35.1 
04.2 04'9 05-3 
46-4 47'0 47'3 
58-7 59'4 59'9 
37'3 38'1 38.6 

10'4 II'I II-4 
46'4 47'2 47-7 
28· 3 29' 3 29.6 
39'7 4004 40.8 
10'7 1I'4 II·8 

• 
26'4 
19.6 
II·6 
33.2 

'19'7 

57'4 
21'7 
57.8 
15'7 
57-8 

55- I 

22'7 
58.6 
32•6. 
34.8 

20·0 
35.8 
29'3 
61·1 
59.6 

45.8 
18'4 
43'° 
12'9 
62-1 

50 '5 
II'4 
36'7 
52 •6 
04'9 

59.6 
57'1 
38'5 
23'1 
II'3 

48'3 
58'2 
60,1 
04.6 
24'7 

33'9 
°5'4 
47'2 
59'9 
38'7 

II'S 
47.8 
29.2 
4°'9 
11'9 

The figures given refer to the beginning of the month. and should be interpolated to the 
actual date by means of the table on page 73-

Figure 5-5a [SALS, 1981] 
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DECLINATION OF STARS, 1981 

No. Name Dec. Jan. F. M. Apr. M. J. July A. S. Oct. N. D. Jan. 
G • " II " II II II ," " " II " " " 51 8 Hydri S6844 70 71 66 58 47 36 27 22 22 29 38 47 53 

52 K Eridani S4746 102104101 95 85 75 65 60 59 63 71 79 85 
S3 ~2 Ceti N 822 25 23 22 22 23 26 31 36 41 43 44 43 42 
S4 8 Ceti N 014 40 38 37 38 41 45 51 56 61 62 61 S9 57 
5S E Hydri S6820 78 80 76 68 58 46 37 31 31 37 46 5S 62 

S6 L Eridani S 39 5S 91 94 92 86 78 68 59 52 50 54 60 68 75 
57 'Y Ceti N 309 14 12 II II 14 17 23 28 32 34 34 32 30 
58 e Persei N49 08 61 62 59 54 49 45 44 46 52 S8 65 72 77 
59 'IT Ceti ,S 1356 33 3S 3S 33 28 21 14 08 04 05 08 12 17 
60 j.l. Ceti N 1001 58 56 55 54' 55 58 62 68 72 75 76 75 74 
61 41 Arietis N2'] 10 57 57 55 52 50 50 52' 56 .60 65 69 72 73 
6% TJ Persei N SS..s 69 70 68 63 57 52 50 51 56 63 71 79, 84 
63 T Persei N 5%40 73 75 72 68 62 57 55 57 6% 69 76 83 88 
64 TJ Eridani S 858 36 38 39 37 33 27 20 14 II 10 13 17 20 
65· e Eridani' S 40 2.Z 69 73 71 66 58 48 39 32 29 32 39 47 54 
66 (It Ceti N4 00 49 47 46 46 48 51 56 62 66 68 68 66 64 
67 T3 Eridani S2341: 70 73 73 70 64 56 47 41 38 39 43 50 55 
68 'Y Persei N 5325 63 65 63 59 53 48 46 47 5% 58 65 73 78 
69 p Persei N 3845 64 65 63 60 56 53 53 56 60 66 71 76 79 
70 Algol (13 Persei) N40S2 62 63 61 57 53 50 50 52 57 62 68 73 76 

'11 L Persei N4932 34 35 34 30 24 20 18 20 24 30 37 43 48 
'12 (It Fornacis S29 03 58 62 61 57 SO 42 33 26 23 24 30 37 43 
'13 16 Eridani S21: 49 50 54 54 51 45 38 30 23 19 ,20 24 30 36 
74 BS 1008 (Eri.) S43 08 50 54 53 48 40 30 20 13 10 13 20 28 35 
7S (It Persei N4947 43 45 44 40 35 31 29 30 33 39 45 52 57 

76 0 Tauri N 857 39 37'36 36 37 39 43 48 52 55 55 54 ' 53 
77 ~ Tauri N 939 55 54 52 52 53 55 59 64 68 71 71 70 69 
78 BS 1035 (Cam.) N 595% 35 38 38 33 27 21 17 17 21 26 34 42 49 
79 5 Tauri N 12,52 14 13 12 II 12 13 17 21 25 28 29 29, 28 
80 E Eridani S 931: 31 34 35 33 29 23 17 II 07 06 09 13 17 
81 Til Eridani S 21 41 60 64 65 62 56 49 41 34 30 31 35 41 47 
82 10 Tauri N020 22 20 19 19 21 25 31 36 40 41 40 38 35 
83 & Persei N4743 42 44 44 40 36 31 29 30 33 38 43 50 55 
84 & Eridani S949 49 52 53 52 48 42 35 29 %5 24 27 31 36 
85 0 Persei N 32 x3 43 43 43 40 38 36 36 38 42 46 50 53 ' 55 
86 17 Tauri N24 03 13 13 12 10 (1)08 10 13 17 20 22 24, 25 
S, v Persei N 4231 II 13 12 (1) 05 02 00 01 04 09 14 19 23 
88 13 Reticuli S645X SI 86 85 80 71 60 49 41 39 42 50 60 68 
89 TI Eridani S23 x8 34 38 39 36 30 23 15 08 04 04 09 15 21 
90 TJ Tauri N24 02 46 46 45 44 43 42 44 47 50 54 56 58 59 

91 'Y Hydn S 7417 73 77 76 71 61 50 40 32 30 33 42 52 60 
92 27 Tauri N 2359 43 43 42 40 39 39 40 43 47 50 52 54 55 
93 BS 1195 (En.) S J6 IS 43 48 49 45 38 29 19 12 08 ,09 IS 23 31 

94 t Persei N 31 49 39 40 39 37 3S 33 33 3S 39 42 46 49 51 
95 E Persei N3957 22 24 23 21 17 14 13 14 17 21 25 30 34 

96 'Y Eridani S x333 55 59 60 58 54 48 41 35 30 30 33 38 43 
97 E Persei N3S44 13 14 14 12 (1) 06 06C1] 10 14 IS 22 25 
98' & Reticuli S6126 94 99 99 94 86 75 64 56 53 55 63 73 82 
99 ). Tauri N x226 08 C1] 06 060608 II 15 19 21 22 21 20 

100 V Tauri N 5S6 C1] 05 04 04 05 08 12 17 21 23 22 20 18 

• No., mag., dist. and p.a. of companion star: 65. 4'4. 8". 880 

Figure 5-5b [SALS, 1981] 
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POLE STAR TABLE, 1981 
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Latitude = Corrected observed altitude of Polaris + a. + a, + 82 

Azimuth of Polaris = (bo + bl + b2l sec (latitude) 

Figure 5-6 [SALS, 1981] 
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6. VARIATIONS IN CELESTIAL COORDINATES 

The mathematical models for the determination of astronomic 

latitude, longitude, and azimuth require the use of a celestial bodies 

apparent (true) coordinates for the epoch of observation. The coordinates 

(a,S) of the stars and the sun (the most often observed celestial bodies 

for surveying purposes) are given in star catalogues, ephemerides, and 

almanacs for certain predicted epochs that do not (except in exceptional 

circumstances) coincide with the epoch of observation. To fulfill the 

requirements stated previously, the coordinates (a,~) must be updated. As 

was indicated in Chapter 5, the updating procedure has been made very 

simple for users of annual publications such as ,".,,~.j SALS, and APFS. The 

question is, how are the coordinates in the annual publications derived, 

and how should one proceed when using one of the fundamental star 

catalogues (eg. FK4). The aim of this chapter is to answer this 

question. 

In previous discussions in these notes, coordinates in the Right 

Ascension system have been considered constant with respect to time, and 

in the Hour Angle and Horizon systems, changes occurred only as a result 

of earth rotation. In this chapter, we consider the following motions in 

the context of the Right Ascension system: 

(i) precession and nutation: motions of the coordinate system 

relative to the stars; 

(ii) proper motion: relative motion of the stars with respect to 

each other; 

(iii) refraction, aberation, parallax: apparent displacement of 

stars due to physical phenomena; 

117 
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(iv) polar motion: motion of the coordinate system with respect to the 

solid earth. 

Except for polar motion, the above factors are discussed in terms 

of their effects on a and 0 of a celestial body. This leads to variations 

in the Right Ascension coordinate system. The definition of the variations 

are given below and Figure 6-1 outlines their interrelationships. 

(i) Mean Place: heliocentric, referred to some specified mean 

equator and equinox. 

(ii) True Place: heliocentric, referred to the true equator and 

equinox of date when the celestial body is actually observed. 

(iii) Apparent Place: geocentric, referred to the true equator and 

equinox of date when the celestial body is actually observed. 

(iv) Observed Place: topocentric, as determined by means of direct 

readings on some instrument corrected for systematic 

instrumental errors (e.g. dislevellment, collimation). 

The definitions are amplified in context in the following sections. 

6.1 Precession, Nutation, and Proper Motion 

The resultant of the attractive forces of the sun, moon, and 

other planets on our non-symmetrical, non-homogeneous earth, causes a 

moment which tries to rotate the equatorial plane into the ecliptic 

plane. We view this as the motion, of the earth's axis of rotation about 

the ecliptic pole. This motion is referred to as precession. The 

predominant effect of luni-solar precession is a westerly motion of the 

equinox along the equator of 50~3 per year. The period of the motion is 

approximately 26000 years, and its amplitude (obliquity of the ecliptic) 

is approximately 23~5. Superimposed on this planetary precession, which 



119 

MEAN @ To . ) 
I 

PROPER MOTION 

PRECESSION 

I 
( MEAN @ T 

I 

NUTATION 

I 
TRUE @ T 

I 
ANNUAL 'ABERATION 

ANNUAL PARALLAX 

I 
APPARENT @ T 

I 
DIURNAL ABERATION 

GEOCENTRIC PARALLAX 
REFRACTION 

J 
OBSERVED @ T 

Figure 6,-1 

Variations of the Right Ascension Syste~ 



120 

causes a westerly motion of the equinox of l2~5 per century, and a change 

in the obliquity of the ecliptic of 47" per century. General precession is 

then the sum of luni-so1ar and planetary precession. 

Within the long period precession is the shorter period 

astronomic nutation. The latter is the result of the earth's motion about 

the sun, the moon about the earth, and the moon's orbit not lying in the 

ecliptic plane. The period of this motion is about 19 years, with an 

ampli tude of 9". 

General precession, with astronomic nutation superimposed, is 

shown in Figure 6-2. 

Each star appears to have a small motion of its own, designated 

as its proper motion. This motion is the resultant of the actual motion 

of the star in space and of its. apparent motion due to the changing 

direction arising from the motion of the sun. 

In Chapter 5, it was stated that certain epochs T have been 
o 

chosen as standard epochs to which tabulated mean celestial coordinates 

(a ,0 ) of celestial bodies refer. The mean celestial system is completely 
o 0 

defined by: 

a heliocentric origin, 

a primary (Z) pole that is precessing (not nutating), and is 

called the mean celestial pole, 

a primary axis (X) that is precessing (not nutating), following the 

motion of the mean vernal equinox, 

a Y-axis that makes the system right-handed. 

Now, to define a set of coordinates (a,c) for an epoch T, we must update 

from T to T, since for every epoch T, a different mean celestial system 
o 
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is defined. The relationship between mean celestial systems is defined in 

terms of precessional elements (~ ,e, z) (Figure 6-3) and proper motion 
o 

a d 
elements (po,po). 

