Investigation of the Aedes spread using a reaction-diffusion mathematical model

Fernando L. P. Santos¹, Mostafa Bendahmane², Elmahdi Erraji³, Fahd Karami³

1 Institute of Biosciences of Botucatu, UNESP, Botucatu-SP, Brazil, fernando.pio@unesp.br 2 Institut de Mathématique de Bordeaux (IMB), Université de Bordeaux 3 Ecole Supérieure de Technologie d'Essaouira, Université Cadi Ayyad

1. Abstract

In this work, we developed a reaction-diffusion mathematical model to describe the spread of dengue infection in a two-dimensional computational domain to understand how the disease spreads from a specific location to another, considering the diffusion coefficients of both infected populations, mosquitoes, and humans. We aimed to understand how the disease spreads from a specific location to another, considering the diffusion coefficients of both infected populations, mosquitoes, and humans. Our contribution provides an in-depth analysis of the optimal control problem and it outlines a more explicit modeling framework based on real spatial-temporal data.

2. Objectives

To investigate the impact of human movement and the vector dispersal behavior on the spread of dengue disease, applying optimal control.

3. Model

The PDE system used in this work is given below, Herein, H_s and H_I are the density of human susceptible and infected populations. We denote by M_s and M_I the density of adult susceptible and infected mosquito populations, respectively, while A presents the density of mosquitoes in the aquatic phase (eggs and larvae). ν is the control to combat mosquitoes. The biological parameters are showed in Tables (1) and (2).

> $= \epsilon_M \Delta M_I + f^{M_I}(M_I, H_I, A, M_s, H_s) - \alpha \nu M_I \text{ in } \Omega_T := (0, T) \times \Omega,$ $\partial_t M_I$ $= D_H \Delta H_I + f^{H_I}(M_I, H_I, A, M_s, H_s)$ $\partial_t H_I$ in Ω_T , $= f^A(M_I, H_I, A, M_s, H_s) - \alpha \nu A$ $\partial_t A$ in Ω_T , $= \epsilon_M \Delta M_s + f^{M_s}(M_I, H_I, A, M_s, H_s) - \alpha \nu M_s \text{ in } \Omega_T,$ (1) $\partial_t M_s$ $= D_H \Delta H_s + f^{H_s}(M_I, H_I, A, M_s, H_s)$ $\partial_t H_s$ in Ω_T , $\nabla M_I \cdot \eta = 0, \ \nabla H_I \cdot \eta = 0, \ \nabla M_s \cdot \eta = 0, \ \nabla H_s \cdot \eta = 0$ on $\Sigma_T = (0, T) \times \partial \Omega$ $= M_{I,0}, H_I(0) = H_{I,0}, A(0) = A_0, M_s(0) = M_{s,0}, H_s(0) = H_{s,0}$ in Ω , $M_I(0)$

where ϵ_M and D_H are the diffusion coefficients of mosquitoes and humans, written as follows:

$$\begin{split} f^{M_{I}}(M_{I}, H_{I}, A, M_{s}, H_{s}) &:= \alpha \rho A - \mu_{m} M_{I} + \frac{b \beta_{m} M_{s} H_{I}}{H} \\ f^{H_{I}}(M_{I}, H_{I}, A, M_{s}, H_{s}) &:= \frac{b \beta_{H} H_{s} M_{I}}{H} - \mu_{H} H_{I} - \sigma H_{I} \\ f^{A}(M_{I}, H_{I}, A, M_{s}, H_{s}) &:= k \delta \left(1 - \frac{A}{C}\right) (M_{s} + M_{I}) - (\mu_{A} + \alpha) \\ f^{M_{s}}(M_{I}, H_{I}, A, M_{s}, H_{s}) &:= \alpha (1 - \rho) A - \mu_{m} M_{s} - \frac{b \beta_{m} M_{s} H_{I}}{H} \\ f^{H_{s}}(M_{I}, H_{I}, A, M_{s}, H_{s}) &:= \mu_{H} (H - H_{s}) - \frac{b \beta_{H} H_{s} M_{I}}{H} \end{split}$$

The control function ν is governed by the following ODE:

$$\frac{d}{dt}\nu(t,x) = -\tau_1\nu(t)$$

where τ_1 and τ_2 mean the forgetting rate to promove conditions unfavourable to Aedes breending and the government's investment in educational campaigns, respectively.

Table 1: Parameters of *Aedes aegypti* transmission.

- H Human populations (susceptible, infe M Mosquito populations (susceptible ar Recovery rate of humans
- μ_H Mortality of human population
- Proportion of the effective bite that tra
- β_H Probability of vector transmission to β_m Probability of human transmission to

Table 2: Parameters of Aedes aegypti transmission.

