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PREFACE 

The purpose of these notes is to give the theory and use of 

some methods of computing the geodetic positions of points on a 

reference ellipsoid and on the terrain. Justification for the first 

three sections o{ these lecture notes, which are concerned with the 

classical problem of "cCDputation of geodetic positions on the surface 

of an ellipsoid" is not easy to come by. It can onl.y be stated that 

the attempt has been to produce a self contained package , cont8.i.ning 

the complete development of same representative methods that exist in 

the literature. The last section is an introduction to three dimensional 

computation methods , and is offered as an alternative to the classical 

approach. Several problems, and their respective solutions, are 

presented. 

The approach t~en herein is to perform complete derivations, 

thus stqing awrq f'rcm the practice of giving a list of for11111lae to use 

in the solution of' a problem. It is hoped that this approach Yill give 

the reader an appreciation for the foundation upon which the f'ormul.ae 

are based, and in the end, the formulae themselves. 

The notes evolved out of lecture notes prepared by E.J. 

Krakiwsky and from research work performed by D.B. Thomson over recent 

years at U.N.B. The authors acknowledge the use of ideas, contained in the 

lecture notes, of Professors Urho A. Uotila and Richard H. Rapp of the 

Department of Geodetic Science, The Ohio State University, Columbus, 

Ohio. Other sources used for important details are referenced within 

the text. 

The authors wish to acknowledge the contribution made by the 

Surveying Engineering undergraduate class of 1975 to improving these 
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notes by finding typographical errors. Mr. c. Chamber~ain is particular=b' 

acltnow~edged for his constructive criticism, and assistance in preparing 

the manuscript for publication. 

E.J. Kraltiwsky 

D.B. Thomson 

February ~4, 1974 
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INTRODUCTION 

The first three sections ot these notes deal with the com

putation of geodetic positions on an ellipsoid. In chapter one, a 

review of ellipsoidal geometry is gi-ven in order that the development 

of further formul.ae can be understood ~. Camnon to all of the 

classical ellipsoidal computations is the necessity to reduce geodetic 

observations onto the ellipsoid, thus an entire chapter is devoted to 

this topic. 

Two classical geometric geodetic computation problems are 

treated; they are called the direct and inverse geodetic problems. 

There are various approaches that can be adopted for solving these 

problems. Generally, they are classified in terms of "short" , "medium" , 

and "long" line formulae. Each of' them involve different apprax:!ma

tions which tend to restrict the interstation distance over which some 

formulae are useful for a given accuracy. 

The last section of' the notes deals with the camputation of 

geodetic positions in three dimensions. First, the direct and inverse 

problems are developed, then two special problems - those of azimuth 

and spatial distance intersections - are dealt vith. These solutions 

offer an alternative to the classical approach of geodetic position 

computations. 
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SECTION I: ELLIPSOIDAL GEOMETRY 

~~ The\Ellipsoid.of Rotation 

Since an ellipsoid of rotation (reference ellipsoid) is 

generallY considered as the best approximation to the size and shape 

of the earth, it . is used as the surfa~e upon which to perform ten-estrial 

geodetic· computations~ Immediate~;- be.lw we study several. geometric properties o:f 

an ellipsoid of rotation that are of special interest to geodesists. 

In particular, the radii of curvature of points on the suf'ace of the 

ellipsoid, and some curves on that surface, are described. 

~. ~ Ellipsoidal Parameters 

Figure ~ shovs an ellipsoid of rotation. The parameters of 

a reference ellipsoid, which describe its size and shape, are: 

i) the semi-major axis, a, 

U) the semi-minor axis, b. 

The equation of any meridian curve (int~section of a meri~im plane with the 

ellipsoid surface,(Figure 1), is 

2 2 
X Z -+-=1. 2 2 
a b 

(1) 

(la). 
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Figure 1 

THE ELLIPSOID Of ROTATION 
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The points F and F' in Figure 1 are the f'ocii of' the meridian 

ellipse through points P, E' , P', E. The focii are equidistant from the 

geometric centre (o) of the eJ.lipse. The distances PF and PF' are equal 
-

to the semi-major axis a. This information is now used to help describe 

further properties of an ellipsoid. 

The ellipsoidal (polar) flattening is given by 

a-b f=-. a 
{2) 

Two other important properties, which are described for a 

meridian .s.ec.tion of'·. the: ellipsoid are .the first· eccentricity 

, 

and the second eccentricity 

2 2 
1 2 a -b 

e = 2 . 
b 

{3) 

(4) 

As an example of the magnitudes of these parameters for a 

geodetic reference ellipsoid, we present here the values for the Clarke 

1866 ellipsoid, which is presentJ.T. used f.or most North Americ~ ·geodetic 

position computations [Bomford,. 1911, p 450]: 

a = 6378206.4 m, 

b = 6356583.8 m. 

f' = o. 0033900T ••• 

which is often given in the form 1/f', which in this case is 

1/f' = 294.97.869 ••• 

Us-ing (3) anti---(:.4} .res-pectiveJ.T,- we get . 

e2 = o. oo676865 ••• , 

e• 2 = 0.00681478 .... 
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The four parameters a., b , e (or e' ) and f, and the rela.tionships 

amo.ng them, are the principa.l ones used to develop fu.-...t;her geodetic 

formulae. 

1.2 Radii of Curvature 

On the surface of an ellipsoid, an infinite number of planes 

ca.n be drawn through a point on the surface which contains the normal. at 

this point. These pla.nes are known as normal planes. The curves of 

intersection of the normal planes and the surface of the ellipsoid are 

called normal sections. At each point, there are two mutually perpen-

dic:ular normal sections whose curvatures are maximum and minimum, which 

are called the principa.l norm.a.l sections. · These principa.l sections are 

the meridian a.nd prime ver.tica.l normal sections, and their radii of 

curva.ture are denoted by M and H respectiv~ (Figures 2 and 3). In 

Figure 2, it can be seen that the meridian radius of curvature increases 

f'rom the equator to the pole, and the prime vertical radius of curva-

ture behaves similarly (Figure 3). The reasons for this will be seen 

shortly onee the formulae for M and 11 have been devel.oped. 

1. 2.1 Meridian Ra.dius of curvature 

Consider a meridian section of an ellipsoid of rotation 

(Figure 4) given by 

(1) 

The radius of curvature of this curve, a.t any point P, is given by 
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Tangent plane 

Figure 2 

MERIDIAN NORMAL . SECTION SHOWING THE MERIDIAN 

RADIUS OF CURVATURE (M) 



,_,_ 
/ 

. -----,.,..--

Fig·ure 3 

1 

plane 

: PRJME "VERTICAL NORMAL SECTION· ·SHOWING THE PRIME 

VERTICAL RADIUS OF CURVATURE (N) 
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[Philips,l957 , pp. 194-197] 

d 2 3/2 
(1 + (-!.) ) 

M = __ ....::dx=----
"d2 ..;,...!. 

dx2 

In the ce.se of a meridian ellipse 

dz X b 2 -z---dx z 2 ' a 

and 

or 

(5) 

(6) 

(7) 

(7a) 

From. Figure 4, we can also see that the sJ.ope of ·the tangent to P is 

given by 
tan(90++ )=-: = - cot + • 

Equating { 6) and { 8) gives 

or 

Substituting 

in. (9ai, ;y:ie~d's 

X b2 
-cot+=-z-2 

2 a 
tan • = 2 

b 

a 

z 
X 

2 z = x(l-e ) tan $ 

(8) 

{9) 

(9a} 

(9b) 

(10) 

Then~ after replacing b and z in (1) with (9b) and (10) respectively, 

sca:te simple manipuJ.ation resuJ.ts in 
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z 

' ' ' ' IO+t 

' ' --~~----------------~~~~~------4-----~--~~~) 
/~ . ..) ____ _ I· 

MERIDIAN RADIUS OF CURVATURE (M) 
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(ll) 

Substituting the above expression tor x in equation (10) gives the 

formula 

(12) 

Finally, replacing x and z in (6) and (7a), and placing these 
2 

values in ( 5) tor : and d ~ , the expression tor the meridian radius 
dx 

ot curvature becomes 

(13) 

In equation (13), the o~ variable parameter is the geodetic 

latitude .p, thus at the equator ( .p = 0° ) , 

2 M • a(l-e ) , (l3a) 

and at the pole" (.p = 90°), 

M • a/(l-e2>112 (13b) 

~~-~ ·-The meridian radius of curvature increases in length as the point 

on the meridian moves from the equator to the pole. 

1.2.2 Prime Vertical Padius of QlrVature · 

From~~ 5,. 

or 

X 
cos .p = N , 

N = ..... x--.._ 
cos • 

(.:.4) 

(14a) 



ll 

z 

· FJg.ure 5 

PRIME VERTICAL RADIUS OF CURVATURE--(~) 



12 

Substituting the expression for x ~ll) in {14a.) yields the 

. expression for the ra.dius of curvature in the prime vertical, 

{15) 

Since the only va.riabJ.e parameter in (J.5) is <fl, N -.then varies with--+· When 

+ = 0° (equator}, N =a., and when+= 90° (poles}, 

2 1/2 
N = a./ (1-e } = M • (15a) 

An important quantity that is used very often in geometric 

geodetic computations is the Gaussian Mean Ra.dius of CUJ:V'ature, which is 

given by 

R=lim -I (J.6) 

In m.a.ny instances, the mean ra.dius is sufficiently" accurate for position 

cc:mputations. 

Another ra.dius of curvature· that may be needed :f'rom time to 

time is that of a parallel. of latitude. Any parallel. of latitude, 

viewed from the north pole of the ellipsoid ( z axis) , describes a 

circJ.e. Its ra.dius, as can be seen in Figure 5, is equal to the x

coordinate (in the meridian pJ.ane x'- z system}. Then, from equation 

(14a.), the radius of curvature of a para.lJ.eJ. of latitude is given by 

(. R . = N cos. + • (J.7) - t . . 
0 

It is easily seen that when + = 0 (equator) , R<fl = N, thus R+ = a (since 

N = a at + = d'J , and at either poJ.e ( • = 90° ) , cos • = 0 and the radius 

disappears. 
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l. 2. 3 Radius of Curvature in Any Az:ill1uth 

As has been shown in Sections 1.2.1 and 1.2.2, the maximum and 

min:ill1um. radii of curva~ure of any point P on the surface of an ellipsoid 

o-r rotation lie in the meridian and prime vertical planes. 

In some instances, geodetic ccmputations require the radius of curva-

ture in a plane other than the princi:Pal ones (Figure 6). The normal 

section in some asimuth a has a radius of curvature at any point P 

designated by R • 
a It is solved for using Euler's Theorem [Lipschutz, 

1969, pg. 196], and is called Euler's radius of curvature. 