Expressions for the precessional elements were derived by Simon 

Newcomb around 1900, and are [e.g. Mueller, 1969] 

z; = (2304~1250 + 
o 

z = z; + 0~179lt2 
o 

1~396t ) t + 0~302t2 + 0~018t3 
o 

+ 0~100lt3 

e = (2004~1682 - 0~853t ) t - 0~1426t2 - 0~042t3 
o 

(6-1) 

(6-2) 

(6-3) 

in which the initial epoch is T = 1900.0 + t , and the final epoch 
o 0 

T = 1900.0 + t + t, in which t and t are measured in tropical centuries. 
o 0 

The precessional elements L~o' z,e) are tabulated fo;r,tp.~;b~gi1'lp.i~go;f.the 

current year in AA. From Figure 6-3, it can be seen that 

x X 

y = y 

z z 

or, setting 

then 

x x 

y = P y 

z z 

'Me 
T 

o 

(6-4) 

(6-5) 

(6-6) 

Proper motion of a star is accounted for in the mean right 

ascension system, and its effects on (a ,0 ) are part of the update 
o 0 

from a mean place at To to a mean place at T. The transformation (given 

here without proof) is 
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x 

y = 

(6-7) 

in which t = T - T (in years), ~ and dV are the annual tangential component of 
o dt 

proper motion and rate of change of that component, and W is the direction 
o 

(azimuth) of proper motion at T. The quantities tabulated in a Fundamental 
o 
a 0 

Catalogue such as the FK4 are ~o ' Vo ' the annual components of proper 

motion in right ascension and declination, and their rates of change per 

d a cS 
one hundred years, Vo / dt, d~o/dt. The.~nual~, d~/dt, and Wo are then 

given by 

dV/dt = 

Setting 

d a 
~o 
-- + dt 

a 
( ~o (080 0 ) = -1 cos 

V 

(6-7) is rewritten as 

x X 

y =M y 

z MCT 
o 

1 
2 

, 

Now, combining (6-6) and (6-9), the complete update from a mean place at T 
o 

to a mean place at T is given by 

(6-8) 

(6-9) 
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Y = PM 
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x 

Y 

Z 

(6-10) 

The effects of astronomic nutation, which must be accounted for 

to update from the mean celestial system at T to the true celestial system 

at T (Figure 6-1), are expressed as nutation in longitude (6~) and 

nutation in the obliquity (6E). Expressions for 6~ and 6E have been 

developed, and for our purposes, values are tabulated (e.g. AA). The 

true celestial system at T to which (ao'oo) are updated is defined by: 

a heliocentric origin, 

- a primary pole (Z) that is the true celestial pole following the 

precessing and nutating axis of rotation, 

- a primary axis ~) that is the true precessing and nutating 

vernal equinox, 

- a Y-axis that makes the system right-handed. 

The true and mean celestial systems are shown in Figure 6-4, 

and from this, we can deduce the transformation 

x 

Y 

Z 

= 

TCT 

. Designating 

N = ~(-E-6E)R3(-6~)R1(E) , 

x 

Y 

Z 

(6-11) 

(6-12) 
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(6-11) is written 

x x 

Y = N Y (6-13) 

Z Z 

Combining (6~6), (6~9), and (6~11), the update from mean celestial at T 
o 

to true celestial at T is given in one expression, namely 

x x 

Y = NPM Y 

Z Z 

6.2 Annual Aberration and Parallax 

The apparent place celestial system is the one in which the astronomic 

coordinates (41, h) are expressed, thus it is in this system that the 

mathematical models (relating observables, known and unknown quantities) are 

formulated. This requires that the (no'oo) of a celestial body be updated to 

the apparent place system, defined as having: 

- an origin coincident with the earth's centre of gravity, 

~ a primary pole (Z) coincident with the earth's instantaneous 

rotation axis, 

~ a primary axis (X) coincident with the instantaneous vernal equinox, 

a Y-axis that makes the system right-handed. 

Evidently, the main change is a shift in origin. This gives rise to two 

physical effects (i) annual parallax due to the shift in origin, and (ii) 

annual aberration due to the revolution of the new origin about the 

heliocentre. 
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Aberration is the apparent displacement of a celestial body caused 

by the finite velocity of light propagation combined with the relative 

motion of the observer and the body. The aberration we are concerned with 

here is a subset of planetary aberration, namely annual aberration. From the 

general law of aberration depicted in Figure 6~5, and our knowledge of the 

earth's motion about the he1iocentre, the changes in coordinates due to 

annual aberration CflaA,MA) are given by Ie.g. Mueller, 1969] 

fla = - K seco 
A 

(cosa cosA 
s 

cose + sina 

flo = .... K (cosh cose [tane coso· ..... s·ina sin·h ). A . s . s 

sin>.. ) , . s (6-15) 

In (6~l5) and (6~16), A is the ecliptic longitude of the sun, a,o are in 
s 

the true celestial system at T, and K is the constant of aberration for the 

earth's orbit (assumed circular for our purposes), given numerically as 

~ = 20~4958. In matrix form, the change in the position vector is given by 

...-D 

A= c (6-16) 

C tans 

in which C and D are referred to as the aberrational (Besselian) 'day numbers 

(Note: C = -K cose cos>.. J D = -K sinA ). These quantities are tabulated, for 
s s 

example in M: 

Parallactic displacement is defined as the angle between the 

directions of a celestial Object as seen from an observer and from some 

standard point of reference. Annual (Stellar) Parallax occurs due to the 

separation of the earth and sun, and is the difference between a geocentric 

direction and a heliocentric direction to a celestial body (Figure 6-6). 

Expressed as changes to (a,o) we have 
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flo. = II {COSo. COSE sin}, ..... sino. cos). ) seco p . s s (6",,17) 

flo = II (coso sinE sinA. .. coso. sino COSA. .. sino. sino COSE sinA. ), (6-18) 
p s s s 

in which the new quantity II is the annual (stellar) p!irallax. II is a small 

quantity - for the nearest star it is 0~76. As for the computation of the 

effects of aberration, 0.,0 in {6-17} and (6-18) are in the true celestial 

system at T. Using the Besselian Day Numbers C and D, the changes in the 

position vector are given by 

-c seCE 

R= -D COSE (II/K) 

-D sinE 

To update (0.,0) from the True Celestial system at T to the Apparent Celestial 

system at T, we write the expression 

x x 

y = A + R + y (6-20) 

z z 

Finally, the complete update from Mean Celestial system at T to Apparent 
o 

Celestial at T is given by the expression 

x x 

y = A + R + NPM y 

z z 
A.P· T MCT 

o 

(6-21) 

This entire process is summarised in Figure 6-7, and all symbols used in 

Figure 6-7 are explained in Table 6-1. 
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Description of Terms 

Symbol Description Where 
Obtained 

(a , o ) Right ascension and From Fundamental 
0 0 declination of the star Catalogue 

at epoch T 
0 

(X , Y ,Z ) Direction numbers of From (a , 0 ) 
000 0 0 

star at T 
0 

II Annual Tangential com- From 
ponent of proper motion Fundamental of star at T • 

dll 
0 Catalogue 

Rate of change of proper 
dt motion 

t Time interval in years t=T-T 
0 

ljJo Direction (azimuth) of From Fundamental 
proper motion at T Catalogue 

0 

(1;;0' z, e) Precessional Elements From Astronomical 

(6ljJ, 6£) Nutational Elements Ephemeris 

£ Obliquity of the eclip- From Astronomical 
tic 

(C,D) Aberrational Day Num- Ephemeris 
bers 

II Stellar Parallax of From Fundamental 
Star Catalogue 

K Constant of annual K=20".4958 
Aberration 

(X,Y, Z) Direction numbers of Computed from all the 
the star at epoch T above parameters 

! "1 '1 
(a,o ) Right ascension and de-

clination of the star 
at epoch T, referred to Computed from 
the Apparent (Geocen- (X,Y,Z) at time T 
tric) System. 

TABLE 6-1 
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6.3 Diurnal Aberration, Geocentric Parallax, and Astronomic Refraction. 

At the conclusion of the previous section (6.2), we had (a,~) 

expressed in the Apparent Place system at T. At time T, an observer observes 

a celestial body relative to the Observed Place system. The latter is defined 

by 

an origin defined by the observers position, 

a primary pole (Z) parallel to the true instantaneous celestial 

pole, 

a primary axis (X) parallel to the true vernal equinox, 

a Y-axis that makes the system right-handed. 

Evidently, the Observed Place is simply a translated Apparent Place system. 

Our task now is to move from the Observed Place to the Apparent Place where 

our mathematical models for position determination are formulated. This 

requires corrections for (i) diurnal aberration, (ii) geocentric parallax, 

and (iii) astronomic refraction. 

Diurnal aberration is the displacement of the direction to a 

celestial body due to the rotation of the earth. The diurnal constant of 

aberration, k, is expressed as a function of the earth's rotation (00 ), the 
e 

geocentric latitude of an observer (~), and the length of the observer's 

geocentric position vector (p). This yields [e.g. Mueller, 1969] 

k = 0.320 p cos~ = 0.0213 p cos~ (6-22) 

The changes in a celestial objects coordinates are given by 

6aD kS cosh 1 = sec6 , (6-23) 

~6D = k" sinh sin6 l • (6-24) 
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The convention adopted here for signs is 

~aD = aAP aOp , (6-25) 
T . T 

~<5D = <5AP <50P • (6-26) 
T T 

This same convention applies to the corrections for geocentric parallax and 

astronomic refraction that are treated next. 

Geocentric parallax is the difference between the observed 

topocentric direction and the required geocentric direction (Figure 6-8). 

The changes, expressed in terms of the celestial objects right ascension and 

declination are 

~aG = - n sinh cosecz cos~ sec<5' (6-27) 

n (sin~ cosecz sec<5' - tan <5 , cotz). (6-28) 

It should be noted that for celestial bodies other than the sun, ~aG' 

~<5G are so small as to be negligible. 

Astronomic refraction is the apparent displacement of a celestial object 

lying outside our atmosphere that results from light rays being bent in passing 

through the atmosphere. In general, the light rays bend downward, thus a 

celestial object appears at a higher altitude than is really true 

(Figure 6-9). The astronomic refraction angle is defined by 

~z = z - z' 
R 

(6-29) 

in whichz' is the observed zenith distance, z is the corrected zenith distance. 

The effects on a,<5 are 

~a = - ~z sinh cosec z I cos~ sec<5' 
R R (6-30) 

~<5R = - ~zR (sin~ cosec Zl sec<5 1 - tan<5 1 cot Zl). (6-31) 

~zR values are usually tabulated for some standard temperature and pressure 

(usually 760mm Hg, T = 10°C, relative humidity 60%) • Corrections to those 

values are obtained through determinations of temperature, pressure, and 
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Figure 6-8 
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relative humidity at the time of observation (T)o 

Finally, we can write the expressions for the right-ascension 

and declination of a celestial body as 

a = ~ -AoPo T AoPo T 
(~aD + ~ap + ~~ (6-32) 

0 = 0' - (~OD + ~Op + ~OR) , (6-33) 
AoPo T A.P· T 

in which a' and 0' refer to the Apparent Place coordinates obtained from 
~ ~ 

equation (6-21). This process is summarized in Figure 6-10. 

