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Do cladograms tend to be more imbal-
anced. (less symmetrical) than pheno-
grams? Colless (1982) suggested anecdo-
tally that they do, but more rigorous
examination of 208 literature cladograms
and phenograms (Heard, 1992; see also

Mooers, 1995) revealed no such difference.

In a recent note, Colless (1995} returned to
this question and concluded that when cla-
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distic and phenetic techniques are used to
estimate phylogenies from the same data
sets, the cladistic trees are consistently and
strikingly more imbalanced than the phe-
netic trees. Colless (1995:105) explained
this difference by claiming that “PAUP
(and by extension the phylogenetic meth-
ods [parsimony] it seeks to model) is bi-
ased towards producing asymmetrical [im-
balanced] dendrograms” We argue
instead that Colless’s results only show dif-
ferences in the way cladistic and phenetic
techniques handle data that are too sparse
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or too homoplastic to be informative and
that these results do not contradict earlier
findings of agreement for more robust
trees. Therefore, Colless’s results are im-
portant for our understanding of errors in
phylogenetic reconstruction but should not
weaken studies of tree balance or affect the
choice of systematic methodology when
data are informative.

Colless (1995) used three different kinds
of data to examine differences between
cladograms and phenograms: empirical
data, random data, and computer-gene:r-
ated data. He used cladistic and phenetic
techniques to estimate phylogeny for 20
real data matrices, he applied PAUP (Swof-
ford, 1992; a cladistic method) and a vari-
ety of phenetic methods to matrices of ran-
dom data, and he used both techniques to
estimate trees for artifically evolved data
for which the “true” (computer simulated)
phylogeny was known. Here, we reexam-
ine each kind of data.

The iandom data mafrices were con-
structed for sets of 11 and 21 taxa with 20
and 30 characters, respectively. Each char-
acter value was determined at random,
and PAUP and several phenetic methods
were used to construct trees. Any hierar-
chical structure in these random matrices
had arisen by chance (see Goloboff, 1991,
for a discussion) and so there was no ques-
tion of finding the “real” tree. Under these
conditions, Colless’s cladistic trees were
much more imbalanced than his phenetic
ones, and his interpretation was that cla-
distic methods produce overly imbalanced
trees. However, we find fault with the phe-
netic estimates, not the cladistic ones

With completely random character data,
we have no reason to think any one pos-
sible tree more likely than any other When
trees are constructed with parsimony from
random data, this is exactly the outcome:
all possible trees are equally likely (Slow-
inski, 1990; Guyer and Slowinski, 1993, J.
Slowinski, pers. comm ). The expected dis-
tribution of tree topologies for this result
is known (the “all labelled trees equiprob-
able”” or “proportional to distinguishable
arrangements” null model; Rosen, 1978;
Rogers, 1993). Completely random trees

IaBLE 1 [ values (Colless’s index of imbalance) for
random matrices using five tree construction tech-
niques (Colless, 1995: table 3) and expected I for com-
pletely random trees (Rogers, 1993). I is computed as
(Heard, 1992) I = Z (all interior nodes)|T, — T.|/(n —
1)(n —2)/2, where at each intetior node of a tree of
size 1 the right and left branches subtend T, and T,
tips, respectively.

11 taxa/tree 21 taxa/tree
Technique® z SE 4 SE
Random expectation 056 002 046 001
Random data
PAUP 063 011 049 006
MNN 040 007 069 005
MEN 018 004 011 001
MUP 031 004 0.23 003
MWP 031 003 017 002

aPAUP is a cladistic technique. Nearest-reighbor joining
{MNN), furthest-neighbor joining (MFN), UPGMA (MUP),
and weighted PGMA (MWP) are phenetic techniques using
Marthattan distances

are more imbalanced than expected under
common null models of macroevolution
(Slowinski, 1990; Rogers, 1993) and more
imbalanced than samples of trees from the
literature {Guyer and Slowinski, 1993;
Cunningham, in press).

Colless’s cladistic trees, in fact, match the
random expectation very closely in balance
(Table 1). In contrast, in seven of eight
cases (two tree sizes, four methods) the
phenetic techniques produced sets of trees
that are significantly more balanced than
the random expectation. Cleatly the phe-
netic trees cannot be better reconstiuc-
tions Instead, when data are 1andom, cla-
distic methods (appropriately) produce
trees matching the random expectation
Phenetic methods, however, sample from a
more balanced (and incorrect) population
of possible trees (see also Huelsenbeck and
Kirkpatrick, 1996). This difference in how
the techniques deal with poor data also ex-
plains Colless’s other results.