In Figure 6, the point P at which the radius Ra is required, 

is shown on the normal section PP'. Only a differential part of the 

normal section curve (ds) is shown, since the azimuth a of this small 

section is equivalent to the azimuth of a normal section of &QT length. 

Euler's theorem is solved as follows. At the point P, we 

draw a tangent plane, and parall.el to it, another plane (Figure 7) 

that intersects the surface of the ellipsoid. The latter plane, 

viewed al.ong the D.Orma.l through P, forms an ellipse in the plane BB' 

where the tangent plane intersects the ellipsoid surface. The elements 

ot this "indicatrix" are shown in Figure 7. It we view this plane 

through the point P', in the azimuth a,- the resulting section: is Figure 

8: Recall that the equation of an ellipse is 

(1) 



l~ 

z 

-~ .. 

··Figur• I 

. :· NORMAL SECTION AT ANY AZIMUTH C1 
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p 

• 

.-~~~~--~_,======~======~~X 
m 

Figure 7 

INDICATRIX FOR SOLUTION OF Ru 



p 

Figure 8 

SECTION ~LONG . PP1 ( ct} FOR SOLUTION OF Ra~ 
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From Figure 7, 

x = ds sin a 

y = ds cos a , 

Then (1) becomes 

2 2 2 2 
ds sin a + ds cos a = 1 2 2 . 

m n 

Using Figure 9, ve can write 

and 

which results in 

sin e= .!. , 
c 

1 -c 
sine=L R , 

a 

(17) 

(18) 

(20a) 

(21) 

Since PP' is a very small differential distance, then C : ds, and ve 

can write 

When a = 0° , s equals n and 

2 
z = ~, 

and when a = 90° , s. equals m and 

2 
m 

z = 2i . 

Combining (22) and (23), and (22) and (24) yields 

and 

(22) 

(23) 

(24) 

(25). 

(26) 



Figure 9 

SOLUTION Of Z FOR S01.UTJON OF Ret. 
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Substituting n2 and m2 in (18) gives 

2 2 
Ra sin a Ra cos u 

l'l + M = l . (27) 

Finally, after rearranging the terms of ( 27) , we get the expression for 

the Euler radius of curvature, 

R = _._.;,;MN:;:----~ 
a M sin2a + N cos2a 

1.3 Curves on the Surface of an Ellipsoid 

(28) 

There are two principal curves on the surface of an ellipsoid 

that are of special interest in gecmetric geodesy. They are the normal 

section and geodesic curves ~escribed below. 

1. 3.1 The D:ormal Section 

In Section 1 •. 2, the normal section vas defined as the line ot 

intersection of a normaJ. plane (at a point P) and the surtace of the 

ellipsoid. Consider tvo points on the surface of an ellipsoid (P 1 and 

P2) which are on different meridians, and are at different l.atitudes. 

The normal section fran P1 to P2 (direct normal section), is not 

coincident with the normal section fran P2 to P1 (inverse normal section) 

(Figure 10). 

The normal pl.ane of the direct normal section, containing the 

points P1 , ~ and P2 , contains the normal at P1 , and the inverse normal. 

plane, P ?n2P 1 , contains the nc;;I'2IUil. at .P 2 ~d the pGint P 1 • It· the normal sec

tions PiP 2 ·and P 2P 1 were c~ncident, then . the normal.s· -p 1 n1 and P 2n2 , in their 
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-- ......... 
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·Figure 10 

RECIPROCAL NORMAL SECTIONS 

' ' 
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respective meridian planes, would intersect the minor axis at the same 

point. It can be shown that the intersection point z of an:r ell.ip-
. n 

soidal normal section intersects the minor axis at ;· {Zakatov, 1953; p. 39-40] 

2 
z = ae sin +p 

n (l-e2sin2+ ~1/2 

If tw· points have different··longitudes, and 

10} , then Z < Zn...., and the normals p1 n and p2n 
n~ -.:::: P1 P2 

(29) 

+ < + (Figure 
pl p~ 

do not ~ie in the 

same p~ane. They are said to be skew-normals. However, if + equals 
Pl 

+p2 , the direct and inverse normal sections are coincident. 

- For two points on the same meridian, the ellipsoi~ normal.s 

do not intersect at the same point on the. minor axis. They are, however, 

in the same plane (the common meridian ·plane) , thus the normal sections 

P1P2 and P2P1 are coincident. 

The result of the aforementioned is that on the surface of the 

ellipsoid, the normal section does not give a unique line between two 

points. Thus, an ellipsoidal triangle is not uniquel.7 det'ined by-

normal sections. In Figure 11, the direct normal section from A to B, 

AaB, is not -coincident vita the· inverse normaa .-sec:tion BbA. 

Thus , the geodetic azimuth a A does not refer to the same curve as does 

~· Similar problems exist for the azimuths A to C, B to C, etc. 

We now ~ook briefly at- the magnitude of the separation between 

direct and inverse _ normal sections. In Figure U, this separation is 

shown as the angle !i.. · The formula for the so~ution of !i. is given by 

[Zakatov, _~953, p. 5~] 

1- 2 2 2 
!i." =·p"(-4 e a cos + sin 2ap ) , 

m ~2 
(30) 
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_·- Figure 11 

RECIPROCAL NORMAL SECTION TRIANGLE' 
- ' 
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z 

Figure ·12 

ANGULAR SEPARATION BETWEEN RECIPROCAL NORMAL SECTIONS 
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where 

(31) 

and 

and 

(31a) 

For example, a line P1P2 , which is 200 km in length, and for maximum 

conditions (~ = 0° and a-2 = 45°), A= 0~36. Since most traverse or 
lll:" J:l 

tria.ngul.ation lines are shorter than this, and since the maximum situation 

will not alwqs occur, the value of ·A is generally' quite small, and in 

most instances, practically' negligible. 

1.3.2 The Geodesic 

The geodesic, or geodetic line, between 8JlY' two points on the 

surface of an ellipsoid, is the unique surface· curve between the two 

points. At every point along the geodesic, the principal radius of 

curvature vector is coincident with the ellipsoidal normal. The 

geodesic (Figure 13), between two points P1 , P2 , is the shortest surface 

distance between these two points. The position of the geodesic with 

respect to the direct and inverse normal sections is shown in Figure 13. 

To describe the geOdesic mathematically', we will develop the 

differential equations for geodetic lines on a surface of rotation. 

The basic differential geometry required· for this can be found in 

,; ,:;ni.~ps· Fi9'~j"f."~!;:~p_schUt~~;.[i9o9].The general equation for a surface . 

of JK~tation can be expressed as 
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Figure .13 

GEODESIC 
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v.(_~, v ... ) - 0 .. - _..... J , ... - • 

The parametric equations for a. geodesic on this surface are 

z = f'3 ( s) • 

The direction cosines of the nor.mal to the surface are 

.2£:. 
cos 13 = .2L. 

2 D 

where 

aF 
dZ 

cos e3 = n ; 

(32) 

(33) 

(34) 

(35) 

The direction cosines of' the principal normal to the curve (33) are 

2 2 
cos a11 = R ll ; cos BN = R ll ; 

1 ds2 2 as2 

2 
cos s11 = R ~ ; 

3 ds2 
(36) 

where R is the principal r8.dius of' curvature of' the surface. 

In the definition of' the geodesic, it was stated that at 

every point on the curve, the normal to the surface and the principal 

radius vector (principal normal-) are to be coincident. To satisfy 

this, we equate (34) and (36), which reduces to 

!!. 1!. 2!. 
~ = !z.....:.iL 
d2x d2y d2z 

ds2 as2 ds2 

(37) 

Since we are dealing with an ellipsoid of rotation, the sur-

face of which can be represented by the equation 



Then 

3F ax= 2:x, 

27 

2 2 x + y + f(z) = 0 • 

3F f' (z) , az= 
which when p:Laced in ( 37) yie:Ld.s 

Integration of ( 40) yie:Lds 

ydx - xdy = Cd.s , 

where C is th..: constant of' integration. 

(38) 

(39) 

(40) 

(41) 

In Figure 14, the :Line PP' represents a dif'ferentia:L part of 

a geodesic on the surface of the ellipsoid. Having the Cartesian coor

dinates of P (x, y, z) , we can compute· the coordinates of P' , 

(x~+ dx, 7 + dy, z + dz), since d.s is a verT smalJ distance. The 

coordinates of A (projection of P' into the plane of the para:L:Le:L of 

latitude of P) are then x + dx, y + dy, z. The radius of this para:L:Lel 

is denoted by r. The area of triangle CPA is 

Area CPA = ~ (7dx - xdy) 

and the area of the sector PP"C is 

Area PP"C = 1 rds sin a • 
2 

When ds is very sma.ll, 

thus 

Area CPA = Area PP"C , 

1:. (ydx - xdy} = 12. rds sin a , 
2 

and substituting (41) in (44) yields 

(42) 

(43) 

(44) 



z 

. ·X 
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... . . . 

1 (X~ Y+dy, Z +dz) 
I 
I 

Figure·. 14 

. DIFFERENTIAL EQUATION OF A· GEODESIC ON THE SURFACE 

OF. AN ELLIPSOID OF ROTATION 



Cds = r sin ads , (45) 

or. 

r sin a = c· • (46) 

Finally, substituting ( 17) in ( 46) , we find that 

I N cos + sin a • C J (47) 

tor ~ pnint along a geodesic on the surface of an ellipsoid of rota

tion. 

In geometric geOdetic computations, it is necessar,y to define 

our direct and inverse azimuths with respect to the same surface curve, 

and not with respect to the two normal sections. Thus we need the 

separation between the normal section and geodesic curves. The sepa-

ration, stated here without proof, is given by [ZakatoV', 1953, pp 41-45] 

(48) 

where . ~ is the angle between the direct normal seCtion and the geodesic 

at any point, and A is the ~e between the reciprocal normal sections 

. between two points. Further development of this, and ·the application of 

appropriate corrections~ are given in 2.1.1. 

Further, the distance s between two points on the surface of 

an ellipsoid is different if one uses a normal section rathF·t' than the 

geodesic. The difference is given by [Zakatov, 1953, p. 51] 

ae4 . 2 4 5 As = - SJ.ll 2a cos ;p a ( 49) 360 12 m· ' 

which for a l.ine 600 km in length amounts to approximately 9 x 10-6 m, · 

which is obviously negligible for all practical purposes. 
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SECTION II. REDUCTION OF TERRESTRIAL GEODETIC OBSERVATIONS 

2. Reduction to the Surface of the Reference Ellipsoid 

Geodetic measurements (terrestrial directions, distances, 

zenith distances} are made on the surface of the earth. Classical computations 

ot geodetic positions are made on the reference ellipsoid. Therefore, 

measurements must be reduced from the surface of the earth to the 

reference ellipsoid. When reducing measured quanti ties, there are two 

sets of effects to be considered - geometric effects and the effect of 

the variations in the earth's gravity field. 