In closing this section, the reader should note the following. It 

is common practice in lower-order astronomical position and azimuth 

determinations to correct the observed direction z' for both geocentric 

parallax and refraction rather than use (6-32) and (6-33) above. Thus, in 

our math models we use 

z = z' - (~z + ~z ) 
R P 

(6-34) 

~zp, the correction to a zenith distance due .. to geocentric parallax, 

is tabulated (e.g. SALS). Note that the effects of diurnal aberration are 

neglected. 

6.4 Polar Motion 

The final problem to be solved is the transformation of astronomically 

determined positional coordinates (~,A) from the Apparent Place celestial 

system to the Average Terrestrial coordinate system. This involves two 

steps: (i) transformation of aAP ' 0AP (Apparent Place) to Instantaneous 

Terrestrial and (ii) transformation of WIT' AIT (Instantaneous Terrestrial) to 

Average Terrestrial. 

In the first step, we are moving from a non-rotating system to a 

coordinate system that is rotating with the ~arth. The Instantaneous 
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Terrestrial (IT) system is defined by 

-a geocentric origin, 

-a primary pole (Z) that coincides with the instantaneous terrestrial 
pole, 

-a primary axis (X) that is the intersection of the Greenwich Mean 
Astronomic Meridian and Instantaneous equatorial planes, 

-a Y-axis that makes the system right-handed. 

Comparing the definitions of the A.P. and I.T. systems, we see that 

the only difference is in the location of the primary axis, and futhermore, 

that XIT is in motion. Recalling the definition of sidereal time, we see 

that the A.P. and I.T. systems are related through GAST (Figure 6-11), namely 

X X 

Y = R3 (GAST) Y (6-35) 

z Z 
IT AP 

in which 

X cos~ coscx X cos<S coso. 

Y = coso sino; Y = coso sino. , (6.36) 

Z 
APT 

sino 
APT 

z sino 

or, using a spherical approximation of the earth 

X cos~ cosh 

Y = cos~ sinh 

I.T. 
z 

IT sin~ 

The reader should note that this transformation is usually (6-35) 

carried out in an implicit fashion within the mathematical models for 

position and azimuth determination rather than explicitly as is given here 

(see, for example, Chapters 8 and 9). The results that one obtains are then 
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~,h,A, all expressed in an Instantaneous Terrestrial coordinate system. The 

final step is to refer these quantities to the Average Terrestrial coordinate 

system. 

The direction of the earth's instantaneous rotation axis is moving 

with respect to the earth's surface. The motion, called polar motion, is counter

c1ockWis-e~ 'quas±--frt'egi:J.lar, ha~".:m aml'litude ,of'about· 5m',and' a period of 

approximately 430 m.s.d. The motion is expressed in te~ of the 

position of the instantaneous rotation axis with respect to a reference point 

fixed on the earth's crust. The point used is the mean terrestrial pole for 

the interval 1900-1905, and is called the conventional International Origin 

(C.I.O.). 

The Average Terrestrial (AT) coordinate system is the one which we 

would like to refer astronomic positions (~,h). This system differs in 

definition from the I.T. system only in the definition of the primary pole -

the primary A.T. pole is the C.I.O. Referring to figure 6-12, we can easily 

see that 

x x 

y = R_ (-x) R (-y) 
2 p 1 P 

y (6-37) 

z 
AT 

z 
LT. 

Using a spherical approximation for the earth which is adequate for this 

transformation, one obtains [Mueller, 1969] 

cos~ cosh 

cos~ sinh 

sin~ A.T. 

= R_{-x ) R (-y ) 
-~ P 1 P 

cos~ cosh 

cos~ sinh 

sin~ 

(6-38) 

I.T. 
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Specifically, one obtains after some manipulations, the two equations 

[Mueller, 1969] 

~~ = ~AT - ~IT = yp sinAIT - xp cosAIT (6-39) 

~A = AAT - AIT = -(xp sinAIT + yp cosAIT) tan~IT (6-40) 

The effect of polar motion on the astronomic azimuth is expressed as 

[Mueller, 1969] 

(6-41) 

The complete process of position updating, and the relationship 

with all celestial coordinate systems is depicted in Figure 6-13. The 

relationships amongst all of the coordinate systems used in geodesy, with 

celestial systems in perspective, is given in Figure 6-14. 
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7. DETERMINATION OF ASTRONOMIC AZIMUTH 

In Chapter 1, the astronomic azimuth was defined as the angle 

between the astronomic meridian plane of a point i and the astronomic normal 

plane of i through another point j. In Chapter 2 (Section 2.2.1), this 

angle was defined with respect to the Horizon celestial coordinate system 

in which the point j was a celestial object. Obviously, to determine the 

astronomic azimuth of a line ij on the earth, we must (i) take sufficient 

observations to determine the azimuth to a celestial body at an instant of 

time T, and (ii) measure the horizontal angle between the star and the 

terrestrial reference object (R.O.). 

In these notes, two approaches.to astronomic azimuth determination 

are studied: (i) the hour angle method, in which observations of Polaris 

(a Ursae Minoris) at any hour angle is treated as a special case, and 

(ii) the altitude method, in which observation of the sun is treated as a 

special case. Several alternative azimuth determination methods are treated 

extensively in Mueller [1969] and Robbins [1976]. 

The instruments·used for azimuth determination are a geodetic 

theodolite, a chronometer (e.g. stop watch), a HF radio receiver, a 

thermometer and a barometer. To obtain optimum accuracy in horizontal 

direction measurements, a striding level should be used to measure the 

inclination of the horizontal axis. 

Finally, the reader should note that the astronomic azimuth 

determination procedures described here yield azimuths that are classified 

as being second or lower order. This means that the internal standard 

deviation of several determinations of the astronomic azimuth would be, at 

best, O~5 to 1~5 [e.g. Mueller, 1969]. Most often, using a 1" theodolite 

147 
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with a striding 1eve1attachment, the standard deviation of the astronomic 

azimuth of.aterrestrial line would be of the order of 5" to 10" [e.g. 

Robbins, 1976]. 

7.1 Azimuth by Star Hour Angles 

From the transformation of Hour Angle celestial coordinates 

(h,o) to Horizon celestial coordinates (A,a), we have the equation (2-20) 

tan A = sinh. (7-1) 
sin~ cosh - tano cos~ 

To solve this equation for A, we must know the latitude ~ of the place of 

observation. The declination of the observed star, 0, can be obtained from 

a star catalogue, ephemeris, or almanac (e.g. FK4, ~Mr SALS) and updated 

to the epoch of observation T. The hour angle of a star, h, can not be 

observed, but it can be determined if time is observed at the instant the 

star crosses the vertical wire of the observer's telescope. Assuming one 

observes zone time (ZT), then the hour angle is given by (combining 

equations (2-30), (3-11), (3-3), (3-13), (3-18» 

h h = ZT + AZ + (a - 12 ) + Eq.E. + A - a, 
m 

(7-2) 

in which ZT is observed, AZ and A are assumed known, a,nd .0., .Eq. E and (~~ .-12h) 
m 

are cata10guedin AA. . (or \(~m~12h:+_Eq·.E)iS ca.ta1ogued in SALS), and must 

be updated to the epoch of observation T. 

The minimization of the effects of systematic errors are important 

for any azimuth determination. This can be done, in part, through the 

selection of certain stars for an observing program. Assuming that the 

sources of systematic errors in (7-1) occur in the knowledge of latitude 

and the determination of the hour angle, we can proceed as follows. 
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Differentiation of (7-1) yields. 

dA = sinA cotz d~ + cos~ (tan~ - cosA cotz)dh. (7-3) 

Examination of (7-3) yields the following: 

(i) ° ° when A = 0 or 180 , the effects of d~ are~9liminated, 

(ii) when tan~ = cosA cotz, the effects of dh are "eliminated. 

Thus, if a star is observed at transit (culmination), the effects of d~ are 

minimized, while if a star is observed at elongation (parallactic angle 

° p = 90 ), the effects of dh are minimized. Of course, it is not possible 

to satisfy both conditions simultaneously; however, the effects will be 

elliminated if two stars are observed such that 

sinAl cotz1" = -sinA2 cotz2 (7-4) 

2tan~ - (COSAl cotzl + COSA2 cotz2) = 0 (7-5) 

As a general rule, then, the determination of astronomic azimuth using the 

hour angle method must use a series of star pairs that fulfill conditions 

(7-4) and (7-5). This procedure is discussed in detail in, for example, 

Mueller [1969] and Robbins [1976]. 

A special case can be easily made for cicumpolar stars, the most 

well-known of which in the northern hemisphere is Polaris (a. Ursae'Minoris ). 

When ~ > 15° Polaris is easily visible and directions to it are not affected 

unduly by atmospheric refraction. Since A = 0°, the error d~ is 

eliminated. Furthermore, since in (7-3), the term [Robbins, 1976] 

cos~ (tan~ - cosA coti) = cos~ cosz cosp, (7-6) 

then when ~ = 90° I the effects of dh are elliminated. Then Polaris can be 

observed at any hour angle for the determination of astronomic azimuth by 

the hour angle method. 
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A suggested observing sequence for Polaris is as follows 

[Mueller, 1969]: 

(i) Direct on R.O., record H.C.R., 

(ii) Direct on Polaris, record H.C.R. and T, 

(iii) Repeat (ii), 

(iv) Repeat (i)~ , 

(v) Reverse telescope and repeat (i) through (iv). 

The above observing sequence constitutes one azimuth determination; 

eight sets are suggested. Note that if a striding level is 'used, readings 

of both ends of the level (e.g. e and w for direct, e " and Wi for reverse) 

should be made and recorded after the paintings on the star. An azimuth 

correction, for each observed set,is then given by [Mueller, 1969] 

I:J.A" = d" ( (w + Wi) - (e + e ' ) ) cotz (7-7) 
4 

in which d is the value in arc-seconds of each division of the striding 

level. 

Briefly, the computation of astronomic azimuth proceeds as 

follows: 

(i) for each of the mean direct and reverse zone time (ZT) readings 

of each set on Polaris, compute the hour angle (h) using (7-2), 

(ii) using (7-1), compute the astronomic azimuth A of Polaris for 

each of the mean direct and reverse readings of each set, 

(iii) using the mean direct and mean reverse H.C.R.'s of each set on 

Polaris and the R.O., compute the astronomic azimuth of the 

terrestrial line, 

(iv) the mean of all computed azimuths (two for each observing sequence, 

eight sets of observations) is the azimuth of the terrestrial line, 
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(v) computation.of the standard deviation of a single azimuth 

determination and of the mean azimuth completes the computations. 

computations may be shortened somewhat by (i) using the mean 

readings direct and reverse for each set of observed times and H.C.R.'s 

(e.g. only 8 azimuth determinations) or (ii) using the mean of all time and 

H.C.R.'S, make one azimuth determination. If either of these approaches 

are used, an azimuth correction due to the non-linearity of the star's 

path is required. This correction (6A ) is termed a second order c 

curvature correction [Mueller, 1969]. It is given by the expression 

" A c = 
n 
I 

i=l 
m. 
~ 

(7-8) 

in which n is the number of observations that have been meaned (e.g. 2 

for each observing sequence (direct and reverse), 16 for the total set of 

observations (8 direct, 8 reverse». The term CA is given by 

= tanA 

. 2h 
s~n 

2 2 
cos h - cos, A 

2 cos A 
(7-9) 

in which the azimuth A is the azimuth of the star (Polaris) computed 

without the correction. The term m. is given as 
~ 

2 
mi = ~"[i sin 2" , 

where 

"[i = (T. - T ) , 
~ 0 

and 
Tl + T2 + .... + T 

T n = 
0 n 

(7-10) 

(7-11) 

(7-12) 

If, when observing Polaris, the direct and reverse readings are 

made within 2m to 3m , the curvature correction ~A will be negligible and 
c 
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Observer: A. Gonzalez-Fletcher 
Computer: A. Gonzalez-Fletcher 
Local Date: 3-31-1965 

Instruments: K ern DKM3-A 
theodolite (No. 82514); 
Hamiltonsidereal chro
nometer (No. 2EI2304); 
Favag chronograph with 
manual key; Zenith 
transoceanic radio. 