- Carrying capacity of aquatic phase
- Ratio between male and female m
- Per-capita oviposition rate
- Mortality of aquatic stages of mos
- Mortality of adult mosquito population
- Transformation rate of water phase
- Diffusion coefficient of mosquitoes
- D_H Diffusion coefficient of humans

respectively.
$$\eta(x,y)$$
 is the normal vector on $\partial\Omega$. The interaction terms are

 $(t,x) + \tau_2(t,x),$

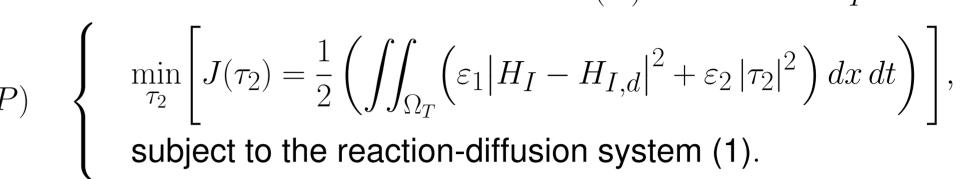
(2)

ected and recovered)	$indiv. \times km^{-2}$
nd infected)	indiv. $\times m^{-2}$
	day^{-1}
	$y ear^{-1}$
ransmits infection	day^{-1}
humans	_
the vector	_

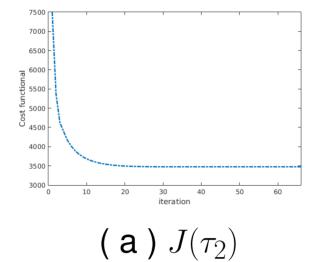
e of mosquitoes	$indiv. \times m^{-2}$
nosquitoes	_
	day^{-1}
squitoes	day^{-1}
ations	day^{-1}
e to the adult phase	day^{-1}
S	$m^2 \times day^{-1}$
	$km^2 \times day^{-1}$

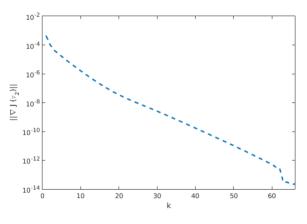
(2010).

The main idea is to compute the optimized control that minimizes the cost function (P) that makes H_I as small as possible over time.



where ε_1 and ε_2 are the regularization parameters.