It should be noted that the reductions developed herein can be 

applied in an inverse fashion. That is , canputed geodetic ellipsoidal 

quantities (distances, for instance) can be "reduced" up to the -earth's 

surface (2.4). 

2.~ Reduction of Horizontal Directions (or Angles) 

When we measure directions on the surface of the earth, we 

level the instrument to ensure that the vertical axis is coincident with 

the ~ocal gravity vector. We know that the local gravity vector and the 

normal to the ellipsoid are not generally coincident. To refer directions 

to the ellipsoidal normal, a correction for the deflection of the vertical 

is needed. 

Two other considerations are those of ellipsoidal geometry. 

First, the- normals at two points on a.n ellipsoid a.re "skewed" to each 

other, thus when a target is above the ellipsoid, this point is not in 

the same plane as the normal projection of the target onto the ellipsoid. 
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The correction associated with this phenomenon is called the skew-normal. 

correction. sS:~dl.y', we wish to have geodesic directions, and not normal. 

section directions, thus a normal section-geodesic correction is needed. 

2.1.1 Geometric Effects 

Figure lc shows the situation on the earth's surface for 

direction measurements, after the effects of gravity have been removed 

(2.1.2). In this figure, Pi is the measuring station, which is on the 

normal P 1 ~. Point P 2 is the target at height ~above the ellipsoid 

point P 2 • If h 2= 0, the direction measured {shown here as an azimuth, 

i.e. a12 = ~ + z12• where z12 is the assumed known orientation par

ameter) would be between planes P 1 zn1 , and P 1P 2~, that is a12, ~he 

direct normal section azimuth. Since h ; ·a in practice, the mea:sured 

direction a12 must be corrected. The reduction for this effect, 
meas 

called the skew normal or heisht of target reduction, must be applied. 

From (29) 

(50) 

and 

(51) 

~ +M2 
where M = , we get m 2 

(52) 

where s is the arc length P1P2 • 

Now to derive the reduction 5h,we .. p':'oceed as follows. First, 

ccmpute 
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2 s· 2. = ae M cos a12cos +2 
m 

(53) 

where +m has been replaced by +2 since the differe~ce will give a 

negligible effect. Then, the angle at P2 is given by 
2 2 ae s cos a12 cos +2 da = ___________ ;::. 

(54) 

. -
Now, if we approximate the length P2R by the semi-major axis a, (54) 

becomes 

2 ~ 2 
da = e Hm cos a12cos +2 (55) 

We now compute P~2 by- using (55) as 

Then for triangle P~P2P'2 we can write, (assuming a plane triangle) 

(56) 

which finally gives us, after some manipulation, the final formula for 

the skew-normal correction 

(57) 

When +2 = 45°, and ~= ~00 m,.; ~ 1900 -m, .. ~h: equals 0~008 and 0~05, 

respectively. Obviously, there will be instances where the 

effect is significant , and must be taken into account. This is 

particularly true for higher order geodetic position computation work. 
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The second geometric effect to consider in direction measure-

ment reduction is that of the difference between the normal section, to 

which we have nov reduced our measurement, and the geodesic. This 

correction, which is derived simply" by combining equations (30) and {48) 

is expressed as 

2 2 . 2..., in 2 
(e s cos ~ms a12 

6:" = p" _2 ) • 

g 12~ 
{58) 

where s is- in metres. 
When • = o" m , a12 = 45°, and s = 200 km, 100 km and 50 km, 

6 is 0'!12, 0'!02 and o'!oo6. This effect ·coU.lcf:.l)e:::sigrlficant. and shoul.d be g 

taken into account tor geodetic work. 

Sc:ime final points regarding these geometric effects are noted 

immediately be1ov: 

1) In equation (57), the e11ipsoida1 height h mq be rep1aced 

by the orthaa.etric height H vi th no significant effect · (m. & · • . h 

2) In most cases, .Sh and 6g _will be of approximately equal. 

magnitude and opposite in sign. They shoul.d be ccmputed, however, 

particu1ar1y for precise geodetic position canputations. 

3) Equations (57) and (58) are ott en expressed in other ways , 

aJ.1 of which give equivalent resul.ts, but which mq inc1ude further 

approximations. As an exam.p1e, (57) may be expressed as [Bomtord, 1971, 

p 122] 

h ,.2 
~_:. -- _;2;;;;.._e_ i 2 2 ..., uh -2R s n a12 cos ~m , · 

and (58) as [Bamford,. 197~, p 124] 

6" = 
g 

(59) 

(60) 
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2.1.2 Gravimetric Effects 

A theodolite is levelled with respect to the local gravity 

vector and not to the ellipsoid nonnal. A correction for the angle 

(deflection of the vertical.) between the gravity vector and the ellip-

soid normal is necessary. Figure 17 depicts the correction that must 

be applied. This topic is covered in depth in [Vanicek, 1972, pp 164-

166] • We only state the reduction formula here as 

~ = -e cot z, & . 
= -tt sin a -n cos a12) cot z l l2 l 

, (61) 

where t is the meridian component of the· deflection of the vertical, n 

is the prime vertical component of the deflection of the vertical, and 

z is the zenith distance. The effect of this reduction can vary from 

an insiginficant amount (if e = 0 or if z = 90°) to values of the magni-

tude 2" - 3" when for instance e = 20" and z = 80°. 

To apply this correcti9n, and that required in 2.2, the 

deflections of the vertical at each point are required. These ~a.Tl be 

obtained in various ways. . A rigorous approach . is to observe ... the astronO!J!i.c 

coordinates· (t, A} at each station, which would be a difficult task. 

Alternately, one may utilize the results of a contemporary geoid cOmputation 

technique [Vanic~k and Merry, ;1973] , and compute t and n at each point • 
• 

2. 2 Zenith Distances 

The only effect on a zenith distance measurement is that of 

variations in the gravity field - that is, the deflections of the 

vertical. As in 2.1.3, we will only state the reduction formulae 

here as 
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where z is the measured value of the zenith distance. 
m 

{62) 

This topic is covered in [Vanicek, 1972, p 170, and Heiskanen 

and Moritz, 1967, pp 173-175], and will not be discussed further here. 

2.3 Spatial Distances 

In this section w~ treat the reduction of a measured spatial 

distance, on the surface of the earth, to the surface of the ellipsoid. 

After having made various instrumental and atmospheric corrections to 

the measured e.d.m. distance, we are left with a straight line spatial 

distance .t (Figure 18). This spatial distance is then reduced to the 

ellipsoid. The reduction is derived as follows. 

First, compute 

, (63) 

where E1_ and R2 are the Euler radii of curvature ( eqn. 28). Then, from 

triangle PiP20, the cosine" law yields 

(~) 

where 

(65) 
h = H + N , 2 2 2 

which are ellipsoidal heights, and are equal the sum of their respective 

orthometric heights {~ and H2) and geoid heights (N1 and N2 ). Replac

ing 

21. cos w = l - sin · 2 

in ( 64) , and rearranging tem.s yields 

(66) 
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(67) 

From triangle P1P2o, the cosine law and half-angle :t'or:nul.ae yield 

or 

Setting 

( 67). beccmes 

R. 
-1 0 v· =- 2 sin 2i 

Yb.ic:h when rearranged is 

P------------------, 
( 

. R.2~1Jh2 )l/2 • 
t • h n:;:; 

0 (l.4) (1:~) 
R R 

Nov, 

1 s • Rfl. 211 .in-1 ~ ·I 

(68) 

(68&) 

(69) 

(TO) 

(11) 

(72) 

• 'rhus, usins (Tl) and (T2), ve can reduce a spatial distance to the sur-

tace ot the ellipsoid. These tormul&e are sutticient~ rigorous tor 

current geodetic vork [Thcmson and Vanicek.,~,l973]. 

Note that tor a rigorous distance reduction the geoid 

height N is needed. There are various methods ot computing N', one of 

which is that developed at U.N'.B. fVanicek and Merry, 1973]. 

No mention has been made here regarding precise base lines. 

The reason for this ommission is that precise base lines are not being 

measured much aJ:J7 more, except tor EDM instrument calibration tor which 

reduction to the ellipsoid is not necessar.y. 
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Finall.:y, it should be noted that there are JDS.nY distance 

reduction formulae in use, some of which have been deve1oped for spec-

ific reference ellipsoids, or regions of countries. 

2.4_Reduction of Com~uted Geodetic Qu&ntities to the Terrain 

The situation often occurs in practice where computed geodetic 

quantities, namel.y distances and angles, must be measured on the terrain. 

These can not genera.ll.y be .com.psred directly rl th the computed values 
'-

since the latter are usually given on the surface of the reference 

ellipsoid, thus they must be "reduced" to the terrain. 

In . order to reduce the required angles, one proceeds as 

follows. First, compute the directions (azimuths) between the points 

involved. Then, using equations (57), (58) and (61), compute the 

quantities 6~, 6; and 6; respectively". These correcti9ns are -then 

applied to the caa.puted direction e11j, with .signs opposite- to those 

used for reduction to the ellipsoid, to obtain the direction that shou1d 

meas -be measured, a ij • Obviously", one woul.d not be ab1e to measure this 

direction (or angl.e) exactly" since it, and the measurement taken, will 

have some standard deviations. A similar procedure is used for distance 

reduction. A simple rearrangement of terms in equation ( 72) yields 

s 
10 = 2R sin 2R , (72a) 

and similarly (71) gives 

(71a) 

Thus, we can compute the terrain spatial distance 1 given the ellip-

soidal distance s • Once again, as with the directions, it should be 
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noted that both the computed spatial distance and the measured one will 

have some standard deviation meaning that an exact duplication of the 

computed distance by remeasurement will not be probable. 

It has been shown that the reduction ot geodetic angles and 

distances to the terrain is a straightforward process. Thus, when 

fa.ced with the problem of checking measurements on the terrain which 

a.re given on the reference ellipsoid, aame preliminary eamputations 

enables one to carry out the remeasurement task. 
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SECTION III. COMPUTATION OF GEODEriC POSITIONS 

ON THE REFERENCE ELLIPSOID. 