Location: OSU old astro pillar 
tit e! 40°00'00" 
Ae! -51132~0· 

Star Observed: FK4 No. 907 
(a Ursae Minoris 
[Polaris]) 

Azimuth Mark: West Stadium 

1. Level Corrections (Sample) 

d [' , J AA = 4' ,(w+w) - (e+e) cotz 

Determination No. 

1 2 3 

d/4 cot z 0'!347 0'!347 0'!347 
w+vI 41.8 41.7 41.9 
e+ff 43.3 43.3 42.8 
AA -0'!52 -0'!59 -0'!31 

d = 1 '!6/division 

2. Azimuth Computation (Sample) 

tan A == sin h/ (sin If, cos h - cOs c;l) tan 6) .. 

1 j\Iean chronometer reading I ~f direct and reverse point-
1O"'S 

12 Chronometer correction 
(computed similar to 
Example 8.4) 

3 AST 
4 a(8.J?parentiJ 

,,',~ .' 

5 h == AST - a 

6 h (arc) 
7 6 (apparent 1 . 

8 cos h 
9 tan 6 

10 sin'cp cos h 
11 cos 9 tan 6 
12 (10) - (11) 
13 Sill h 
14 tan A == (13)/(12) 
15 A (at the average h) 

Determination No. 

1 2 3 

91:22:02~35 9~6t;,13~85 101111 "38~ 16 

-5c51~25 -5"51!28 -5rsl~33 

9hI6:11~ 10 9"s0"22~ 57 10b05"46~83 

Ih57"53~46 Ih57"53~46 ih57rs3~46 
7h18c17~64 7~2"29~11 8"o7=S3~37 

109~4'24':60 113°07'16'!65 121°58'20'!55 

89°06'12'!92 89°06'12':92 89006'12'!92 
-0.33501582 -0.39267890 -0.529510321 
63.91162817 63.91162817 63.91162812 
-0.21534402 -0.25240913 -0.3403626; I 
48.95914742 48-:95914742 48.95914742 

-49.17449144 -49.21155655 -49.299510091' 
0.94221251 0.91967535 0.84830350 

-0.01916059 -0.01868820 -0.01720714 i 
35S054'08'!33 35S055 '45'!73 359°00'51'!12! 

AZIMUTH BY THE HOUR ANGLE OF POLARIS [Mueller, 1969] 

FIGURE 7-1 

!"\ 

" 0' 
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Time difference between 
direct and reversed 
~)ointings (21) 7"12.'4 2D44~5 2~6~5 
Curvature correction 
(equation (9;17» 0'15 O'!1 0':1 
A (polaris) = (15) + (17) 35So54 'OS ':S 35S055 '45':S 359000'51'!2 
Circle (hor~zontal) read-
ing on Polaris 25So..zS '48':9 258°27'28':2 258°32'39'!0 
Correction for dislevel-
ment (AA) -O'!5 -0':6 -0':3 
Corrected circle reading = 
(19) + (20) 25S~5'4S'!4 25S~7 '27':6 258°32'3S'!7 
Circle reading on Mark 00~1'13':7 00°01 '14'!7 00001'17'!5 
Angle between Mark and 
Polaris = (22) - (21) 101°35'25'!3 101~3'47'!1 101°28 '3S '!8 . 
Azimuth of Mark = (18) + 
(23) .. 100~9'34'!1 100~9'32'!9 100~9'30'!0 

3. Final Observed Azimuths from Eight Determinations 

Determination No. Azimuth of Marlt v 

- . 

1 100°29 '34 '!1 -2'.'39 
2 32.9 -1.19 
3 30.0 1.71 
4 31.3 0.41 
5 32.0 -0.29 

." 
6 30.3 1.41 
7 31.6 0.11 
8 31.5 0.21 

Final (mean) 100°29'31':71 [v]=-O'!02 

Standard deviation of an azimuth det.ermination: 

= jrvv] = J12.35 = 1"33 
mA n-1 8-1 . 

Standard deviation of the mean azimuth: 

m. 1':33 
M ..--.... = 0'.'47 A=rn =18 

Result: 

FIGURE 7-1(continued) 

vv 

5.71 
1.42 
2.92 
0.17 
O.OS 
1.99 
0.01 
0.04 

[vv]=12.35 

I 

! 
i 
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could therefore be neglected [Robbins, 1976]. An example of azimuth 

determination by the hour angle of Polaris is given in Figure 7-1. 

Azimuth by hour angles is used for all orders of astronomic work. 

The main advantages of this method are that the observer has only to 

observe the star as it coincides with the vertical wire of the telescope 

and since no zenith distance measurement is made, astronomic refraction has 

no effect. The main disadvantages are the need for a precise time-keeping 

device and a good knowledge of the observer's longitude. 

Table 7-1 summerizes, for several situations, the sources of 

errors and their magnitudes in the determination of astronomic azimuth by 

stars hour angles. 

7.2 Azimuth by Star Altitudes 

Azimuth by star altitudes yields less accurate results than 

azimuth by star hour angles. The two reasons for this are (i) the star 

must be observed as it coincides with both the horizontal and vertical wires 

of the telescope, and (ii) the altitude observation is subject to the 

effects of astronomic refraction. The method does have the advantage, 

however, that a precise knowledge of the observer's longitude is not 

required and an accurate time-keeping device is not needed. Azimuths 

determined by star altitudes are not adequate for work that requires 0A 

to be 5" or less. 
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Stars at Elongation Polaris Prime Vertical Lower 
Transit 

a . . . . · . · . · . 35° 4» 15° 22°.5 15° 

15 . . . . · . · . · . 60° 75° 

0 3 sec a (vertical wire 
on star) 2".4 2".3 2".6 2".7 2".6 

0 4 (m=asurement of 
horizontal angle) 2".5 2".5 2".5 2".5 2".5 

0 5 tan a (reading of 
plate level) 3".5 2".9 1".3 2".1 1".3 

aT (time) · . · . · . 0".0 0" .1 1".5 111.5 0".8 

~um (plate level) •• · . 4".9 4".5 4".1 4".5 3".9 

0 6 tan a (reading of 
striding level) 0".9 0".7 0".3 0".5 0".3 

Sum ( striding level) · . 3".6 3".5 3',' .9 4".0 3".7 

Azimuth by hour angle: random errors in latitude 30° 

Stars at Elongation Polaris Prime Lower Transit 
Vertical 

a . . . . · . 64° 4» 22°.5 20° 

15 . . . . · . 75° 50° 

0 3 sec a(vertical 
wire on star) 4".6 4".0 2".7 2".7 

0 4 (measurement 
of horizontal 
angle) 2".5 2".5 2".5 2".5 

0 5 tan a(reading 
of plate level) 10".2 8".7 211.1 1".8 

aT (time . . . 0".0 0" .1 2".6 2".1 

Sum (Plate level) 11".5 9".9 5".0 4".6 

0 6 tan a (reading 
of striding 
level 2".6 2".2 0".5 0".5 

Sum (Striding 
level) 5".9 5".2 4".5 3".3 

Azimuth by hour angle: random errors in latitude 60° 
Table 7-1 [Robbins, 1976] 

30° 40° 

60° 70° 

2".9 , 3".3 

2".5 2".5 

211.9 4".2 

1".7 1" .3 

5" .1 6" .0 

0".7 1".0 

4".2 4".5 
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From a relationship between the Horizon and Hour Angle coordinate 

systems (egn. (2-26), rearranged) 

cosA = 

or with z = 90 - a, 

cosA = 

sino - cosz sin4'> 

sinz cos4'> 

sin6 - sina sin4'> 

cosa cos4'> 

(7-13) 

(7-14) 

To solve either (7-13) or (7-14) for A, the latitude 4'> of the observer must 

be known. The declination, 6, of the observed celestial body is obtained 

from a catalogue, ephemeris, or almanac and updated to the time of 

observation. The zenith distance (or altitude) is the measured quantity. 

The main sources of systematic 'error with this method include 

error in latitude (assumed) and error in the reduced altitude due to 

uncorrected refraction. Differentiating (7-14) yields 

dAsinA = (tana - cosA tan4'» d4'> + 

(tan4'> - cosA tana) da (7-15) 

The effects of d4'> are zero when 

tana = cosA tan4'> (7-16) 

• 0 h 0 h wh1ch occurs when h = 90 (6) or 270(18). The effects of da are zero 

when 

tan4'> = cosA tana (7-17) 

which occurs when the observed celestial body is at elongation. To 

minimise the effects of systematic errors, two stars are observed such that 

a l = a2 ' (7-18) 

Al = 3600 - A2 (7-19) 
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Further details on the selection of star pairs observing procedure and the 

computation of azimuths, can be found in, for example, Mueller [1969] and 

Robbins [1976]. using Polaris, observations should be made at elongation. 

Note that no star should have an altitude of less th~ 15° when using this 

method, thus for Polaris, ~>lso. Estimates of achievable accuracy are given 

in Table 7-2. 

The method of azimuth determination by altitudes is often used in 

conjunction with sun Observations. Using a I" theodolite and the 

observation and computation procedures described here, 0A will be of the 

order of 20". When special solar attachments are used on an instrument, such 

as a Roelofs solar prism [Roelofs, 1950], and accuracy (oA) of 5" may be 

attained. 

A complete azimuth determination via sun observations consists of 

two morning and two afternoon determinations. It is best if 

30° ~ a ~ 40°, and it should never be outside the range 20° ~ a < 50°. 

Figure 7-1 illustrates, approximately, the optimum observing times. A 

suggested observing procedure for one azimuth determination is as follows 

[Robbins, 1976): 

(i) Direct on RO, record H.C.R. and level (plate or striding) 

readings, 

(ii) Direct on Sun, record H.C.R. and V.C.R., and time to nearest 

m 
1 (for methods of observing the sun, see, for example, 

Roelofs (1950), record level readings, 

(iii) Reverse on Sun, record H.C.R. and V.C.R., and time to nearest 

m 1 , record level readings, 
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Stars at Elongation h = 90° 

let · . · . · . · . 40° 25° 

0 · . · . · . · . 51° 58° 

0'1 (pointing of horizontal wire 
" on star) 0 1".0 
" 

0'2 (measuring of altitude) 0 1".3 

O'R (determination of refraction) 0" 0".7 

0'3 sec a (pointing of vertical wire) 2".6 3".3 

0'4 (horizontal angle measurement) 2".5 2".5 

0'5 tan a (reading plate level) 4".2 2".3 

~um (Plate level) · . 5" • 5 5".1 

0'6 tan a (reading striding level) 1".0 0".6 

pum (Striding level) 3".7 4".5 

Azimuth by altitude: random errors in latitude 30° 

a 

15 

0'1 

0'2 

O'R 

0'3 

0'4 

0'5 

Sum 

0'6 

Sum 

Stars at Elongation h = 90° 

· . · . · . · . 64° 35° 

· . · . · . · . 75° 41° 

(pointing of horizontal wire 
on star) + 0" + 4".8 - -

(measuring of altitude) + 0" + 6".2 - -
(determination of refraction) + 0" + 3".2 - -
sec a (pointing of vertical wire) + 4".6 + 3".7 - -
(horizontal angle measurement) + 2".5 + 2".5 - -
tan a (reading plate level) + 10".3 + 3".5 - -

(plate level) · . + 11".6 + 10".2 

tan a (reading striding level) + 2".6 + 0".9 -

(striding level) + 5".8 + 9".6 

Azimuth by altitude: random errors in latitude 60° 

Table 7-2 [Robbins, 1976] 

Prime vertical 

35° 

17° 

1".7 

2".3 

1".2 

3".7 

2".5 

3".5 

6".5 

0".9 

5".5 

Prime vertical 

35° 

30° 

+ 5".2 -
+ 6".8 -
+ 3".5 -
+ 3".7 -
+ 2".5 

+ 3".5 -
+ 10".8 -
+ 0".9 -
+ 10".3 -
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(iv) Reverse on R.O., record H.C.R., record level readings, 

(v) Record temperature and pressure. 

