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1. Abstract

In this work, we developed a reaction-diffusion mathematical model to describe the spread of dengue infection in a two-dimensional computational
domain to understand how the disease spreads from a specific location to another, considering the diffusion coefficients of both infected populations,
mosquitoes, and humans. We aimed to understand how the disease spreads from a specific location to another, considering the diffusion coefficients
of both infected populations, mosquitoes, and humans. Our contribution provides an in-depth analysis of the optimal control problem and it outlines a
more explicit modeling framework based on real spatial-temporal data.

2. Objectives

To investigate the impact of human movement and the vector dispersal behavior on the spread of dengue disease, applying optimal control.

3. Model

The PDE system used in this work is given below, Herein, Hs and HI are the density of human susceptible and infected populations. We denote by
Ms and MI the density of adult susceptible and infected mosquito populations, respectively, while A presents the density of mosquitoes in the aquatic
phase (eggs and larvae). ν is the control to combat mosquitoes. The biological parameters are showed in Tables (1) and (2).

∂tMI = εM∆MI + fMI(MI , HI , A,Ms, Hs)− ανMI in ΩT := (0, T )× Ω,

∂tHI = DH∆HI + fHI(MI , HI , A,Ms, Hs) in ΩT ,

∂tA = fA(MI , HI , A,Ms, Hs)− ανA in ΩT ,

∂tMs = εM∆Ms + fMs(MI , HI , A,Ms, Hs)− ανMs in ΩT ,

∂tHs = DH∆Hs + fHs(MI , HI , A,Ms, Hs) in ΩT ,

∇MI · η = 0, ∇HI · η = 0, ∇Ms · η = 0, ∇Hs · η = 0 on ΣT = (0, T )× ∂Ω

MI(0) = MI,0, HI(0) = HI,0, A(0) = A0, Ms(0) = Ms,0, Hs(0) = Hs,0 in Ω,

(1)

where εM and DH are the diffusion coefficients of mosquitoes and humans, respectively. η(x, y) is the normal vector on ∂Ω. The interaction terms are
written as follows:

fMI(MI , HI , A,Ms, Hs) := αρA− µmMI +
bβmMsHI

H

fHI(MI , HI , A,Ms, Hs) :=
bβHHsMI

H
− µHHI − σHI

fA(MI , HI , A,Ms, Hs) := kδ

(
1− A

C

)
(Ms + MI)− (µA + α)A

fMs(MI , HI , A,Ms, Hs) := α(1− ρ)A− µmMs −
bβmMsHI

H

fHs(MI , HI , A,Ms, Hs) := µH(H −Hs)−
bβHHsMI

H
The control function ν is governed by the following ODE:

d

dt
ν(t, x) = −τ1ν(t, x) + τ2(t, x), (2)

where τ1 and τ2 mean the forgetting rate to promove conditions unfavourable to Aedes breending and the government’s investment in educational
campaigns, respectively.

Table 1: Parameters of Aedes aegypti transmission.

H Human populations (susceptible, infected and recovered) indiv.× km−2

M Mosquito populations (susceptible and infected) indiv.×m−2

σ Recovery rate of humans day−1

µH Mortality of human population year−1

b Proportion of the effective bite that transmits infection day−1

βH Probability of vector transmission to humans −
βm Probability of human transmission to the vector −

Table 2: Parameters of Aedes aegypti transmission.

C Carrying capacity of aquatic phase of mosquitoes indiv.×m−2

k Ratio between male and female mosquitoes −
δ Per-capita oviposition rate day−1

µA Mortality of aquatic stages of mosquitoes day−1

µm Mortality of adult mosquito populations day−1

α Transformation rate of water phase to the adult phase day−1

εM Diffusion coefficient of mosquitoes m2 × day−1

DH Diffusion coefficient of humans km2 × day−1

4. Cost function

The main idea is to compute the optimized control that minimizes the cost function (P ) that makes HI as small as possible over time.

(P )


min
τ2

[
J(τ2) =

1

2

(∫∫
ΩT

(
ε1

∣∣HI −HI,d∣∣2 + ε2 |τ2|2
)
dx dt

)]
,

subject to the reaction-diffusion system (1).

(3)

where ε1 and ε2 are the regularization parameters.

( a ) J(τ2) ( b ) ∇J(τ2) ( c ) τ2

(a) the optimal solution for τ2;
(b) the gradient norm, ∇J(τ2), at each iteration;

(c) cost function, J(τ2), evolution during the iterations.

5. Results

We present here the results.
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Figure 1: Spatial distribution of densities of infected human and

susceptible mosquito using the arbitrary control, τ1 = 0.1 and τ2 = 0.0..
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Figure 2: spatial distribution of densities of infected human and

susceptible mosquito applying the optimal control solution. τ1 = 0.1.

6. Conclusions

The main conclusion is: we strongly suggest maintaining the control during the epidemic period in the Central-West, Northeast and Southeast regions,
in order to optimize the spread of Dengue in Brazil.
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