3..:.' Ptiiss·ant' s .Form.lll:a· - .... pho~ Lines 
' 

3.1 Introduction 

These formula are named after the French mathematician vho 

is credited with their development. Their derivation is based on a 

spherical approximation, thus they are genera.ll.y considered to be 

correct to l ppm at 100 km, beyond which they break down rapidly {40 

ppm at 250 km vhe~ + = 60° ) [Bamford, 1971, · p 134] . Thus, we say that 

Puissant's Formula is a "short" line formula. 

3.2 Direct Problem 

Given are the geodetic quantities +1 , .A.1 , s12 and ~ (Figure 19). 

We are required to compute the quantities +2 , .A.2 and B21• 

In this derivation, we first compute .,+2 • We obtain, for the 

spherical approximation, :f'rom spherical trigonometry (cosine lav) 

sin ; 2 = sin ; 1 cos {P1P2) + cos ; 1 sin{P1P2) cos a {73) 

sl2 
But P1P2 = T , and ; 2 = +1 + d;, and a= a12 since it is stipulated 

. l .. . 
that the meridians are in the same plane. Then 

sl2 sl2 = sin ; 1 cos ~ cos ; 1 sin T cos 
l l 

(112 • (74) 

. 
What is required now is to get an expression for d4>. From equation ( 74) , 

we can express the left hand side by 
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Expanding cos d+ and sin d+ in series (using the first tvo 

terms only) , we write 

and 

d!2 
cos d! - 1 - 2 . . . ' 

dt3 
sind+= d+- 6 ••. , 

. (T~) ~ 

then (75) becomes 
2 3 -~ 

{sin +1+.d+) = sin +1-sin +1 d~ +cos +1d+ - co~+ dg + .. (TT) 

. s12 sl2 
Taking the right hand side of {75), we expand cos -;y ~d sin -;y in 

. u1 u1 
a series (firs~ two terms only') : 

~ s2 
cos 111 = 1- ~ •·· , 

and .(78) 

After cancelling appropriate terms, and dividing ( 80) by cos +1 , the 

· '- -exp~ess.ion :f'or d+ is 

.!3~ 8 i2 . 8~ d! 2 dtt? { 80 ) 
dcf> = N cos a12- __ 2 tan cp - - cos a + 2 tan 4>1 + 6 + •• 

_1 2NJ: 1 6~ 12 



45 

The above formula will. obviously' not ;riel.d the required solution since 

dcp appears on the right-hand side ot the equation. To begin to solve _ 

this ~blem, we again use the spherical approximation and set 

sl2 
dcp =-cos Cl 

N1 12 
(81) 

Substituting (8i) in (8.0) ;yields 

2 3 
sl2 sl2 sl2 

dcp N cos cx12- __ 2 tan +1 - ·-~ cos cx12 + 
1 2Nl 6Bi, 
2 

sl2 2 dt3 
+ ~ cos cx12 tan cp1 + 6 + o o o 

1 
(82) 

From. ( 82) above, we can now get a more precise approximation tor dcp 

(neglecting terms greater than the second power) , namely' 

2 
812 s12 2 

dcp • H cos ~ - _ _2 tan +1 (l - cos . ) + • .• • , 
l 2Bl fu 

which can be written more simply' as 

2 
sl2 s12 2 

d+ • 111 cos cs12 - ~ tan +l. sin ~ + ••• 
l. 

• 

(83) . 

•. (84) 

SquariDg (84), and negl.ecting terms greater than the third power ;yields 

2 
2 s12 2 

dcp =-cos Cl 
~ l.2 

1 

3 
sl2 2 
--~ cos cx12sin cx12 tan +1 + o•• 

Bi 
(85) 

and turther 
83 

dcp3 = I212_ cos3cx12 + 

1 

(86) 

Fina.l.ly, substituting ( 8 ~ and ( 8'~) in ( 8 0) , and rearranging terms gi. ves 

us 
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Collecting terms yields 
2 s3 

s12 2 12 
a12 - ---~ tan +1 sin a12 - --~ cos 

2Nl 2Nl 
3 

··8:12 

- ~-q cos a12 
6NJ_ 

. 2 
SJ.ll al2 + ' ..... 

Further simp~itication is attained by setting 

3 3 

... 

sl2 2 2 s12 · 2 
- ---~ cos a12sin a12 tan +1 - ... _~ cos ~ sin a12 • 

2Bi bB}_· 
3 . 

812 2 2 =-~ cos a12 sin a12 (1 + ~ tan +~) , 

1 

which, when placed in (·as) tinal.l.y yields ~ 

(87) 

·(88} 

(89) 

Equation {90) is not a rigorous solution since the radius of 

curvature along the normal section P 1 to P 2 is taken to be a constant 

value N1 , when in fact it changes vi th latitude since N = t 1 ( +) and 

M = f 2 ( +) (equations ( 15) and ( 13) respectively) • In order to take this 

change in curvature into account, we can write 

~1· 
d+ = ~ (right-hand side· of (90)) , (91) 
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where 1/~ replaces 1/N1 , and 

(92) 

Since we do not know , 2 , we must use the apprOximation 

(93) 

in order to compute M2 • From (13), we compute 

dM! 2 2 2 -5/2 2 d' = a(l-e }(-3/2)(1-e sin , 1 ) (-2e sin , 1 )coa +1 , (94) 

which reduces to 

t (95)·· 

which when placed in (92) yields 

~ + (~ + ~) ~ 
M • aM_+-, m 2 -~ 2 (96) 

(96a) 

(97) 

. / . . 

From (97), :using the binomial series expansion gives 

" 2 . 
1 1 ~ e sin , 1 cos +i 
if = M:'" (l - 2 2 2 

m -~ (1-e sin ' 1 ) 
(98) 

which when placed in (9~) yields the final result 

+ •• } 

(99) 
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where d~' in the last tezom ot (99) is computed usi_ng equation (90) 

(multiplied b;r p") • 

Final 17, we compute +2 b;r 

(100) 

The longitude of P2 can be computed b;r 

(101) 

From Figure 19, using a spherical approximation the sine law ;rieJ.ds 

or 

sl2 
sin cU =sin r sin ·~sec .2 . 

2 

(102) 

(l02a) 

Bow, approximating the sine terms on each side o.t (l02a) by' a trigonometric 

series, we can write (neglecting terms biper than the third power) 
3 

ell3 s12 sl.2 
ell - - 6 + = (- ... ~··Hsin a see + ) (103) 

\f. tOC: J.2 . 2 
2 2 

or 

s12 s3 cU 3 (l03a) 
ell • 112 sin a12sec +2- ~.sin ~see +2 + 6 + •• 

2 

Now, from the first two terms of (l03a), (neglecting terms greater than 

the third power) 

' (104) 

which gives us 

sl2 2 2 2 
cU" = p"[- sin a · sec cp2 (1- 8 :J<l-s1n a12sec cp2 ))], (105) 

112 l2 6B2 
which when placed in (101) gives the sol.ution tor l-2 • 
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. .. . - .. 
Althcnrglr a2J. is also a parrot the direct problem., the 

~ .... .. -
-derivation ·tor its solutfon''{s ... g£~en in the next section. 

3.3 Inverse Problem 

We are given the quantities ~l'· ).l ot P1 , and ~2 , ).2 ot P2 

(Figure 20). The quantities required are s12 , a12 and a 21• 

We begin by determining a21• Using a spherical approximation 

· < P' P P = 36o-a 2 1• 21 (106) 

and 

(107) 

(108) 

or 

{~08&) 

·where &I is the tem which expresses the convergence ot the meridians 

between points P1 and P2 • Using Figure 20, we can write 

(109) 

and replacing ak by ( 108a) gives 

(109&) 

Then, replacing a21 in (lOT) b) (l09a), 

or 
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Using spherica.l trigomet;ey-, the t~ent la.v yields 

d ~ ·- dl. cast H9o-•2> - (90-+1 )J 
tan (90 - ~ = cot 2 1 . . 

eos 2 {(90~2 ) + (90-+1 )] 

which reduces to (invert both sides of (lll)) 

or 

+i++2 
da cos(90 - ·2 ) dl 

tan -2 = 1 tan 2 
cos 2 (q,l'-+2) 

dA tan-
. ·.-2' 

(llOa) 

(lll) 

(112) 

(ll2a.) 

Next we develop the tangent 'erms on both sides of (ll2a.)wilich. can 
' . . .. 

be expressed !ll" (negl.ecting terms sr!!a.t~r than the third powe-r) 

d4· " . .st .dl cU3 
. tan 2 • sin +111 sec 2 ( 2 + 24 + • • • ) (ll3) 

.. ... 
3 

t ..... ~ • gg, .&. ~ + 
- 2 2 ,.. 24 ... . .. (ll4) 

which gives the final equation 

. da" = p" (~1 sin ·~ sec ¥- + *3 (s~m sec ¥-- sin3+m sec3(~) -t_ •• ] (ll 
-wer~~+m .is the-~~.~- l~t~tud.~. 

Replacing dLI in (lo9a.) by (115) gives us the required a 21 once we ha.ve an 

expression for ~12 : 

The solut~on for-~ is as follows. Ta.king equation (99), and 

rea.r.ra.ngi_ng terms, we get 
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(~)}) + 
p 

and using ( l05) , ·a rearrangement of terms yields 

(116) 

H s3 s3 
s12 sina12 = -~= • ~:c+2 + ~ sin ~2 - ~ sin3~sec2+2 • (117) 

2 2 
Now, dividing ( 117) by ( 116) gives, atter some manipulation of terms 

tan a12 = ~i:ig~ . _ (118) 

Since ~ appears on the right hand side of (118), iteration is 

needed. First, besin 'b7 obtaini':lg approxima1ie values for "1.2 trom (118) 

'b7 usizll onl.T the first term in the numerator and denani na1ior and -for s12 

from u6) or un apin using cm.q the first term on the right· haDd side 

of the equations. Mare accurate val.ues of "12 and s12 are-.:obtained ~ lJ.SiDa 

all ~ems in (118) and (116) or_ (117l.respectiveJ.:7. Iterate_1mtil. the 

changes in ~2 and s12 are nesJ.igib1e. (As ~ 0.001 m and A"l-2 ~ 0~001). 

· 3 •. 4 Summary of Equations -for the Solution of the Direct and Inverse 
. 

Problems Using Puissant 's Formul.ae 

The following is an outline of the steps reqUired for the sol.ution 

of the direct Problem using Puissant's formul.ae: 

1. compute 1\ and N1 using ( 13) and ( 15) ,respectively; 

2. compute an· approximate d+" 'With (90). 