The computation procedure resulting from the above observations 

(i) Mean Direct and Reverse horizontal readings to the R.O. and to the 

Sun, 

(ii) correct the horizontal directions in (i) for horizontal axis 

dislevelment using equation (7-7), 

(iii) compute the angle Sun to R.O., 

(iv) mean direct and reverse zenith distance (or altitude) measurements 

to the Sun, then correct the mean for refraction and parallax, 

(v) determine the time of observation in the time system required to 

obtain a tabulated value of 15 of the sun, 

(vi) compute the updated value of 0 for the time of observation 

(tabulated 0 plus some correction for time), 

(vii) using either (7-13) or (7-14), compute the azimuth to the sun, 

(viii) using the angle determined in (iii), co~pute the azimuth to the 

R.O. 

The following example illustrates the observing and computation 

procedures for an azimuth determination via the altitude of the sun. 
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Ex~~ple: Azimuth via Sun's Altitude (using SALS). 

Instrument: A Date: May 6, 1977 

R.O.: B Time: Central Daylight Time (900 W) 

Obs. Procedure: Sun observed in quadrants. Latitude (~): 38° 10' 10" 

Inst. Sight H.C.R. V.C.R. Time 

B 0° 00' 02~0 

Direct Sun 157° 54' 56~0 56° 12' 00" ISh 40m 

Reverse Sun 339° 05' 30~0 57° 10' 00" ISh 46m 

B 180° DO' 04~0 

Note: No level readings required. 

Means: H.C.R. Sun: 30' l3~0 V.C.R. 56° 41' . 00" 

.Sketch: 

H.C.R. B: 

° Horiz. Angle: 158 

Reduction of Altitude 

DO' 03~0 

30' 10~0 

Mean Altitude (a) = 90° S6° 

l-1ean Refraction (r ) = 88" 
° 

Correcting factor ( f) = 0.95 

Refraction == r xf == 88" xO.95 
° 

Parallax 

Corrected Altitude 

8 (R.O.) 

41' 00" = 33° 

== 

= + 

= 33° 

Remarks 

Temp. 20°C 

Pres. 1000 mh. 

19' ~O'' 

l' 24" 

06" 

17' 42" 
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computation of Sun's Declination 

Observed (Mean) Time 

Clock Correction 

Correction for Daylight Time 

Time Zone 

U.T. 

Sun's 0 at 6 May 18h U.T. 

Change in 0 since 18h U.T. (2h42m) 

Sun's 0 at 6 May 20h 

Azimuth Computation 

cosA 

cosA = sin 0 - sin a sin ~ 
cos a cos~ 

= sin(16° 40!9) - sin (330 

cos (380 

- 0.52191 
= = 

+ 0.657391 

U.T. 

17' 42") 

17' 42") 

- 0.0794215 

sin 

cos 

Azimuth of Sun -1 =cos A = 360°- 94° 33' 19" 

Mean Horiz. Angle 

Azimuth to B (R.O.) 

15h 43m 

_Olm 

III OOm 

+ 6h OOm 

20h 42m 

(N) 16° 39~0 

+ 1!9 

16° 40!9 

(7-14) 

(380 10' 10") 

(380 10' 10") 

= 2650 26' 41" 

= 1580 30' 10" 

= 106° 56' 31" 



8. DETERMINATION OF ASTRONOMIC LATITUDE 

Astronomic latitude was defined in Chapter 1. To deduce procedures 

for determining astronomic latitude from star observations, we must examine 

an expression that relates observable, tabulated, and known quantities. 

Equation (2-22), involving the transformation of Hour Angle coordinates to 

Horizon coordinates, namely 

cosz = sin~ sino + cos~ coso cosh , 

requires that zenith distance (z) and time (h) be observed, that declination 

(0) and right ascension (a) be tabulated, and that longitude (A) be known to 

solve for an unknown latitude (~). The effects of systematic errors in 

zenith distance and time, dz and dh'respectively, are shown via the total 

derivative of (2-22), namely 

d~ = - secAdz cos~ tanA dh (8-1) 

o When A = 0, then d~ = -dz (secA = 1, tanA = 0), and when A = 180 , then d~ = dz 

(secA = -1, tanA =0). For this reason, most latitude determinations are 

based on zenith distance measurements of pairs of stars (one north and one 

south of the zenith such that zn = -z~) as they transit the observer's 
s 

meridian. 

The instrumen~used for latitude determination are the same as those 

for azimuth determination: a geodetic theodolite with a striding level 

attachment, a chronometer, an HF radio receiver, a thermometer and a barometer. 

Two astronomic latitude determination procedures are given in these 

notes: (i) Latitude by Meridian Zenith Distances, (ii) Latitude by Polaris 

at any Hour Angle. The accuracy (o~) of a latitude determination by either 

method, using the procedures outlined, is 2" or better [Robbins, 1976]. For 

alternative latitude determination procedures, the reader is referred to, for 
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example, Mueller [1969] and Robbins [1976]. 

8.1 Latitude by Meridian Zenith Distances 

Equations (2-54)., (2-55), and (2-56), rewritten with subscripts to 

refer to north and south of zenith stars at transit are 

~ = 5N - z N (UC north of zenith) , (8-2) 

~ = z -S 5s (UC south of zenith) , (8-3) 

~ = 1800 - 5 - z (LC north of zenith). N N 
(8-4) 

If a star pair UC north of zenith - UC south of zenith are observed, then a 

combination of (8-2) and (8-3) yields 

(8-5) 

while a star pair LC north of zenith -UC south of zenith gives 

~ = ~ (5 - 15 ) + ~ (z - z ) + 90 0 
S N S N 

(8-6) 

Equations (8-5) and (8-6) are the mathematical models used for latitude 

determination via meridian zenith distances. 

An important aspect of this method of latitude determination is the 

apriori selection of star-pairs to be observed or the selection of a 

star programme. Several general points to note regarding a star programme 

are as follows: 

(i) more stars should be listed than are required to be observed (to 

allow for missed observations due to equipment problems, temporary 

cloud cover, etc.), 

(ii) the two stars in any pair should not di~fer in zenith. distance by more 

o than about 5 , 

(iii) the stars in any pair, and star pairs, should be selected at time 

intervals suitable to the capabilities of the observer. 
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For details on star programmes for latitude determination by meridian zenith 

distances, the reader is referred to, for example, Robbins [1976]. 

A suggested observing procedure is: 

(i) set the vertical wire of the instrument in the meridian (this may 

be done using terrestrial information e.g. the known azimuth of a 

line, or one may determine the meridian via an azimuth determination 

by Polaris at any Hour Angle), 

(ii) set the zenith distance for the first north star; when the star 

enters the field of view, track it with the horizontal wire until it 

reaches the vertical wire, 

(iii) record the V.C.R., temperature, and pressure, 

(iv) repeat (i) to (iii) for the south star of the pair. 

This constitutes one observation set for the determination of ~. 

Six to eight sets are required to obtain (J 4> = 2" or less. The computations 

are as follows: 

(i) correct each observed zenith distance for refraction, namely 

(ii) for each star pair, use either equation (8-5) or (8-6) and 

compute ~, 

(iii) compute the final ~ as the mean of the six to eight determinations. 

An example of this approach can be found, for instance, in Mueller [1969]. 

8.2 Latitude by Polaris at any Hour Angle 

Since Polaris is very near the north celestial pole, the polar 

distance (P = 90-~, Figure 8-1) is very small (P<lo), and the azimuth is 

° very close to O. Rewriting equation (2-22) (Hour Angle to Horizon 

coordinate transformation) with z = (90 - a) and P = 90 - ~ yields 

sina = sin~ cosp + cos~ sinp cosh (8-7) 
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Now, setting ~ = (a + ~a), in which oa 

and P are differentially small, and 

'substituting in (8-7) gives 

Figure 8-1 

Astronomic Triangle for Polaris 

sin a = sin (a + c5a) cosP + cos (a + oa) sinP cosh 
.' 

= sina cosoa cos.P + cosa sinc5a cos P 

+ cosa cosoa sinP cosh - sina sin6a sinP cosh. (8-8) 

Then, replacing the small angular quantities (6 and P) by their power . a 

series (up .to and including 4th order terms), namely 

sine = e _e 3 + ..... , 
3: 

cose 1 -
62 

+ 64 
= - - , 

2: 4: 

(8-8) becomes 

sina = (sina(l- + 
. 3 p2 

+ cosa (oa - oa » (1- + 
2! 4! 3! 2! 

+ (cosa (1 
3 p3 

sina (oa - ~~ » (P - 3: ) cosh. (8-9) 

Now, taking only the first-order terms of (8-9) into account yields 

sina = sina + oa cosa + Pcosa cosh (8-10) 

or 

c5a = -Pcosh .• (8-11) 

Replacing the second-order c5a terms in (8-9) with (8-11) above, and 

neglecting all terms of higher order gives 



oa = - Pcosh + 
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. 2h tana sJ.n (8-l2) 

Repeating the above process for third and fourth order terms yields the final 

equation 

~ = a + oa = a - Pcosh + 

P . 2 h' 2h 3 sJ.n P cos sJ.n + 

P sinP tana sin2h 
2 

P . 3 . 4h 3 8 sJ.n P sJ.n tan a 

(8-l3) 

Except in very high latitudes, the series (8-13) may be truncated at the 

third term. 

A suggested observation procedure is as follows: 

(i) observe polaris (horizontal wire) and record V.C.R., time, 

temperature and pressure; repeat this three times. 

(ii) reverse the telescope and repeat (i). 

This constitutes the observations for one latitude determination. 

It should be noted that if azimuth is to be determined simultaneously 

(using Polaris at any hour angle), then the appropriate H.C.R.ts must be 

recorded (such a programme requires that the observer place Polaris at the 

intersection of the horizontal and vertical wires of the telescope). 

The computation of latitude proceeds as follows: 

(i) compute mean zenith distance measurement for six measurements, 

(ii) correct mean zenith distance for refraction and compute the mean 

altitude (a = 90 - z), 

(iii) compute the mean time for a, then using (7-2), compute the mean 

h (note that mean a and (a - 12h) must be computed for this part 
m 

of the latitude determination), 
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(iv) compute a mean ~, then P = 90 - 0 

(v) compute Ip 

A mean of 12 to 20 determinations will yield an astronomic latitude 

with alp = 2" or less [Robbins, 1976]. 

