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Explanations for taxonomic diversity ina particuiar c¢lade often implicate evolutionary innovations,
possessed by members of the clade, that are thought to have favoured diversification We review
such “key innovation™ hypotheses, the ecological mechanisms involved, and potential tests of such

hypotheses.
Key innovation hypotheses can be supported by evidence of ecological mechanism and by

comparative 1ests, We argue that both are necessary for convineing support. In fact, few key
inpovation hypotheses are currently backed by either one.

We group ecological mechanisms of diversification in three major classes Diversification
may be spurred by innovations that: I) allow invasion of new adaptive zones; 11} increase fitness,
aliowing one clade 1o xepiaca another; or I increase the propensity for reproductive or
ecological specialization. Xey innovations in different classes are Hkely to produce differeat
evolutionary pattemns, and therefore may be supported by different kinds of ecological evidence.

KEY WORDS: Key itovations, key adaptations, adapiive radiations, diversity, speciation rates,
extinction rates.

INTRODUCTION

Accounting for the diversity of life on Earth, and for patterns of relative diversity
among clades, is a central problem in ecology and evolution. Key evolutionary
innovations (or adaptive breakthroughs, key adaptations, key c¢haracters or key
mutations) are often invoked fo account for the evolutionary success, manifested ag
high taxonomic diversity, of some clades. For instance, the radiation of birds is often
agcribed to their acquisition of flight (Mayr, 1963), while mantle fusion has been
suggested as the cause of Mesozoic bivalve diversification (Stanley, 1968). The
concept of key inmovation lies at the meeting point of ecology, systematics, and
evolutionary biology. Differences in individual or population ecology are held to result
in differences in speciation or extinction rates, and hence taxonomic diversity, among
clades.

Although some authors have emphasized stochastic and historical influences on
patterns of diversity (Eldredge and Cracraft, 1980; Gould, 1980, 1989; Stanley, 1979)
rather than ecological factors, interest in causal explanations of diversity shows litile
sign of abating. There has been continued interest in evolutionary innovations in
general (Larson et af , 1981; McKinney, 1988; Muller, 1950; Raff ef al,, 1990; Stebbins,
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1974) and key innovations in particular (Allmon, 1992; Farrell et al., 1991; Fitzpawick,
1988; Jensen, 1990; Liern, 1990; Mitter ef 4/, 1988; Raikow, 1986, 1988; Staniey, 1990,
Wainwright, 1991). However, although key innovations are frequently invoked to
account for the diversity of particular clades, the link between individual or
population ecology and speciation/extinction rates has often not besn made explicit
The failure to make and test this connection may be largely responsible for recent
criticisrn of such explanations as mere adaptive storytelling (Cracraft, 1990). Linking
subspecific atiributes and supérspecific processes, for instance by framing and testing
hypotheses of key inmovation, Js an essential step toward a full understanding of
evolution (Allmon, 1992; Mawrer, 1989; Stanley, 1979; Stebbins, 1574).

The concept of “key innovation™ as currently applied combines at least three distinet
ecological mechanisms by which waits of individuals may influence speciation or
exfinction Tates. These mechanisms may produce different patterns of evolution and
they may require different soris of supporing evidence. In this review we discuss
definitions and tesis, we outline a three-way classification of key innovations by
ecological mechanism, relating examples from the literature to our classification, and
we discuss expected pattemns of evolution and relevant evidence for sach type.

DEFINING “KEY INNOVATION”

The study of key innovations is hampered by the lack of a single, accepted definition.
Miller (1949) was apparently the first to refer to “key innovations”. Mayr (1963) and
especially Simpson (1944, 1953) provided important early discussions of the concept.
They focused on the imvasion of new adaptive zones (Simpson’s (1944) “quantum
evolution™). A key innovation, then, was an evolutionary novelty which allows the
exploitation of new rcsources or habitats and thus triggers an adaptive radiation.

Use of the term has evolved. While some authors remain close to the original
meaning (Futuyma, 1986, Jablonski and Bottjer, 1990; Larson er o, 1981; Nitecki,
1990; Wainwright, 1991), others invoke key innovations not involving the invasion of
new adaptive zones, explicitly or implicitly using broader definitions (Cracraft, 1990;
Eldredge, 1989; Jensen, 1990; Lauder, 1981; Liem, 1990; Van Valen, 1971; see also
Rosenzweig and MceCord, 1991, for an unusual definition) or discussing triggers of
divessification which do not fit the original definition (Farrell ef ai., 1991; Fitzpatick,
1988; Raikow, 1986; Ryan, 1986; Vrba, 1984; West-Eberhard, 1983).

Clearly, evolutionary novelties which allow organisms to invade new adaptive
zones are not the only kind of iunovations that can be, or have been, causally connected
to diversification. A full accounting of the ways in which features of individual
ecology can be transduced imto increased diversity will include several mechapisms
Nonetheless, it seems appropriate to emphasize the common result of these mechanisms
with a single term, We favor, therefore a broad definition of “key inmovation™: a key
inngvation is an evolutionary change in individual traii(s) that is causally linked to an
increased diversification rate in the resulting clade (for which it is a synapomorphy).
This definition is concordant with that of Brwin (1992), who held that key innovations
“characterize particular clades, and are both necessary and sufficient to explain
diversification within the ¢lade”. Under the original, narrower definition, many of the
“key innovations” found in the literaturs (in particular, those listed here in Tables 2
and 3) would be excluded.