3. solve for d+" using (99), and +2 using (lOO); 
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4. ~ompute N2 with (15); 

5. solve for cU" with (105) and A2 using (101); 

6. using (115), compute da" and final.ly a21 with (109a}. 

Similarly', we outline the steps required for the solution of 

the inverse problem as follows: 

1. compute ~ with (13), and N1 and N2 using (15); 

2. compute a12 with ( 118) ; 

3. compute da" with (115), then a21 using (109a}; 

4. using either (116) or (liT), compute s12• 

3.5 The Gauss Mid-Latitude Formulae 

These formulae were first published in English in 1861. 

They are based on a spherical approximation of the earth and should 

only' be used for points separated by less than 40 km. at latitudes 

less than 80° [Allan et al, 1968]. The formulae are [All.an et al, 1968] 

da" = cU" sin +. , m 
s12 cos a 

d+" • p" ( m) 
~ 

s12 · sin a 

(ll9) 

(120) 

(121) cU" = p" (N cos +. m) • 
where a. =· a + m da m 

m . 12 2 . (12la) 
The similarities of the above formulae With the Puissant 

formulae are easily seen by comparing (119}, (120), and (121) with the 

first terms of (115), (99), and (105) respectively. 

In order to solve the direct problem with the mid-latitude 

formulae, an iterative procedure must be used. First, d~" can be approx-

imated using the measured azimuth in place of am, and M1 can be used in 
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place of 1\n· Then~ a ·first approximation of 92 is obtainea using (100), 

a first approximation of cU via (121) and >.2 by (iOl), thence du is 

computed via (119). The iterative procedure can nov be continued 

using successive approximate values tor d+~ da (thus am and +m) untU 

the desired limits have been reached. Fina.l.ly, cU" is computed in 

order to obtain >.2 • 

The inverse problem is computed without iteration since +m is 

immediately available. Using (119), du is computed. Then, from (121) 

divided (120) , one obtains tan am, thence a12 and a21 ( l2la) • Final.ly, 

the distance s12 can be computed with either (120) or (1.21). 

3.6 Other Short Line Formulae 

There are many short line formulae in use. Some of these 

are included in [Bamford, 1971., pp. 133-1.39], and are called by names 

-such as "Clarke's Approximate Formula" (1. ppm at < 150 km) ~ and "Lilly's 

Approximate Formula" (1.5 m at 1000 km). All of these types of direct 

and inverse formulae (short lines) are based on spherical approximations 

and are not as rigoroils as those such as Bessel's long line formula., 

developed in 4. 
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~--· .. ·;"""" " .......... 
. lt-. Bessel's Form.ul.ae - Long Lines 

4.1 Introduction 

The f'ol"D11llae f'or the direct and inverse. geodetic problems 

developed below have been credited to Bessel [Jordon, 1962]. The 

de~ivation is based upon the geodesic on the ellipsoid. This fact dis-

tinguishes Bessel's formulae from formulae vhich are ];lased on a spherical 

approximation (e.g. Puissant's), or even from f'ol"D11llae vhich are ellip-

soidal based but use the normal section curve as the foundation f'or the 

derivation (e.g. Robbins, 1962). 

The accuracy of' the Bessel formulae is not limited by the 

separation between the tvo points in question nor by the location of' 

the points on the earth. The accuracy is simply' limited by the number 

of' terms one wishes to retain in the series developaent of' the various 

expressions. 

The following derivation begins by developing the rel.&tionabip 

between corresponding elements on the sphere and ellipsoid (not a 

spherical approximation but a rigorous treatment). The so1ution ot an 

elliptical integral is then performed. FinaJJy the direct and inverse 

problems are enunciated. 

4.2 Fundamental .Re-ls:tionshil'!.-

We begin by establishing some rigorous relationships between 

parameters on the sphere and parameters on the ellipsoid. In section 

(1.3.2), ve developed the basic property of a geodesic (47), which on 

a. sphere can be expressed as 
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cos 8 sin a = cos 80 , (122) 

.. 
where 8 is the reduced J.atitude {Krakivslq and Wells, ~97~, p 23], and 

S0 is called the "turni~g point" reduced latitude (a= 900). Frcm Figure 

21a,. -a on the reduced sphere is equal to a on the ellipsoid, as are 8 on 

the reduced sphere and 8 on the e~psoid, thus .we can write for both 

cos 8 sin a = ·cos 80 • {l22a) 

We now develop some differential relationships with the aotd of 

Figure 2lb. From the triangles in the spherical figures, we can write 

ada cos a12 = adS , 

and (123) 

ada sin a12 = a cos S' _cU, 

vhere a is the radius of the reduced sphere (Figure 22) , and da is the 

angle aubtended (at the origin of the sphere) by the nozmal.s at P and P'. 

Stqdlarl.y, frcm the triangles in the ellipsoidal figure we can write 

ds cos~ c Md+ 
and 

ds sin a12 = li' cos +'CU. • 

Dividing (124) by (123) yields 

~ = Md+ = N, cos +' d1 
da dB cos 8' dr . 

From Figure 22 and equation (17) 

N' cos ,, = a cos S' , 

vhich when substituted in (125) gives 

(124) 

(125) 

(126) 

(127) 
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. Figure %2 · 

REDUCED SPHERE AND ELLIPSOID 
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or 

cU leis -·-·-dl :.a.da ' 

which, from ( 12 5) yields 

'cU. =HAt 
dl a dB 

ReceJJing that [Krakiwsky' and Wells, 1971~ p 28] 

tan 8 = (1-e2 )1 / 2tan +, 

we can differentiate and get 

or 

which when substituted in (l2:'l'b) gives 

for any point on the ellipsoid. 

Now, we want to get 

d.t/dJ.. = :f'(S) • 

We begin by expressing 

where 

c 
a cos 8 = - cos + v 

2 2 -1/2 V = (1-e cos B) 

t 

' 

and(the curvature at the pole. ... equation (5a)) 

(.J.27a) 

(12Tb) 

(128)"· 

. {l29a) 

.(J30) .. ~: .· 

(131) . 

(132) 
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(133) 

Squaring (123}, and rearranging terms gives 

(13~) 

Where 

c 
M =-3 • y 

(135) 

A turther reduction of (13.4), using (133), (3) and (131) 

final.ly yields 

d.2. 1 1 ds -=-=--<U V .a_da • 
(136} 

Before proceeding :fUrther, we will derive (132 } .,. ?.rom 

(13J;) 

b 
cos • = (&) v cos s, (137) 

Which when squared yield$ 

2 b 2 _2 2 
cos + • 2 v-cos S 

a 

or 

2 2 _ _2 2 
cos + = (1-e ) v- cos S (137\) 

Substituting (13~} in (137), 

_ _2 2 2-.2 2 
v- = 1+e' (1-e ) v-cos B , 

which reduces to 

_ _2 2 2 2 v- [1-e' (1-e } cos B] = 1 • (138a) 

Now, from equations ( 3) and ( 4) , 

Q 2 
(1-e ) (l+e J. = 1 (139) 
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and 

2 2 2 e • e' (l-e ) (~9a) · 

which when substituted in (~a) gives 

_ _2 2 2 
v-. {l-e cos S) = l (l~O) 

or 

2 2 -l/2 
V = {l-e cos S) • (!.\Oa)-

Returning back to the problem at hand we substitute ·(a.l&-oa) in 

{136) we get 

(141) 

and 

ds 2 2 l/2 - = a{l-e cos S) da • (l42) 

respectively. 

4 ... .3 ~~scnuti-on ot" the l!ill.t.pjtic Intesral 
. .. .. 

Next we ·solve ( l4l) and (142 ) • and we do so by integration. 

We begin by solving (14 ~ • to get a solution t"or ds/da. From Figure 23, 

ve use the sine law ot" spherical trigonometry and obtain 

. 0 
sin a12 sin 90 

sin(9dtS0 ) = sin(96?-6} (l.43) 

or 

the fundamental property of a geodesic and great circle. Further, using 

Napiers rule of circular parts 
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ta:n s1 
ta:n a • --~ 

l _cos~ 

and another required relationShip 

(J.4JJ) 

.. 
(l.45) 

We generaJ.ize (145) for integration purposes (between points P1 a:nd P2 , 

Figure 23) · a.s 

sin S • sin (a1 + a) sin 80 (145a.) . 

so that a is va.riab1e, reckoned from point P 1 • Note that when a • a 2 , 

S • s2 and when a • 0, S = s1 • 

Rewriting (14 ~ as 

2 2 l./2 
ds • a(l.-e cos S) • •-- ~ , 

a.rlii ·then s~lving for cos2s boca 1458. by _, · :~. ·!:' 
. . . ~ . . 

-. . . [;: j':t~~~-~~~·,~~'j ~~~ 

.· .{J.~.7l . 
.... ~:~-1~: /~--- ~ 

. -~~~c~; ~-5~~~~t~~ :a_7 • ,a, ,:'!_~r~,_a1+a (a n~c~~~~%/Dtesr~ 
tion), then dx • da and we rer-tte (J.Jtf) as 

2 . 2 2 
cos B • l. "'" sin x sin S 0 , 

which finally gives 

2 2 2 . 2 1/2 
ds = a(1-e +e sin B sl.n x) dx • 

0 

From (3} and (4), 

2 1 
and 1-e = ----2 

1-e' 

(14Ta)" .. 

(148) 

(149) 



which vhen substituted in ( 14~) gives 

1 ,2 2 2 1/2 
ds = a. [ + e sin B sin x] dx 2 2 0 

10!' l.+e' 
{14Sa) 

or 

(149). 

Since 

(150) 

and setting 

(1.51) 

(1~9J finally becomes 

(1.52) 

This expression is now integrated- and eval.uated for our particul.a.r 

parameters, ~ch ;yields 

(1.~3) 

x-al. 
-- t. ~· "' l··' _;;. ~-

In mathematics this is known as an elliptical. integral. [Abramovitz aad 
ses;~l\~h.:~6i._p-~~J .• _· -~e ~ta~-on x(a+aT) are 

0 !, C1 !, CIT , (1.541 

then when 

and when 

(154b) 

Sol.ving equation (153}, we know that because k2 is sma.ll, then 
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( 2 2 1/2 1 2 2 1 4 4 k6 6 
1+k sin x) • 1 + 2 1t sin x - 8 k sin x + l6 sin x - ••• (l.$5) 

Using the trigoncmetric identities. 

2 1 
sin x • 2 (1-cos 2x) .(156) .... ,.,.., .. · 

.. 4 
sin x • • • • • 

etc. 

and substituting in (155) gives 

2 2 1/2 k2 _l 4 1 2 1 4 
(l+k sin x) = [l + 4- b4 k + •• ] + [- 4 k + '.16 k + •• ]cos%. -

Replacing 

k4 
-~cos 4x + 

k2 __3_ 4 A•l+ 4 - 04 1t + •••• , 

B lk2 lk.4+ 
-~. -~l ·.· 4 ~0 ....... ~ ... .. 