The reader should note that the use of a special SALS table (Pole 

Star Tables) leads to a simple computation of latitude using this method, 

namely 

(8-14) 

in which a is the corrected, meaned altitude, and a o ' aI' a2 are tabulated 

values. Using this approach results will not normally differ from those using 

(8-13) by more than O,:~'2 (12"), while in most cases the difference is within 

O!l (6") [Robbins, 1976]. Both computation procedures are illustrated in the 

following example taken from Robbins [1976]. 

Example: Latitude from Observations of Polaris at any Hour Angle 

(i) with SALS tables 

Date: 23 August 1969 

cj>=57003' 

A.= 7° 27' W = - Oh 29m 48s 

Mean of Observations: a = 56° 57' 24" 

Computations: 

h RCa -12 +Eq.E) 
m 

Press. = 1009mb. 

= 
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GAST :::::: UT + R + R "" 20h 09m 45~4 

A oh 29m 485 

LAST 19h 39m 57~4 

a :::: 56° 57' 24" 

" r (mean refraction) :::: 38 
° 

f (refraction factor) ::::: 1.00 

a :::::: a - (r x f) == 56° 56' 46" 
corr 0 

~ == a + a + a l + a 2 == 56° 56 1 46" + 5'48" + 09" 
corr 0 

~ :::: 57 ° 02' 43" 

(if) with equation (8-13) (first three terms only) 

as in (i) plus: 

(l == 2h 03m 095 

a. 

a ::::: 56° 56' 

p ::::: 3163" 

4? _. 56° 56' 46 11 

46" 

+ 

17" 

319~5 + 36~9 

~ = 57° 02' 42~'4 

+ 00" 



9. DETERMINATION OF ASTRONOMIC LONGITUDE 

In chapter 3, we saw that l~ngitude is related directly with sidereal 

time, namely (egn. 3-3 ) 

A = LAST - GAST (9-l) 

From the Hour Angle - Right Ascension systems coordinate transformations 

(egn. 2-31) 

LAST = a + h • (9-2) 

Replacing LAST in (9-l) with (9-2) yields the expression 

A = a + h - GAST (9-3) 

This equation (9-3) is the basic relationship used to determine astronomic 

longitude via star observations. The right ascension (a) is catalogued, and 

the hour angle (h) and GAST are determined respectively via direction and time 

observations. 

Let us first examine the determination of GAST. Setting TM as the 

observed chronometer time (say UTC), and 6T as the total chronometer 

correction, then 

GAST = TM + 6T 

The total correction (6T) consists of the following: 

(i) the epoch difference 6T at the time of synchronization of 
o 

UTC and TM times, 

(ii) chronometer drift 61T, 

(iii) DUTl, given by DUTl = UTl - UTC (see Chapter 4), 

(9-4) 

(iv) the difference between UTl and GAST at the epoch of observation 

given by 

LMST 

LAST 

h = MT + (aM - 12 ) 

= LMST + Eq.E. 

Finally, equation (9-3) reads 

A = a + h - (TM + 6T) 

170 

(9-5) 
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The determination of the hour angle (h) is dependent on the 

astronomic observations made. From the Hour Angle - Horizon systems 

coordinate transformation (eqn. 2-22), 

cosh = cosz - sino sin~ 

coso cos~ 
(9-6) 

can be used for the determination of a star's hour angle. Now, taking z 

and TM as the observed quantities, ~ as a known quantity, and 0 as 

catalogued, the sources of systematic errors affecting longitude determination 

will be in zenith distance (dz), the assumed latitude (d~), the observed 

time (TM) and the chronometer correction (d6T). Replacing h in (9-5) by 

(9-6), and taking the total derivative yields 

dA = - (sec~ cotA d~ + sec~ cosecAdz + dT + d6T) • (9-7) 

Examining (9-7), it is obvious that the errors dT and d6T contribute directly 

to dA and can not be elliminated by virtue of some star selections. On the 

other hand, d~ and dz can be treated as follows: 

(i) when the observed star is on the prime vertical 

o 0 (A = 90 or 270 ) , then d~ = 0 

(ii) the effects of dz can be elliminated by observing pairs of stars 

such that zl=z2 • 

As with azimuth and latitude determination procedures in which pairs of stars 

have to be observed under certain conditions, a star program (observing 

list) must be compiled prior to making observations. For details, the 

reader is referred, for example, to Mueller [1969] and Robbins [1976]. 

The primary equipment requirements for second-order (0). = 3" or 

less) longitude determination are a geodetic theodolite, a good mechanical 

or quartz chronometer, an HF radio receiver, and a chronograph equipped with 

a hand tappet. 
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Finally, before describing a longitude determination procedure, the 

reader should note the following. Since the GAST used is free from polar 

motion, LAST must be freed from polar motion effects. This is accomplished 

by adding a polar motion correction (6A : see Chapter 6) to the final 
p 

determined longitude (not each observation), such that the final form of 

equation (9-5) becomes 

A = a + h + 6Ap - (TM + 6T) 

9.1 Longitude by Meridian Transit Times 

(9-8) 

When a star transits the meridian, h = oh (or l2h) and a = LAST. 

If pairs of stars are observed such that zl = z2' then the effects of dz in 

(9-7) are e11iminated. The observation of time (TM) as a star transits the 

meridian enables longitude computation using (9-8). The main sources of 

error will be d~ and the observation of the stars transit of the meridian 

(due partly to inaccurate meridian setting and partly to col1iIiiation). The 
" 

latter errors cause .. :. a timing error. A correction for this effect is computed 

from [Mueller, 1969] 

dA 15 cosec z = cos db 
sin z 

or db= cos '8 -dA 

where dA is the rate for the 

yielding db in seconds. 

Example 

For dA = I' = 4s 

s dbN = 5.85 

star to travel I' 

db = 0~80. 
s 

(9-9) 

(9-10) 

(4s ) of arc in azimuth, 

Then, if the longitude difference determined from north and south stars is 

s 2.0, the corrections to A are as follows: 



(2.0 x 5.85) 

5.85 + 0.80 
= 
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A (2.0 x 0.80) s 4 dlL = --.!.=-:..::.....;:;;:.....;:;..;;....::.=..!- = 0 • 2 
s 

(5.85 + 0.80) 

A suggested field observation procedure for the determination of 

longitude by meridian transit times is [Mueller, 1969]: 

(i) make radio-chronometer comparisons before, during, and after each 

set of observations on a star pair, 

(ii) set the instrument (vertical wire) in the meridian for the north 

star and set the zenith distance for the star; when the star 

enters the field of view, track it until it coincides with the 

vertical wire and record the time (hand tappet is pressed), 

(iii) set the instrument for the south star of the pair (do not 

reverse the instrumen~ and repeat (ii), 

(iv) repeat (ii) and (iii) for 12-16 pairs of stars. 

The associated computation procedure is as follows: 

(i) compute the corrected time for each observed transit (e.g. TM + ~T) , 

(ii) compute the apparent right ascension for each transit, 

(iii) compute the longitude for each meridian transit using (9-8), 

(iv) compute dh for each star; compute .hA ~ AN-As for each star pair; 

(v) 

(vi) 

11.2] • 

compute the correction to longitude (dIl) for each star of a pair 

(see example), 

compute the mean longitude from the 12-16 pairs, 

apply the correction hA to get the final value of longitude. 
p 

An example of this procedure is given in Mueller [1969; Example 
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In closing, the reader should be aware that there are several other 

methods for second order longitude determination. For complete coverage of 

this topic, the reader is referred to Mueller [1969) and Robbins (1976). 
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APPENDIX A 

REVIEW OF SPHERICAL TRIGONOMETRY 

In this Appendix the various relationships between the six 

elements of a spherical triangle are derived, using the simple and 

compact approach of A.R. Clarke, as given in Todhunter and Leathem 

("Spherical Trigonometrytt, Macmillan, 1943). 

The 27 relations derived are listed at the end of the 

Appendix • 

A.1 Derivation of Relationships 

In Figure A-l, the centre of the unit sphere, 0, is joined to 

the vertices A, B, C of the spherical triangle. Q and R are the 

projections of C onto OA and OB, hence OQC and ORC are right angles. 

P is the projection of C onto the plane AOB, hence CP makes a right 

angle with every line meeting it in that plane. Thus QPC, RPC, and 

OPC are right angles. Note that the angles CQP and CRP are equal to 

the angles A and B of the spherical triangle. 

We show that OQP is also a right angle by using right 

triangles COP, COQ, CQP to obtain 

C02 = Op2 + PC2 

C02 = OQ2 + QC2 

QC2 = Qp2 + PC2 

Equating (A-l) and (A-2), and substituting for QC2 from (A-3) 

Op2 = OQ2 + Qp2 

(A-1) 

(A-2) 

(A-3) 

that is OQP is a right angle. Similarly it can be shown ORP is also a 

right angle. 
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In Figure A-2, on the plane AOB, S is the projection of Q on 

OB and T is the projection of R on OA. Note that the angle AOB is 

equal to the side c of the spherical triangle, and that angles AOB = 

SQP = TRP. Then from Figure A-1 

PC = RC sin B = QC sin A (A-4) 

and from Figure A-2 

OR = OS + QP sin c 

RP = SQ - QP cos c 

QP = TR - RP cos c 

We can now make the substitutions 

OR = cos a 

RC = sin a 

OQ = cos b 

QC = sin b 

QP = QC cos A = sin b cos A 

RP = RC cos B = sin a cos B 

OS = OQ cos c = cos b cos c 

SQ = OQ sin c = cos b sin c 

OT = OR cos c = cos a cos c 

TR = OR sin c = cos a sin c 

to obtain from (A-4) to (A-7) 

sin a sin B = sin b sin A 

cos a = cos b cos c + sin b sin c cos A 

sin a cos B = cos b sin c - sin b cos c cos A 

sin b cos A = cos a sin c - sin a cos c cos B 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

(A-11 ) 

Equation (A-8) is one of the three Laws of Sines. Equation (A-9) is 

one of the three Laws of Cosines for Sides. Equations (A-lO) and 
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(A-11) are two of the twelve Five-Element Formulae. 

The Four-Element Formulae can be derived by multiplying 

Equation (A-10) by sin A, and dividing it by Equation (A-8) to obtain 

sin A cot B = sin c cot b - cos A cos c 

rearranged as 

cos A cos c = sin c cot b - sin A cot B (A-12) 

Similarly multiplying Equation (A-11) by sin B and dividing by the 

transposed Equation (A-B) we obtain 

cos B cos c = sin c cot a - sin B cot A (A-13) 

Equations (A-12) and (A-13) are two of the six Four-Element Formulae. 

It can be shown that all the above Laws remain true when the 

angles are changed into the supplements of the corresponding sides and 

the sides into the supplements of the corresponding angles. Applying 

this to Equations (A-8) , (A-12), and (A-13) will not generate new 

equations. However, when applied to Equation (A-9) 

cos a = cos b cos c + sin b sin c cos A 

it becomes 

cos(n-A) = cos(n-B)cos(n-C)+sin(n-B)sin(n-C)cos(n-a) 

or 

cos A = - cos B cos C + sin B sin C cos a 

which is one of the three Laws of Cosines for Angles. 