Colless’s (1995) second kind of data was
a set of 20 real data matrices, to which he
applied a battery of phylogeny-estimation
techniques (because in several cases two ot
more mattices consisted of different sets of
characters from the same taxa, the 20 ma-
trices represented only 11 independent
phylogenies). Again, the apparent result is
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that the cladistic trees are strikingly more
imbalanced than the phenetic trees. How-
evet, there are two major reasons for con-
cern. '

First, the 11 phylogenies are neither a
random nor a systematic sample from the
population of published phylogenies (in
contrtast to Heard’s [1992} and Mooers’s
[1995] trees), and it is therefore impossible
to generalize beyond the handful of data
matrices presented. Second (even if we dis-
regard the first point), most of the tree es-
timates based on these matrices are not ro-
bust because the data are either sparse ot
extremely homoplastic. Colless (1995) did
not report any direct measures of robust-
ness, but most of the 20 trees appear to be
very poorly supported. Of 11 trees for
which we could find some indication of
data quality, only two (BEG, BIL) are likely
to be at all well supported and nine (H1A,
H1B, H2A, H2B, P1A, P1B, P2A, P2B,
ALL) must be very poor estimates of true
phylogeny because among trees for the
same clades based on different suites of
characters there is little or no consensus
(Rohlf et al, 1983: fig. 1, table 3). The re-
maining nine trees are unlikely to be much
better; their data matrices have on average
just 1.4 informative characters/taxon (D.
Colless, pers. comm.).

The issue of tree robustness is impot tant
because Huelsenbeck and Kirkpatrick
(1996} have shown that when phylogenetic
information is very good, both phenetic
and cladistic techniques produce trees
with very close to “correct’ imbalance
However, as phylogenetic information be-
comes poorer, cladistic topologies move to-
wards the expectation for completely ran-
dom data, which ordinarily means
becoming more imbalanced (Mooers et al,
1995; Huelsenbeck and Kirkpatrick, 1996)
Colless (pers. comm.) has also run simu-
lations in which cladistic topologies for ex-
tremely imbalanced true trees moved to-
ward the more balanced random
expectation. As a group, Colless’s 20 cla-
distic trees are not distinguishable from
the random expectation (sign test, P = 05
if we ignore the nonindependence issue)
UPGMA phenetic trees, however, do not

move toward random topologies as data
detetiotate, In a nutshell, when data are
poor, cladistic estimates look like the 1an-
dom guesses they should be; phenetic es-
timates are no better at getting a correct
tree (Huelsenbeck and Kirkpatrick, 1996)
and they err toward balanced estimates.
The pattern in Colless’s real data matrices
is exactly the pattern seen previously in the
entirely random matrices.

The third kind of data mustered by Col-
less (1995) was a set of artificially evolved
trees, for which both topology and matri-
ces of character data were cbtained under
reasonable models of evolution. Trees es-
timated by cladistic and phenetic methods
could then be compared with each other
and with the “real” trees by their imbal-
ance values (I), and again cladistic trees
appear consistently more imbalanced than
phenetic ones. Does this mean that the
cladograms are too imbalanced? On closer
examination, the answet is no. Colless’s ar-
tificially evolved trees included 20 species
and were estimated from data matrices of
20 chazacters; these are very sparse data.
Colless broke his trees down into a set of
10 imbalanced trees (049 = I = 10 for the
“real” trees) and 10 balanced ones (0 13 =
I = (0 29), but the cladistic estimates do not
differ in balance between the two groups
(f;s = 135, P = (0 19) and as an aggregate
do not differ from the random expectation
(I =048 £ 0.03 [x + SE] vs. expected [for
20 taxa) I = 0.47 * 002) Similar results
are obtained from data sets with more
characters but with severely homoplastic
data (D. Colless, pers. comm ). In other
words, estimated trees based on very poor
data look little better than random guess-
es, Like his real data matrices, Colless’s at-
tificially evolved trees tell the same story
as his random data matrices. Colless men-
tioned data from a third set of trees gen-
erated with five times as many characters;
for these trees, both cladistic and phenetic
estimates had balance “’close to or identical
with” the real value Colless called this “a
very strange result,” but we do not find it
strange at all—it lines up well with other
results showing agreement among meth-
ods for more reliable trees (Heard, 1992;
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Mooers et al., 1995; Huelsenbeck and Kirk-
patrick, 1996).

In summatry, we do not believe Colless’s
(1995) data show that cladistic and phe-
netic trees always differ in imbalance, and
we do not believe that cladistic methods
perform improperly with respect to im-
balance. Rather, Colless’s data show that
when data are poor and therefore esti-
mates are unreliable, the errors made by
cladistic and phenetic methods differ.
When data are so poor that the true phy-
logeny cannot be recovered, cladistic
methods offer estimates that look like ran-
dom guesses among all possible trees.
Phenetic methods, however, preferentially
produce estimates that are more balanced
although not more correct. We agree with
Colless that there is a difference between
phenetic and cladistic methods but dis-
agree that he has shown that this differ-
ence applies to robust trees. The difference
does serve to undetline the importance of
considering the robustness of trees when
examining patterns in balance

What about differences between clado-
gtams and phenograms when both are
well supported? Such a difference would
be important because it would indicate
that at least one technique is failing to pro-
vide useful estimates of real trees. We ex-
pect that when trees are robust, the meth-
ods will tend to converge on the correct
topology and therefore not differ much in
balance (eg., Huelsenbeck and Kirkpat-
rick, 1996). We do acknowledge that it has
not yet been established whether, in prac-
tice, the methods converge entirely ot
merely approximately or whether they
converge from the same or different ends
of the balance spectrum. The relative bal-
ance of cladogiams and phenogiams,
when these are reasonably reliable at-
tempts at tree estimation, remains open to
question, but we currently see little evi-
dence that it differs much
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