, 

in (153J gives 

(l55a) 

(151). 

. ·{l5Ta) 

... (iSTc) 

Before carrying out the actual. integration of (151), we 

consider the solution of general integral 

al+aT al+0T 
! cos nxdx = 1. sin nx 

n 
(159) 

al al 

(~59 a) 
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Another substitution ;rields a better form, namely 

sin nx - sin rq = 2 cos ~ (x+y-) sin ~ (x-;r) ' 

which when associated with our problem., we set 

, 

then 

and 

X - 1' = O'T 

Now, in (159&), the right hand side beccmes 

sin n(a1+aT)- sin na1 • 2 cos i' (2aJ..+aT) sin: aT 

Now, evaluating (158) , we get 

a +a , l. .. T. .. )·.; 
I dx • aT , 

0'1 

0'1.~ 

(160) 

(161&) 

(162) 

(163) 

1 cos.~ •·cos (2cri:~aT)sin crT, (163&) 
crl 

al+aT l · . 
I cos 4xdx = ~os(4a1+2aT)sin 2aT , (163b) 

1':1 

etc. 

Setting 

(164) 
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then 

or 

and 

or 

When sUbstituted in (163), the solution to (158) is 

FreD (164) , we get a solution for aT as 

·:,~.·where 

D = ••• ' 

E = 5 k8' 
65536 

2 2 2 k = e' sin B • 
0 

(1~&) -. 

(1-6la.b). 

(164c) 

(164d) 

(J.66) 

(J.66a) 

This represents the integration of the distance on the e1llp-

soid with respect to the distance on the sphere. 



:Now we turn our attention to the solution of ~ ( .1~1) • 

Rew"ri ting (:14.1) , we get 

From Figure 24 , 

_dl. cos 8 = da sill a12 

or 

sin a12 
dA = da cos B 

Applying the sine la.v ( spherica..l trigonometry) 

sin a · 
12 · sin 90 

-sin~{-9 ..... o-:;;;;;;·a-0 """) = sin(9o-B) 

or 

cos so 
sin a • · a , 

l2 cos ... 

which when substituted in (l6fa) yields 

._.;l .:· 

Substituting tor dl in· ( I4ia), w~ get 

.:lit - (l 2 2.a)l/2 cess;;, .:1-
~ - -e cos .,. 2 uu 

cos s 
Next we take dR. minus (167b) which gives 

2 2 1/2 
(1-e cos S) 

a.r.-<U = cos a [----2~--. 0 
cos a 

Expanding (1-e2cos2B )112 in a. series yields 

_l_ 
--2--]da • 
cos a 

2 2 1/2 e2 2 e4 4 e6 6 (1-e cos a) = 1 -~cos S - a-eos a - 16 cos B - ... 

(14.ls.) 

{16T) 

(16.7a.) 

(!68) 

(l.~a) 

(169) 

(171) 
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which when divided by cos2a gives 

I • 
1 e2 e4 2 e6 4 

2 - 2 8 cos s - 16 cos s -
cos s 

... 

Equation ( 170) is nov 

2 4 2 6 4 
[ e e e ] dR. = cU - cos so 2 + 8 cos 6 + l6 cos 6 + • • • da 

or 

e2 e2 2 e4 4 
dl. = cU - 2 cos S0 [1 + 4 cos S + 8 cos S + •• ]da • 

(1T1a) _ 

(112) 

(172a) 

2 4 
For the solution of (1T2a), we replace cos B, cos S, etc. by 

2 2 2 
cos S = 1 - sin 60 sin x ' ~ ~· .. (1T3) 

4 2 2 ·4 4 
cos S • 1 - 2 sin S 0 sin x + sin S 0 sin x , (lT3a) 

(x is defined on page 64), which when placed in (l.T2~) yi.elds 

4 4 +sinS sin x)-+ •• ~] dx • 
0 -

The above expression is simpl.itied and set up tor intesration 

in much the same manner as vas done tor the solution of ds/da. The 

results are as :follows. The longitude difference on the ellipsoid is 

given by 

(175) 

and on the sphere by 

(l75a) 
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Then 

e2 al+aT 
L. A- --2 cos s I/ (A'+B' cos 2x+C'cos 4x + ••• )ax], (l76) o a1 

where 

e2 e4 e2 2 e4 2 3 4 4 
A' = l + 4 + 8 - 8 sin S 0 - 8 sin S 0 + 64 e sin S 0 + ••• (lTI) 

e2 2 e4 2 e4 4 
B' = 8 sin B 0 + 8 sin S 0 - lb sin S 0 + ••• (lTia) 

' 
and 

e4 4 
C' = 64 sin S 0 + ••• • (l!7b) 

D' = .... 
The result is then given by 

+ ~· sin3a cos 6am +,-~ .ll&],:. ~::·. :-
..,~:-~:-:··-~ __ ..,;~~~·<;.~- f"<" 

(J.78) 

+ f sin 3a cos 6am + ·~·.;;·' 1. . (1.79) 

Now, with all the necessary relationships developed, we will turn our 

attention to the direct and inverse problems. 

4:.4 .:Dir,ec.t !Problem 

Recall tha.t for the direct problem we must know the geodetic 

coordinates t 1 , A1 of one point P1 , and the geodetic (geodesic) distance 

s12 and azimuth a12 to another point P2, then we solve for ; 2 , A2 of P2 



and a2l.. The steps in the solution are as f'ollovs: 

l. compute the reduced latitude sl, using (l28); 

2. compute the azimuth of' the geodesic s.t the equator, that 

is sin. Cl - sin al2 cos sl ; (l22s.), -

3. compute the approximate spherical arc a0 f'rom (166) using 

only the f'irst term (e.g. a0 = :A), then compute ai+1 by 

B .. ·' 
ai+l = ao + rcos 2amsin ai + ••• ' 

w.here the first i ters.tion, a 1 = a 0 , and recall that 

in which a1 is sol.ved f'or by (11W-a'; this step is repeated until sq 

fai+1 - ail ~ 0~00001.; 

4. compute 82 by (145), where eo is computed using (143s.); 

5. compute. +2 usiilg (1.28); 

6. compute.the spJlerical longitude di~f'erence l. using the sine 
•• 1· ' ~. •. ... ~ .• 

l.s.W' (Figure 24), which gives 

· silt a' sin· cs 
. ~~-~- · · · · · · ··· sin,,;A,~~~, --co.-~ s2 · ··~ ~ ; . ·.· · (l.8~) 

. wheJ:e_~¢1rst ~t~~~o.:;~"i..i1J,~si't'en b7· (181.}. .. . .··'' ' 
'l!~hen;· using l trarri (1.80) ,~cempute·' e~; cos 2am' cos 4am, cos 6am using 

(184), (185), (1.85&) and (l85b), respectiveJ.7; using (1.79}, solve ~or 

(l.-L); this step is .then repeated, with L = l. - (l.-L) (186), until say 

l (l.-L) - (l.-L)j < 0~00001; f'ins.llT; 
. i __ i+l 

~,~· . . 12 = l.1 + L. 

T). 'Ch.e reverse azimuth is then computed vis. (186s.) or (1.87&). 
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. ~5 t.-ll:rrerse Problem. 

In this problem ve are given P1 (+1 , A1 ) and P2 (+2 , A2), 

f'rom vhich we compute s12, a.12 , and a.21• 

The first step is to compute 81 and 82 (reduced latitudes) using 

~l28h~:£ii·~{.;~ea 'tl\~. ~Ueecl'.sphiitfa::··(ftgure 25) we can compute the arc 

lengt·a.: ~a·:.• ~T')~·by ua1:D.g .. the~'c_o.siil~-'J.a1i·.;.o:t' sph~icaJt. tr1gonometry a.s 

(181) 

or 

Since this an iterative problem., (181) is solved first usizl& A = L in the 

first approximation._ We then compute 

sin A COB 82 
::._ sin "12 • sin a ·(182) 

To compute the ~ -O~ :t:he geodesic at the equator, cs, we caabine 
.. ·:· ··: 

or 

sin a._ _ • sin cs 
~ cos s1 

which when rep1aced 1li ( 182) yields 

, 

cos s1 cos 82 sin A 
sin a. • ·sin a 

Once again, sin a is olll.y' a first approXimation since_ A = L. 

Then compute 

(l.83) 

(1.83&) 

. (184) 
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2 sin s1 sin s2 
cos 2am • cos a - 2 , (185) 

cos a 

cos 4am • 2 cos22am - l , (185a) 

and 

cos 6a = 4 cosg2a - 3 cos 2a_ (185b) m m .... 

We then use {179) to compute (l.-L). After completing this step, 

we compute 
r 

l. = L + {l.-L) , (186) 

and return to (181) and recompute quantities a, a, 2am, 4am, 6am using 

(181), {184), {18'), {185a} and (l85b), respectively. After recomputing 

(l.-L) using {179), we test I (l.-L)i+l -· _{l.-L)i I !. 0~00001. When this 

test passes, we continue to compute a12, a21 and s12• The :forward 

azimuth is ccmputed usiDg (183a), whi,eh is rewritten here as 

and 

sin a 
sin a2.l • cos s2 • 

Alternately, the azimuths can be ccmputed by' 

(187) 

and 

sin A cos s1 
tan a = --------=-----

21 sin s2cos s1cos A - sin s1cos s2 
(l87a) 

To complete the problem, the distance s12 is computed using {165). 
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4.6 Other Lopg Line Formulae 

M&.ey' methods tor the sol.ution of the direct and inverse 

probl.ems , tor wide~ separated points on a reference ellipsoid, are 

avail.abl.e in the l.iterat-ure. As with the "short" and "medium." l.ine 

tormul.ae, they are general.ly given the names of their originators. Two 

ot these, which have been used by the authors , are the methods of 

Rainstord [Rainstord, 1.955] and Sodano [Sodano, 1.963]. Rainstord's 

formulae are devel.oped on the same principl.es as Bessel.'s. The maJor 

difference is that the coefficients of the longitude difference (1.79) 

are devel.oped in terms of t, since they converge more rapidly' than 

when given as a :f'Unction of e 2 • The main difference between Sodano 1 s 

method, and those of Bessel. and Rainstord, is that both the direct and 

inverse probl.ems can be sol.ved in a non-iterative fashion. 
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SECTION IV. COMPUT.A!riON OF GEODEriC POSITIONS IN THREE DDSENSIOl'fS 

The geodetic position of a terrain point can be described 

ma.thema.tica.lly in terms of a triplet of cartesian coordinates (x, y, z), 

referred to the average terrestrial, geodetic, loeal geodetic or local. 

astronanic coordinate systems, or by geodetic latitude (;), longitude 

(A) and ellipsoidal height (h) referred to some reference ellipsoid. 