Equations (A-l0) and (A-ll) become 

sin A cos b = cos B sin C + sin B cos C cos a 

sin B cos a = cos A sin C + sin A cos C cos b 

which are two more of the twelve Five-Element Formulae. 

(A-14) 

Similarly 

(A-15) 

(A-16) 

Equations (A-8) to (A-16) represent one-third of the 

relationships. The other two-thirds are obtained by simultaneous 
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cyclic permutation of a, b, c and A, Bt C. For example. from Equation 

(A-B) 

sin a sin B = sin b sin A 

we obtain 

sin b sin C = sin c sin B 

sin c sin A = sin a sin C 

The entire set of 27 relations obtained this way are stated below. 

A.2 Summary of Relationships 

A.2.1 Law of Sines 

sin a sin B = sin b sin A 

sin b sin C = sin c sin B 

sin c sin A = sin a sin C 

A.2.2 Law of Cosines (sides) 

cos a = cos b cos c + sin b sin c cos A 

cos b = cos c cos a + sin c sin a cos B 

cos c = cos a cos b + sin a sin b cos C 

A.2.3 Law of Cosines (angles) 

cos A = - cos B cos C + sin B sin C cos a 

cos B = - cos C cos A + sin C sin A cos b 

cos C = - cos A cos B + sin A sin B cos c 

A.2.4 Four-Element Formulae 

cos A cos c = sin c cot b - sin A cot B 

cos B cos a = sin a cot c - sin B cot C 

cos C cos b = sin b cot a - sin C cot A 

cos B cos c = sin c cot a - sin B cot A 
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cos C cos a = sin a cot b sin C cot B 

cos A cos b = sin b cot c - sin A cot C 

Five-Element Formulae 

sin a cos B = cos b sin c - sin b cos c cos A 

sin b cos C = cos c sin a - sin c cos a cos B 

sin c cos A = cos a sin b sin a cos b cos C 

sin b cos A = cos a sin c - sin a cos c cos B 

sin c cos B = cos b sin a - sin b cos a cos C 

sin a cos C = cos c sin b sin c cos b cos A 

sin A cos b = cos B sin C + sin B cos C cos a 

sin B cos c = cos C sin A + sin C cos A cos b 

sin C cos a = cos A sin B + sin A cos B cos c 

sin B cos a = cos A sin C + sin A cos C cos b 

sin C cos b = cos B sin A + sin B cos A cos c 

sin A cos c = cos C sin B + sin C cos B cos a 
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APPENDIX B 

CANADIAN TIME ZONES 

/ I I 
I'J 120 

100 
I 

(Canada Year Book 1978-79, Dept. of Supply and Services, Ottawa) 



No. I 
US3 

125-1 

uS5 

368 

370 

1256 

371 

373 

1257 

372 

374 

375 

377 

376 

378 

1258 

1259 

1200 

1261 

·379 

380 

:;81 

:;85 

382 

3~4 

383 

:262 

I~G.l 

uli4 

uGS 

I 
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APPENDIX C 

EXCERPT FROM THE FOURTH FUNDAMENTAL CATALOGUE (FK4) 

EQUINOX AND EPOCH 1950.0 AND 1975.0 

Name 

I "···1 
sp. dx d'ct J,. 

1-:1"(%) ct 
dT .~ . .iii " d7' 

I 

+ 19"2J34 I.co 6.92 Ko rJ'43'" 5!-IH + 333!:41 - O!i09 + o!.60 -O!OOI 2j·H 
9 44 28.710 + 332.1>87 - 0.705 + 0.160 -0.001 

I Car 3.6 '-1.8 Go 9 -13 52.35-1 + 164.799 - 0.0<J6 - 0·%34 -0.003 10 .. l2 
9 ~-I 3J.553 + 164.796 - 0.005 - 0.235 -0.003 

Dr 1369 UMa 5. 20 Go 9 45 27.4H + 386.859 - :.201 + l!.l6: -0.0:6 :6.08 
9 46 59.02• + 385.701 - 2.190 + 2.156 -0.0:6 . 

" U!\la 3.89 Fo + 426.403 - 3·9S5 - 3·817 16,50 9 47 27-'02 +0.032 
949 IHH + 42-1.418 - 3-955 - 3.809 +0.033 

6Su: 6.00 At. 9 48 42.$:6 + 3°2·309 - 0.118 + 0.057 -0.001 17.29 
9 49 58.396 + 302•251 - 0.111 + 0.05i· -0.001 

162 G. Vel HZ Ko 9 49 13.441 + 232.';00 + 0.48: - 0.380 -0.001 21 .. $3 
9 So 21·571 + 232•643 + 0.490 - 0.380 -0.001 

/l Leo 4·10 Ko 9 49 55·434 + 341.140 - 0·969 - 1·599 +0.004 1-1·55 
9 51 20.659 + ]40.657 - 0.963 - 1·591$ +0.00-1 

183 G. Hya 5.16 lIo 9 52 30.60: + 282.989 + 0.168 - 0.358 -0.003 19.27 
9 53 41.360 + 283.075 + 0.174 - 0·359 -0.003 

1$ G. Sex 7.03 Ko 9 53 38.894 + 298.06: - 0.039 - 0.166 0.000 z6 .. p 
9 54 5H07 + 298.043 - 0.035 - 0.166 0.000 

Grb 1586 UMa 5.96 Ko 9 53 57.521 . + 535.718 -10.691 - 1·733 +0.031 20·57 
9 56 10.786 + 530.415 -10.523 - 1.72 5 +0.032 

19 LMi 5·19 FS 9 54 37.760 + 367.318 - 1.767 . - 1.056 +0.006 20.46 
9 56 9-479 + 366.437 - J.7S$ - 1.055 +0.006 

'1' Vel 3·70 B5 9 55 6.~49 + zlo·696 + 0.487 - O.I]~ -0.001 13-38 
9 55 58.954 + 210·9~1 + 0.495 - 0.13$ -0.001 

11 Ant 5·=5 Fo 9 56 43-347 + 257·';'9 + 0.438 - 0.806 -0.006 18.47 
9 57 47.729 + 257.6]9 + 0·445 - 0.808 -0.006 

u Sex 6.63 A5 9 57 7·479 + 311•188 - 0.276 - 0.-163 +0.001 u·33 
9 58 25.259 + 3".051 - 0.271 - 0..;63 oj·O.OOI 

:r L~o 4-89 Mo 9 57 34·334 + 317.018 - 0·393 - 0.21 5 -0.001 13.03 
9 58 53.564 + :;16.823 - 0.389 .- 0.21 5 -0.001 

20 I.,.:i 5.60 GS 9 58 8.'.115 + .H5·802 '- 1.230 - 4·14.0 '40.006 24·37 
9593H89 + 345.11>9 - 1.223 - 4·139 +0.006 

Pi 9h229 UM,. 5·74 FS 10 I 17·747 + 398.561 - 3.066 - 0.269 +0.003 36.41 
10 2 57.196 + 397·034 - 3.044 - 0.26S +0.003 

193 G. Hya 5·80 Fo 10 2 2.261 + 277.137 + 0.:8$ - 0.845 -0.002 19.07 
10 3 11.563 + 277.283 + 0.29-1 - 0.846 -0.003 

,,' Hy3 4·72 D8 10 :: 41.299 + 292•143 + 0.086 - 0.289 0.000 12.88 
:0 :; 54.340 + 292.IS7 + 0·09-' - 0.259 0.000 

11 Leo 3.58 Aop 10 4 36.533 + 327.034 - 0.637 - o.OIZ 0.000 16.51 
10 S 58•252 + 326.71; - 0.6]2 - 0.0:2 0.000 

IE Leo 1·34 D8 10 S 42.647 + 319.462 - 0.489 - 1.6g6 +0.003 08.Sz 
10 7 2·482 + 319.219 - 0 ... 8 .. - 1.695 +0.00] 

1. lIya 3·S3 Ko 10 S 8.945 + 292.48, + 0.080 - 1.';07 -0.006 15·45 
10 9 22.070 + 292.5:: ·t 0.<>S5 - 1.40S -0.006 

(Q Car 3.56 118 10 IZ 33.0-17 + 142.7°3 - 0.391 - 0.6:5 -0.014 11.62 
10 13 S·t)9S + 142.506 - 0·:;97 - 0;6:9 -0.014 

19' G. Vel 4·09 A2 10 I:l 37.998 of· 251.899 + 0.(109 - 1·345 -o.ooS 16·5; 
10 '3 41.011 + 2';~.:Ot; + 0.618 - 1·34; -O.OO~ 

C JeD 3·Gs Fo 10 '] 54.75S + 333.6.: - o.SSS + o.IH -0.001 IS·9i 

I 10 IS Ig.107 + 333.184 - 0.852 + 0.134 -0.001 

i. \J!\b HZ A: 10 14 ).353 + 361•689 - 1.877 - 1.512 +0.010 IS·9S 
10 I:: 3S·"SS + 360.7;'; - I.S04 - 1·509 -10.010 

:;2 Ul\b. 5·74 A3 10 14 25.657 + ·435 .. B'; - 5.542 - 1_3S0 +0.024 :13.4 2 
10 16 14.171 + H2.080 - 5·475 - 1·3;4 -It'.?:" 

e S:>t 5.40 Fo 10 IS 8.659 + 29S.118 + 0.(111 - 1.104 -n.<J?1 17· I g 
10 If> 23.1)19 ~. =9S.I:5 ~. 0."11j - 1.1::-'; -,0.0'>1 

187 G. C3. 3·44 KS 1<' is 24.581 + :00.367 + o·S~7 - 0·3.3 -0.0.'16 I·P9 
10 16 14.il0 + :oo.60~ oj. v.6oS - 0·3.4 -0.006 

)'J G •• \ .. t $.(,2 

I 
D!/ 10 15 .19·9'l-'I 

I 
+ :;5.0 39 + O~':.!5 - 0.116 0.0<» 19·1>~ 

10 !6 SS.69S .•. 27).2,)4 + 0·433 - ".IIG 0.000 

1>1 (2) r>, (,.) 

z.S IS 

9·,; -II 

:r.~ u 

z.6 10 

1·4 9 

7.6 40 

1·4 6 

2.1 13 

2 .. ; 16 

4.6 21 

:Z.o 10 

5.6 SO 

3.6 ZJ 

1·9 II 

1.2 5 

2.5 II 

:;·9 19 

2·9 IS 

1.8 10 

1·4 6 

1.0 4 

I.,: 7 

9·:; 49 

4·-1 zo 

1·4 ,. 
1·9 S 

4., IS 

I., 9 

9·! 39 

s·.:! IS 

I 
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EQUINOX AND EPOCH 1950.0 AND 1975.0 

.-
li 

,111 d:') 
I" 

dl,I 
EI" (J) 711 ("> ,n (,,') GC N30 

dT' ! iii>! 'rii 

US3 +JSo 5';' 53~4l - 16SI!!91 -13!JI - l!i6· -0!01 26.00 '4·0 26 Int-!- 2335 
+18 47 57.86 -1665·53 -13. 17 - ,.j6 -0.01 

-62 16 3" .. ;% -1650.65 - 6.36 + 0·33 +C.02 11.64 5·9 :15 13.162 233'> 
-62 23 31·9S -1663.82 - 6·33 + 0·33 +0.02 

+46 IS 18.ll -1677.S:, -15.36 - 9.53 -0.18 19.20 3.2 12 13';97 :1345 
+46 8 li.i2 - 1685.44 -15.14 - 9·S6 -0.17 

u.ss 

+59 16 30.31 -1693.85 -16 . .;8, - 15-55 +0.30 09·5' 2.2 8 13540 2355 
+59 9 25.83 -17°2.02 -16.20 - 15.48 +0·:19 