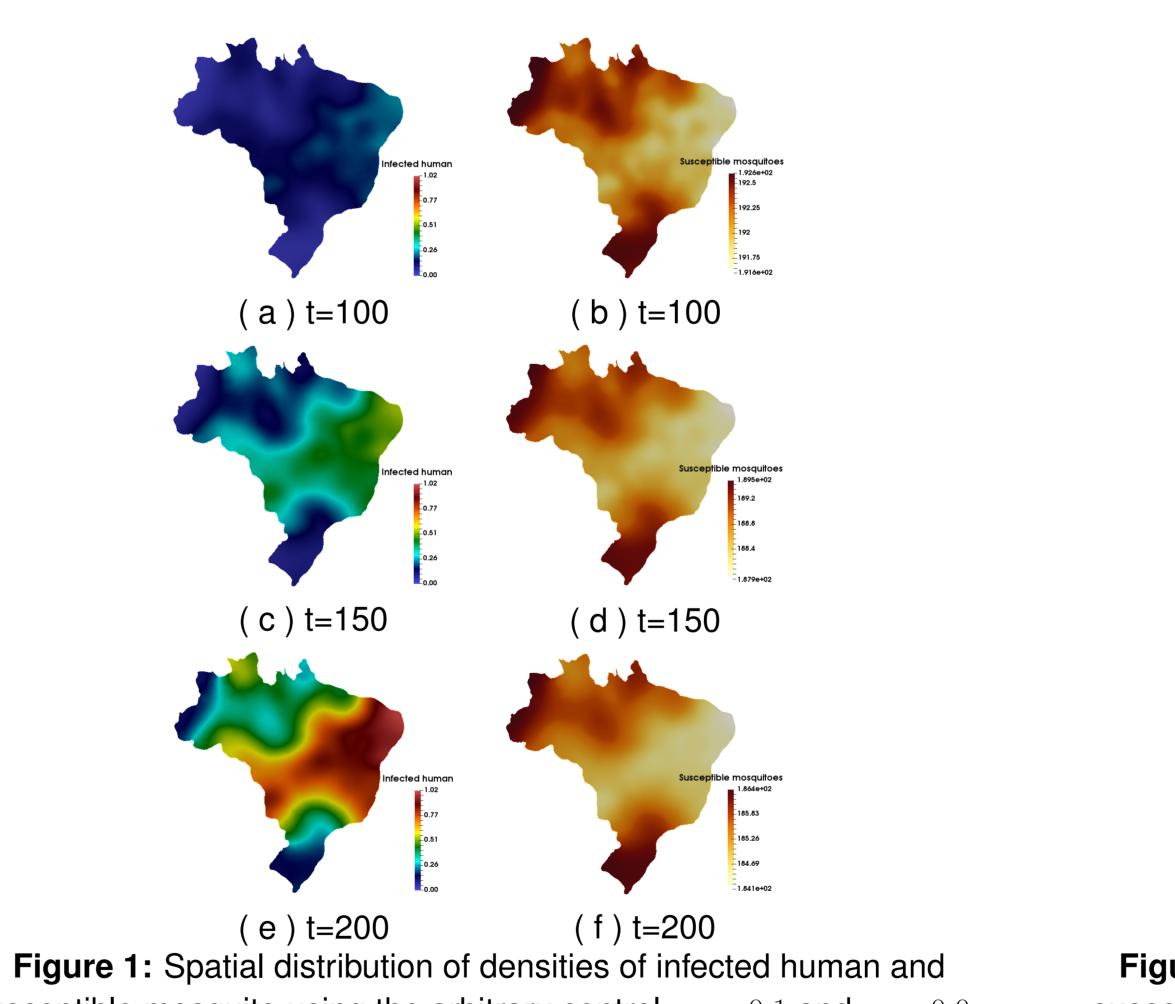




(b) $abla J(au_2)$ (a) the optimal solution for τ_2 ; (b) the gradient norm, $\nabla J(\tau_2)$, at each iteration; (c) cost function, $J(\tau_2)$, evolution during the iterations.

5. Results

We present here the results.



susceptible mosquito using the arbitrary control, $\tau_1 = 0.1$ and $\tau_2 = 0.0$.

(e) t=200 Figure 2: spatial distribution of densities of infected human and susceptible mosquito applying the optimal control solution. $\tau_1 = 0.1$.

6. Conclusions

The main conclusion is: we strongly suggest maintaining the control during the epidemic period in the Central-West, Northeast and Southeast regions, in order to optimize the spread of Dengue in Brazil.

7. Acknowledgments

F.L.P.S thank to São Paulo Research Foundation (FAPESP), grant 2018/03116-3. M.B., E.E. and F.K. thank to CNRST (Morocco).

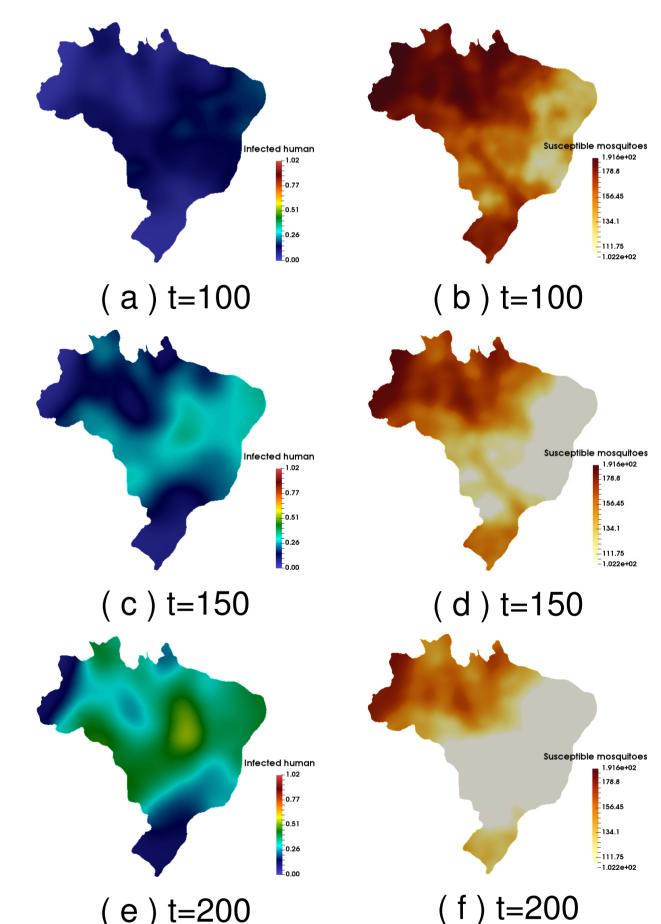
8. References

1] H. M. Yang, M. d. L. da Graça Macoris, K. C. Galvani, M. T. M. Andrighetti, Follow up estimation of aedes aegypti entomological parameters and mathematical modellings, Biosystems 103 (3) (2011) 360-371 (2011).

[2] H. S. Rodrigues, M. T. T. Monteiro, D. F. Torres, Dynamics of dengue epidemics when using optimal control, Mathematical and Computer Modelling 52 (9-10) (2010) 1667–1673

[3] World Health Organization, Dengue: guidelines for diagnosis, treatment, prevention and control, World Health Organization, (2009). [4] L. R. G. Silva, F. L. P. dos Santos, Predição numérica do controle mecânico na dinâmica populacional dos mosquitos da dengue, Revista Brasileira de Biometria 36 (2) (2018) 316-335.

(C) au_2



(3)