In the previous sections, which presented the classical. tvo dimensional 

position computations, geodetic positions were described by only two 

coordinates , namely the geodetic latitude and longi:tude. The third 

component , the ellipsoidal height , vas used only for the reduction of 

terrestrial measurements to the reference ellipsoid. 

Computations of geodetic positions in three dimensions differ 

tram the classical two dimensional approa.eh in two significant V8¥S. 

:· ~ - . . . 

whilenttbe::f~d.'a•jb~ed\OD .three dilliensional Euclide~-P~9ipal.s 

: Se"~cm.d:b'; ·the clas.f~.c;~:,&l'FoaCh 

2Z:~::::::.:=ch:s:-
section three dimensional azimuths are used in three dimensional cam-·- .... 

putations. RegardiDg the azimuth used herein, it should be noted that 

it refers to the normal section passillg through the terrain points in 

question, and not that section which passes through the points projected 

on the reference ellipsoid. In view of the different treatment of 

observations in three dimensional position computations, no special 

chapter regardiDg them is presented. Instead, full explanations are, 

given, where required, within the context of the development of the 

direct, inverse, azimuth intersection and spatial distance intersection 

problems. 
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5. DIRECT ABD IJ.IJVERSE PROBLEMS Dl THREE DIMENSIOl'm 

5. ~ Direct Prob~4!!11 

The direct problem can be stated as: Given the coordinates 

(xi, 1 i, zi} or (+i, l.i, hi} of a point i, and the terrestriu spatiu 

distance, azimuth, and verticu ang~e (or height difference) to a 

second point j; compute the coordinates (xj, 1.1, zj) or (+J, l.J, hj). 

Two cases of the direct prob~em. 111&7 arise, depending on whether the 

azimuth and verticu ang~ are referred to the ~ocu geodetic ( ellip

soid ncn"lJlU) or the locu astronomic (gravity verticu) coordinate 

systems. We thus denote azimuths and verticu ang~es in the ~ocal geodetic 

system b'f « and a, and likewise the locu astronomic system by A and v 

respective~ (Figure 26). 

The simplest method of so~ution of three dimensional problems 

iS to ~e cartesian coordinates. If the coord:f.nates '"which are required 

- ili'the-- ~ati'oU;;azoe 'giVeJtby:~(+;. A, h), a- smplei\c~ac{.' 

-- 'tr~toma't!O!f:'[KrUiwskT---azn Wells, 1971] yiel.ds ,the:,~~~~~: 
. ' . · .. ·-.. ·-

--,--~tes~y,;:;;s'm'J-ar:cy-1 ~ it-tl{e'fftSults requ:l.red-:.&M''tb~)Oi;~~~u4e, 
. . ::.. "~-:~ ._: ·- ; .. : ·,: _--~,-- ... 

__ -, IOZI81tU4e ·:fizid:teD.fpsOidal. heigJ:rtf;t.ithen the cartesian "-'C~• -are 

trailstormed to ( + , A, h) a.tter the position computations are ccmp1eted 

[IC:r&ld.wsley' and Wells , 1971]. 

The vector between two terrain points in_ a geodetic coordinate 

system. is given by the expression 

xj-xi Axij 

CriJ>G = yj-yi = Ayij (188) 

zj-zi G Azij 
G 
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Now, the position vector of a point j, in the local geodetic 

system at i (Figure 26) is given by 

<riJ>LG= 

and ( r iJ ) can be written 
G 

r 
diJ 

diJ 

~iJ 

cos aij 

cos aiJ 

sin aij 

-
cos aij 

sin a1j ' 
(189) 

-

(190) . 

The reflection matrix, P2 , and the two rotation matrices, R2 

and R3 , transform- the topocentric vector from the local geodetic 

system into the geodetic system. The position vector of the second 

point J, is. obtained by vector addition as 

(191) 

where (r1J) is given by (190), and (ri) is the position vector of the 
. G 

given point i. As has "Qeen previous~ mentioned, the geodetic c~rdi-
.- , .... .,._ .. _ ... 

·.~tea (+.1, ·l._j,.~\~J) can b~ obt&ined via a simple ··~ate trans~Ol'Jil&tion. 

1'he procedure ~or the computation of the direct problem, when 
·->.r ~-_.;- . : . ·-~ 