-( o 29.53 -1687·48 -11·59 - 3.18 0.00 17·74 2·4 13 13558 2357 
-4 7 32•11 -1693-25 -11·48 - 3.18 0.00 

370 

-45 57 33·54 -1684·48 - 8·i6 + 3.03 +0.03 20.6') 7.2 40 13574 2362 
-46 4 35.21 -1688.s,. - 8.71 + 3.0'; +0.03 

+26 14 36•08 -1696.01 -12·94 - 5·99 +0.12 08.03 2.1 8 13590 :l36.; 
+26 7 31•2 i -17°2·44 -1%·i9 - 5.96 +0.12 

371 

373 -18 46 18.u -1706.39 -10.51 - 4·22 +0.03 21.81 3.8 21 136.&4 2367 
-18 53 25-34 -17".52 -10,42 - 4·21 +0.03 

- 7 24 26·90 -17°7.41 -11.01 - 0.11 +0.01 24·43 4·1 26 13674 2371 
-7 31 34·44 -1712•89 -10·90 - O.ll "0.01 

1257 

"73 7 P7 -1712.77 -19·98 - 4.05 +0.13 14-8, 2·5 12 13684 2373 
+7:1 59 5i·74 -1722•63 -19·45 - 4·0:1 "0.13 

372 

"41 17 40.83 -1714.6') -13·5:1 - :1·91 +0.08 16-42 :l·7 lZ 13700 :1376 
+41 10 31.32 -1721.40 -13·33 - 2·89 .. 0.08 

~j4 

-S.J 19 44.86 . -1713.48 - 7·59 + 0.46 +0.01 10.61 4.6 22 13711 237'1 
-54 26 53.70 -1717.26 - 7·55 + 0·46 +0.01 

375 

-35 39 3.66 -1723.64 - 9.21 - 2.41 +0.06 19·37 4-5 :z6 13741 2387 
-35 46 15.14 -1728.23 - 9.15 - 2·39 +0.06 

377 

+ 3 37 28.41 -1721·34 -11.20 + 1.6') +0.03 19.14 3·3 16 13746 2389 
+ 3 30 Ij·38 -1726.91 -1I.oS + 1·70 +0.03 

+8 17 5-76 -1727.67 -11·39 - 2.6.J +0.02 09.71 1·9 7 13755 2390 
+8 9 53.13 -1733·33 -1l.26 - :l.64 +0.02 

+32 10 13.66 -177°·84 -12.25 - 43.32 +0.32 17-73 3.2 13 13763 :l391 
+32 2 50.19 -1776.92 -12·09 - 43.24 +0.32 

+54 8 4·53 -1742.04 -14·00 - 0.66 +0.02 26.'7 44 .6 13827 2397 
.+54 o 4S.15 -1748.gS -13.76 - 0.66 +0.02 

1259 

-24 :I 3-\.25 -1742.75 - 9·5-\ + 1.83 +0.06 18.20 4.0 :6 138.;8 '402 
-24 9 50·53 -1747·5° - 9.46 + 1.85 +0.06 

1260 

1261 -12 49 'j·50 -1746.4= -.0.05 + 0·95 +0.0% 12·09 2·7 14 13861 z¥>8 
-12 5634-73 -175'.42 - 9·95 + 0.96 +0.02 

+17 o 26"7 -1756.12 -11.12 - 0.58 0.00 13.83 :l.2 9 13899 :l41:1 
+ 16 53 6.45 -176,.65 -10·99 - 0.58 0.00 

379 

+u 12 44.54 -1759·9' -10·70 + 0.26 +0.12 01·35 ··7 5 13926 24'4 
+12 5 23·90 -li65·23 -10·57 + 0.29 +0.12 

-12 6 22.55 -1779·73 - 9·57 - 9.46 +0.10 14·0 j :l·3 II 13982 2424 
-12 13 48.08 -li8.;·49 - 9·47 -:- 9·44 +0.10 

-69 47 :!J·35 -1787-70 - 4.30 + 0.29 +0.04 12·97 4·6 23 14074 2434 
-69 54 4"·54 -1789.84 - 4.27 + 0·3° +0.0.0 

-41 52 25.23 -1784047 - 7.86 + 3·84 +0·09 14.27 4·7 22 14076 ::1435 
-4' 59 51•84 -li88.39 - i.SQ + 3.86 +0·09 

+23 40 1-9~ -1794·55 -10.48 - 1.21 -0.01 '5·37 2.2 10 14107 ::144° 
+%3 32 3~·65 -1799·75 -10·33 .- 1.21 -0.01 

+43 953·H -179~29 -11.32 - 4.26 +0.10 06.91 2·4 S 14113 244% 
+43 2 23.:6 -· ISo3·90 -11.13 - 4.24 +0.10 

.:62 +65 %1 31.58 -1;96·54 -13.65 - 1.19 +0·09 13.14 ].0 12 14123 '445 
.. 65 14 I.h-;) -IS"3·30 -13-36 - 1.17 +0·09 

.. - 7 49 6.;8 -1798.22 - 9.18 - 010 +o.Oj 16.67 2·7 IS '4129 2446 
-7 56 36.91 -1~":·iS - 9·07 - o.oS +0,"7 

-61 .. 5j·O'\ '-17~~.~t; - 6.04 + o·~9 +o.o~ 13.8., 5·9 :l4 14133 2448 
.. 61 I: 25. 1; -11'::>1·:-7 • ... 6.00 + 0.30 ..... O.Ol I -·as H =9·0~ I ~1;9"·92 I - S.41 I 01- 0.8S ·to.OI 19."') 4·5 25 14144 =45° 
-28 51 39·5·!· ":&-'1. 1 1 ! - S·';3 I + 0.5S ;C.OI I I I 
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APPENDIX D 

EXCERPT FROM APPARENT PLACES OF FUNDAMENTAL STARS 

APPARENT PLACES OF STARS, 1981 

AT UPPER TRANSIT AT GREENWICH 

---·--T---------------r--------------.--------------~---------------

No. 

Name 

Mafl·SpeeL 

U.T. 

d 
1 -7.8 
1 2.1 
1 12.1 
1 22.1 
2 1.1 

:2. 11.0 
2 21.0 
3 3.0 
3 12.9 
3 22.9 

4· 1.9 
4 11.9 
4 21.8 
5 1.8 
5 11.8 

5 21.8 
5 31.7 
G 10.7 
I; 20.7 
6 30.6 

1 10.6 
7 20.6 
1 30.6 
8 9.5 
8 19.5 

8 29.5 
9 8.5 
9 18.4 
9 28.4 

10 8.4 

10 18.3 
10 28.3 
11 7.3 
11 17.3 
11 272 

1261 379 380 381 

" Hydrae Tlleonis IX Leonis 
(Regulus) i. Hydraa 

4.7.2 SS 3.58 AOp 1.34 88 3.83 KO 

RA Dec. R.A. Dec. R.A. Dec. RA Dec. 

b m 0' h mOl h m 0' h m ", 
1004 -1258 10 06 + 16 50 10 01 + 12 03 10 09 -12 15 

S + JOO 
11.861 .~ 
12.145 .. 252 
12.397 + 2C9 
12.600 .. 166 
12.772 

.. 116 
12.888 .. 67 
12.955 • 21 
12.976 _ 24 
12.952 _ 61 
12.001 

- 89 
12.802 _ 115 
12.687 _ 128 

12.559 137 
12.422 -
12.282 - 140 

'2.148 - 134 
- 128 

12.020 _ 115 
11.905 _ 99 
11.806 _ 83 
11.723 

- 63 11.660 _ 39 
11 621 _ 17 
11.604.. 9 
11.613 .. 38 
11.651 

.. 66 
11.717 .. 89 
11.816 .. 131 
11.947 .. 165 
12.112 .. :<Dl 
12.313 

.. Zl2 
12.545 + 264 
12.809 .. 230 
13.COO .. :lOO 
13.408 .. 323 
13.731 

14.55 
16.94 
19.34 
21.67 
23.87 

25.90 
27.70 
CJ.27 
30.57 
31.59 

-23) S .. 3Zl 
-m 17.535 .. 304 

-240 
-233 
-220 

-203 
-100 
-157 
-130 

17.839 • 273 
18.112 + 232 
1 S".344 .. 187 
18.531 

.. 136 
18.~7 .. 84 
18. i51 .. 35 
18.786 
18.774 - 12 

-102 18.722 - 52 

,",,, - n 
"".36 • 49 
32.85 _ 24 
33.09 _ 1 

33.10 
32.86 

.. 24 

- 64 
18.638 _ 111 
18.527 _ 126 
18.401 _ 134 
18.267 _ 139 
18.128 

32.40 
31.74 
30.88 
29.86 
28.70 

27.42 
26.09 
24.71 
23.36 
22.00 

20.94 
19.99 
19.29 
18.87 
18.80 

+46 
.. 66 

-as 
-102 
+116 

17.997 = :~ 
17.874 _ 110 
17.764 
17.674 - 90 
17.601 - 73 

+128 - 50 
+133 17.551 - 26 
.138 17.525 - 4 
+135 17.521 ... 24 
-127 17.545 .. 50 

17.595 
+115 .. 78 
.. 9S 17.673 .. 111 
.. 10 17.784 .. 141 
.. 42 17.925 • 173 

18.098 .. 2C8 
18.306 

.. 7 

76.96 
75.60 
74.48 
73.64 
73.08 

72.82 
72.84 
73.08 
73.54 
74.14 

-157 2'"350 • 317 
-136 . • 297 
-112 21.647 .267 
_ 84 21.914 ~ 226 
- 56 22.140 • 182 

22.322 
- 26 .. 1!2 
.. 2 22.454 ... 81 
_ 2~ 22.535 .. 35 
• .:s 22.570 - 13 
.. &l 22.557 - 50 

22.507 

74.85 : ~ 
75.63 + 79 
76.42 
77.20 

·78 
.. 74 

- 82 
22.425 _ 100 
22.317 _ 123 
22.194 _ 131 
22.063 135 
21.928 -77.94 

78.60 
79.18 
79.66 
80.03 
80.30 

80.44 
80.44 
80.32 
80.04 
79.60 

., 66 .• ;28 
.. 58 21.800 - 120 
.. 48 .21.680 - 107 
... 37 21.573 - 90 
• 27 21.483 - 72 

21.411 
.. 14 21.361 - 50 
+ 0 - 27 
.• 12 21.334 - 6 
- 28 21.328 .. 21 
- 44 21.349 .. 48 

21.397 

35.65 
34.10 
32.75 
31.65 
30.81 

30.26 
29.97 
29.92 
30.10 
30.44 

30.92 
31.51 
32.16 
32.83 
33.51 

34.16 
34.78 
35.34 
35.84 
36.27 

-171 S - :m 
-155 39.573 237 
-135 39.800 : eli 
-110 40.115 • 215 
_ 64 40.330 • 170 

4O.ECO 
'" -- 40.622 • lZ2 

- ~ oj. 72 
- 5 40.694 • 27 
• 18 40.721 _ 19 
• 3' 40.702 _ ::0 

40.647 
·48 ·-84 
• 59 40.563 - 110 
_ €C 40.453 - l:iS 

• 67 40.328 - 134 
• €a 40.194 - 138 
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