j_tbe az~j!Q.th aDd V'ertica.:L angle are given in tlie,l.Ocal utronaad.c system 
·:~~~ . ·.ti~ .. l· . . . \· . ·_· ... "! ~}(:)~.;'~--~ _··\,· ., ___ ~. ' 
~~~e 5~l';'"iif .. c01lpl.et~. analogous to that ~~-with rqp.,~ to 

\he~~~ geodetic ~tl above. The only di~~~nc:::is ·i~ th~ .. -=· . 

expression used to cam:pute the :topocentric posit~em vector rij. In 

this case, it is given by 

(192) (riJ) = R3 (18Q-Ai) R2 (9Q- .ti) P2 (rij) , 
G U ~~~-\·-.~-~. ___________________ _, 

-;h~r~~ t~ and A1 are thEt astronomic latitude and longitude of the given 

point, and 
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r- ~ 

diJ cos viJ cos Aij 

CriJ > = diJ cos viJ sin AiJ . 
LA. 

(193) 

diJ sin v1J --..... 
Note that in this case (192) the position vector is rotated 

direct~ from the local astronanic system into the geodetic system. An 

alternative transformation is possible via the local geodetic system 

using the expression 

(rij)G = R3 (180-Ai) R2 (9Q-+i) P2R3(Aij-aij) R2(-~i) R~(ni)(rij)LA. 
(194) 

In the above· expression (194), Aij and aij are the astro

nomic and geodetic azimuths respective~, and the quantities ~i and ni 

are the two components of the deflection of the vertical at poil:rt i. 

5.2 Inverse Problem 

In-this case, the triplets of coordinates (f, A, h) or (x, y, z) 
. f . . . ~ .. ··.··· 

are given tor two tern.in points. Required are the spatial ·'aistance 
. . ~ ,• ,·': 

(dij) 1 the direct aaf inverse azimuths. ciiJ and uJ1J ~~:-~he verti.~al. 
angl.. _~s a~ 4 and a~i·:·,t·.:;,· ~- _. . ./··./:~"'·.:: . .. . ~~-~ 

- ......, 41 .. ~ ~'i~ .... / ~-:. :, .v :.~-:::-
. • ~ •.• ~ ,. .• . . .... iP"' 

The position vectors ot the .:two points ·1. .and· J in the geodetic 

system are g1 ven by 

xi (Ni+hi) cos +i cos A 

<ri>G = yi = (N1+h1 ) cos +i sin Ai , (195) 

2 
zi G . (Ni(l-e )+hi) sin +i 

and 

xj (NJ +hj) cos +J cos AJ 

<rJ >G = YJ = (Nj+hj) cos +J sin AJ (196) 

zj G (NJ (l-e2 )+hj) sin +J 
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First, the difference v~ctor rij, in the geodetic system, is 

determined by 

Next, the above difference vector is rotated into the 1ocal 

geodetic coordinate system via an expression which is the inverse of 

(190), and is given by 

(rij) • P2R2(+i-90) R3 (Ai-180)(ri.1) • (198) 
LG G 

Now, to determine the spatial distance, and the azimuth and vertical 

ang1e at i, ve use the components of the vectm: (r iJ )LG in the 

expressions 

d.i.1 [Axij 
2 Az~]1/2 • + Ayij + , (199) 

c.ij • tau-1 [Ayij ] , 
Axij .. ' . · . ::.-, 

(2oo) 

. ..... · . _ .. ,: ··'-···' 

sin-1 
Az . 

:: :-· '11.· -. • [::!.1. 1 • •. 

ij- dij 
. ........... ~ ..... . -~t~.::- -: ~-~~- ~t~~::~ .. :;;>;:; -"'-. r~--->- -. _ 

~e correspondiJl& expressions for determ:lni ng the azimuth~ 
~ ;:: .·.: :-.:·. ~:~:.::~~ < • < - ;;.. • <-o ..-',: -~~ ': T ;~: 

aji, and vertical ~mgle, . aji, in the local geodetic B7Btem at .1 a:re 

(202) 

(203) 

and 

(204) 



6. Intersection Prob~ems in Three Dimensions 

The prob~em. or determining the coordinates or a point on a 

plane using an intersection or two azil!P.tths or distances tram two known 

(coordinated) points is a straight-forward process [Faig, ~912]. This 
' -

type of probl.em is not general.l3' dealt with for canplitations on a rer-

erence e~psoid. The intersection prob~em for the determination or , 

the geodetic coordinates (+, A) can be deut with quite simp~ usi..,g~ .. . . 

vector algebra. Two cases- are presented herein, each of vhich requi:es 

illfoma.tion simi~ar to that which vould be required for rigorous tvo-

dimensio~ cc:mputations. 

6. ~ Azimuth Intersection 

~ prob~em is detined as: Given the trip~ets or coordinates 

·(+1 '· Ai, h1) and (+J, AJ, hJ) for two terrain points i ancl J, and the 

ternin nor.mal section azimuths aik and a Jk ~.the· la1own points to 
:...,:~ 

the UJlknown point k, COIIIpUte the geodetic coqx:d'fzn!~~· +k ~ ~- ~ the 

. UJ2la1cm1 point k •.• · Bote· that the apprax1mate •'1i~~oi4 height ~ is 
-_;L . 

·1 

··.·.- .. =..~ .. - .......... ~----··. ··-~- ·_-, ... '-:~·:._.:-~-=~.,{:()~ ;, .. ::~:~ 
In order to begin the sol.ution, it is necessar;r to define a 

.... 
UDit vector in arq azillluth. n:ts vector is denoted t , 8.ud is expressed . a .. ... 

in terms or the w:d:t vectors ux and U,., which are respective~ the 

north and east directions of the local g~etic system (Figure 28). 

This is given by the equation 

where 

ta • ;ix cos a + u,. sin a, 

-sin + cos A 
... 
u • -sin + sin A 

X 
, 

cos t G 

. (205) 

(206) 
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and 

-sin A 
A 

~- cos A (207) 

0 G 
... ... 

Usil:Jg the expressions for ux and u7 , (205) can be rewritten as 

·tx - sin + cos A cos ~ - sin A. sin ~ 

t,. = - sin + sin A cos ~ + cos A sin ~ (208) 

t cos • cos ~ 
z G ~ 

Now, a unit vector perpendicul.ar to t;l!~· azimuth a: is defi:ned by 

(209) 

In order to sol.ve for +k and ~, two equations must be 

formul.a.ted wherein these two quantities appear explicitly. First, two 

dot products are f~ed, each of which invol.ves one vector in a pl.ane 

d:7filled by a pair of terrain points and the origin of the coordinate 
.~·,· 

state, and a second vector that is in an azimuth at 90° .to this pl.ane 

(Figure 29) • ·The two~ dot products are 

, (2l.O) 

and 

(2ll) 

where 

-sin +i cos Ai cos(~ik+90} ._ sin Ai sin c~ik+9o> 
... 

2J.2) t = -sin ; 1 sinAi cos ( ciik +90) + cos A.i sin <~ik+90) 
~ik-~0 

cos .i cos <~ik+90) .. 
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Figure 21 

AZIMUTH INTERSECTION IN THREE DIMENSIONS 
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-sin 'J c:os Aj c:os(ajk+90J'- sin AJ sin(ajk+90) 
... 
t 

ajk+90 
o= -sin 'j sin AJ c:os(ajk+90) + c:os Aj sin(ajk+90) ' 

c:os 
'J c:os(ajk+90) 

( 2J.3) 

~-xi uik 

<rk-ri> = yk-yi = ~Y'ik ' 
(2J.4) 

~-zi ~zik 

and 

~-xJ uJk 

!r"k-_r J) = . Y'"k -yj ..... 4.yjk {225) 

~-zj ~zjk 

In equations ( 214) and ( 2l5) , the coordinates tor i and J 

are taken as given c:onstmts, vhiJ.e those tor k are given b;r three 

UZ!latown f'tmctions (K:rakivsk;r and Wells , 197l.] 

a c:os8 k c:os \. + ~ cos ~ cos ~ 
- .···r. . ... ~ .. • . • 

.a cos Ss sin \. + hk cos •k sin ~ (2l.6) 

b sin.~ ~ ~ sin ~ .. ~-

'l'he t1rst _tenus o~ (216) &ive the cocrQina.tes o~ k on the sur~ace ~ 
. ·' .. ~- .. ' 
~ .... 

the ellipsoid ( de~Iled b7 the seDd-maJ or md semi-minor axes a and b 

respective~) in terms 0~ the reduced latitude ' sk' and geodetic: longi

tude, ~· The second te.rms account tor the tact that the terrain point 

It is loc:s.ted at an- ellipsoid lieight ~ above the reference ellipsoid, 

e.ud are expressed in tezoms o~ the geodetic latitude, 'k, ·and longitude, 

~-
Now, equations ( 2J.O) and ( 2ll) can be rewritten as 

(2lT) 
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(2l.8) 

The unkmron quantities in the ·above equations are the coordinates of k, 

and in terms of these , ( 217) and ( 2l.8) are non-linear. The next step 

in the solution is to approximate the equations (217) and (218) by' a 

linear Taylor series using appr.,:dma.te values for the reduced latitude 

and longitude denoted by 8~ · and ~ respectively. Thus 

and 

where 

0 at>1 at>1 
:rl = t 1 + ask dBk + a\ cUk + • • • = 0 ' 

' 

, 

o o . o o· o o 
Axik • a cos a; cos ·'i + ll:k cos +k cos Ak - xi . , 

Ay~ = a cos S~ sin ~ + ~ cos ·~ sin >.~ - 7i , 

Ax~k • a cos s~ cos ~ + ~ cos ·~ cos ~ - xj ' 

~Y;k = a cos S~ sin >.~ + ~ cos ·~ sin >.~ - yj , 

~z~k = b sin B~ + ~ sin ~~ - zj , 

arl -- t 
ask xi 

(-a sin B~ cos ~ - ~ sin ~~ cos ~) + 

+ t (-a sin S~ sin Ak0 - ~ sin ~~ sin A~) + 
yi 

( 0 0 0) + t b cos Sk + bk cos ~k , 
zi 

(219) 

(220) 

(221) 

(222) 

(223) 

(224) 

. (225) 

(226) 

(227) 

(228) 

(229) 
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arl ( o o o o o) 
a~ = txi -a cos Sk sin Ak - hk_ cos ;k sin Ak + 

+ tyi (a cos 8~ cos A~+~ cos 4»~ cos A~) • (230) 

Now, rewriting ( 229) and ( 230) as 

(231) 

.-. 

ar1 
-=t X +t y 
3Ak xi A y· A ' t· 

(232) 

. 
and 

(233) 

(234) 

It should be ..:~ed ~at in taking the partial derivatives, 
... ~· ~--e-r·· . 

tu geodetic latitude,:<:+k' wa8 taken as being syuonCmous with the reduced 
~. ·:·;. .. 

latitude, ~· There is no·~loas in accur&CT in subseque:at cc:mputations 

due to this treatme:at. Addition~, an approximate value ot ~that 

is within 100 m ot the true value is sutticient. 

Rewriting ( 217) and ( 218) , we get 

t.1° + (x8t + y8t + z8t ) dBk + (x.~t + y" t ) dAk = 0 , 
xi Yi zi. xi " Yi (235) 

Equations (235) and (236) are solved in an iterative procedure until 

the corrections to Sk and ~ are neg~gible ( < O'!OOOl). The value ot 

the geodetic latitude, ;.k, is then solved tor by [Krakiwsky and Wells, 

19711 ..• 
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(237) 

6.2 Spatial Distance InterseCtion 

The determination ot the geodetic latitude {+k) and ~ongitude 

{ A.k) of a terrain point, using two terrestrial spatial distances, is 

so~ved in a manner simi.~ar to that used for an azimuth intersection {6.~). 

Given are the two triplets of coordinates {+i' A.i, hi) and (+j' A.j, hj), 

and two terrestrial spatial distances, r ik and r .1k, tram the known 

points to the unknown point k. In addition, an approximate ellipsoid 

height, ~' is required (within ~00 m of the value of~ is sufficient). 

The key to the so~ution is the formation of two ~ear 

equations which are expressed in terms of the known and unknown para-

where (~, yk, ~) are given by {216). The above equations are non

lillear in terms. of sk and ~' thus they are approximated by a ~ar 

· TS\Y'lor series expansion using approx'imste values for the reduced 

latitude, s~, and geodetic longitude, ~· The linear form of equations 

(238) and (239) are given by 

and 

where 

a:r a:r 
:r = :t'0 + _..! de + __.! dA.k + • • • = o , 

1 J. aek k aA.k 
{240) 

(241) 



. r· 
Jk 

Figure 30 

SPATIAL DISTANCE INTERSECTION IN THREE DIMENSIONS 
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(242) 

(243) 

a:rl 1 3~ o ayk o a~ 
- =- [ (x.o-x. ) - + (yk-yi) ';D"" + (z. -zi) ~]' (244) 
aak r~ .at i aak _v .. k Jt II1Jo>k 

Now, the terms in equations (244)-(247) are derived fran (216), and are 

given by 

a~ o o o o o· ( 4 ) 'iS' = - a siD:,ak cos >i - hk sin +k cos Ak = x.a , 2 8 
k ·. ·: 

ayk . 0 0 0 . 0 0 ( 4 ) as = - a sin ak sin >i - hk sin .k sin >i = y s ' 2 9 
k 

a~ o o o 
ask = b cos sk + hk cos .• k = za ' 
34 0 0 0 0 0 

K S in A. h.- "' • "-oA.k = - a cos k s k - ~ cos ~k s~n k = x"-

a~ ar-= 0 • 
k 

.· 
(250) 

, (251) 

(252) 

(253) 

As in the case o:t the azimuth intersection, the geodetic 

latitude , (jlk' was taken as being synomamous with the reduced latitude sk. 



Now, {240) and (241) are rewritten f'or solution as 

The corrections dSk and d.Ak are solved for using an iterative 

procedure. When the corrections become negligible ( < 0'!0001), the final 

values of Sk and Ak are obtained, and 41k is determined using ( 237) • 
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7. CONCWDiliG Rl!MARKS 

Fran first appearances, it would seem that the classical 

approach of geodetic position ccmputations on the surface on an ellip-

-
soid of rotation should be abandoned in favour of the three dimensional· 

approach. The formulae for the latter are s:iJD.pler to derive and impli-

ment, and in the case of the direct and inverse problems, are given in 

a closed form. In addition, if the curvalinear coordinates (direct 

problem), or the ellipsoidal distance and normal section az:iJD.uths 

(inverse problem) are required, rigorous transformation formulae are 

available to obtain them [Krakiwsky and Wells, 1971; Section II]. 

The major hindrance to the use of the three dimensional 

approach lies in the geodetic observables, or the lack thereof. This 

is particularly true in the case of the direct problem, or a;r;q problem 

where the vertical ang1e (90°-zenith distance) is required. Due to 

refraction prob1em5 , the zenith distance can not be obtained to better 

'bhan.:!:. 1" which on a 10 km line yi.e1ds a standard deviation in height 

of 10 c:m [lieiskanen and Moritz, 1967]. This error would obviously 

affect the computations of the three dimensional coordinates (x, y, z) 

or ( +, A, h) of a required point. The problem can be overcane by 

spirit levelling, but it is unlikely that these observations would be 

available in other than exceptional cases. 

The two intersection problems that have been· presented show 

how the three d:iJD.ensional approaCh can be used to solve directly for 

curvalinear coordinates. It should be obvious that if sufficient 

observed information were available (eg. three spatial distances), 

the problems could be formulated and solved directly in terms of the 

three dimensional cartesian coordinates. 



Finally, it should be noted that an equivalent amount o'f 

observed information is required for the classical and three dimensional 

approaches. The main difference is that for the ellipsoidal computa

tions, (i.e. direct problem} the ellipsoidal height need not be known 

as ac-;.t:.rately as for three dimensional computations. However, no matter 

which method is useti, · · ~~rous transformations will show hat the results 

are equivalent. That is, the cartesian coordinates (x, y, z) will 

yield a set(~, A, h) in which the geodetic 1:~: e (~)and longitude 

(A) are equal to those obtain~.. · ~rom classical computa"L ~.lS. Further, 

the spatial distances a.nd terrain normal section azimuths, obtained from 

three dimensional computations (inverse problem) and rigorously reduced 

to the reference ellipsoid, are equal to the ellipsoidal distances and 

geodesic azimuths obtained from the inverse problem solved on the 

ellipsoid. 
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