An increased rate of diversification may reflect increased speciation, decreased
extinction, or both, The relative imponance of these two raies in congolling diversity
has been debated (e.g. Gilinsky, 1981), and their contibutions surely vary from case
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to case. Furthermore, increased speciation rates may result from several differsnt
sorts of processes: those favouring the formation, the survival, or the differentiation
of isolated populations (Allmen, 1592).

We intentionally do not restrict the kinds of tait changes which may be considered
as key innovations. Some authors have held that ifnnovations must be qualitatively
new structures or properties, not just gradual or quantitative changes {Cracraft, 1990,
Mayr, 1960; Muller, 1990). On the other hand, Jablonski and Bottjer {1890 explicitly
aliowed "small” changes in function as innovatiops, while Kochmer and Wagner
(1988) discussed size (clearly a quantitative character) in the context of explaining
passetine bird diversity. When considering possible causes of diversification, it does
not seem logically necessary to exclude quantitative differences. In some cases,
furthermore, an “innovation™ may not represent a single evolutionary transition, but rather
a charactex complex or a number of functionally related traits: for instance, those which
together were necessary for insect phytophagy (Mitter er al, 1988), or those involved
in the novel jaw morphology and function of cichlid fishes (Liem, 1974).

TESTING KEY INNOVATION HYPOTHESES

A key innovation hypothesis generally takes the form “clade X is diverse {compared
to its sister clade) because its ancestor and member species possess(ed) trait Y. For
instance, one could hypothesize that infaunal bivalves are diverse because they acquired
mantle fosion (Stanley, 1968), However, such ideas are much easier to propose than
they are to test (Cracraft, 1990; Erwin, 1992). Convincing sappoxt for a hypothesis of
key innovation will include two components: first, an ecological, or “functional”
argument, and second, a comparative fest. :

The ceological/funcrional argument will consist of a hypothesis or set of hypotheses
linking the putative key innovation to increased speciation or decreased extinction rates
(compared 10 the sister group). Por instance, it might postulate that possession of the
key innovation deters predators or parasites, allowing higher population density, which
in turn confers resistance to extinction (see Farrell of al., 1991, for plant latex canals;
Stanley, 1990, for mantle fusion in bivalves). Allmon (1992) has provided a thorough
compendium of possible ecological factors that would increase speciation rates.

Hach hypothesis in the ecological argument may be supported or tested independently,
for instance by comparing extant species lacking and possessing the trait in question.
Howsever, careful tests of this type appeat to be extremely rare. The relevam sort of
ecological argument diffexs greatly among key innovation hypotheses, and in fact provides
the basis of the classification outlined below. The ecological argument is important three
reasons. Rirst, building and testing an ecological argument affords opporiunities to falsify
akey innovation hypothesis. Second, a key innovation hypothesis without some ecological
bagis is arbitary without & mechanism. Third, a well-supported ecological argument can
give a key innovation scenario plausibility.

However, even a detailed argument, based on a unique key innovation and its supposed
consequsnces, represents only a single observation of the trait-diveysity association.
Thus, it is often argned that the observed difference in diversity is only stochastic or
that it is due to some confounding influence (Jensen, 1990; Lander, 1581, 1982; Mitter
et al, 1988). This issue can often be resolved with the use of a comparative test
(Fitzpatrick, 1988; Jensen, 1990; Mitter ef 4/, 1988; Farrell et al, 1991, Weigmann
et al,, in press). A number of clades which independently acquired the same or similar
innovations (preferably in more ox less comparable ecological circumstances) are
compared with their sister clades which lack the innovation in question The
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carrelation of diversity with possession of the presumed key innovation is then tested
statistically, generally with a sign test. The sign test is unfortunately sensitive only to
the direction, not the magnitude, of diversity differeaces: a pattern where sister clades
include 4 and 5 species is treated no differently from one in which sister clades incinde
4 and 500 species. Without much more understanding of expected diversity patterns
among evolving lineages (Guyer and Slowinski, 1991, 1993; Heard, 1992; Savage, 1983)
we cannot predict the noll distribution of diversity differences among sister clades, so
we have no option but to use a non-parametric test despite its lack of statistical power.

“Supporting” a key innovation argument by reference to another diverse group with
a similar innovation does not constitute a rigorous comparative test (Cracraft, 1990}
Rather, the putative key innovation must be clearly (if perhaps broadly) defined a prion,
and all instances of the innovation within a large group of interest must be tabulated.
Alternatively, if a key innovation is suggested not a priori but by its occurence in one
diverse clade, a corpparative test can be conducted using similar innovations in other
clades (perhaps excluding clade that inspired the hypothesis in the first place), Very
few such tests have been carried out (Table 1, 2, 3), perhaps becauss of the difficulty
of defining “similar™ innovations rigorously.

We emuphasize that, alorie, neither a comparative test nor an ecological argument
will be fully convincing. The two are distinct but complementary and mutually rein-
forcing elements of & key innovation explanation. The comparative test esiablishes 2
correlation berween the supposed key innovation and diversity. This suggests bt
doss not demonstrate a causal relationship. The ecological argument establishes and
may test the mechanism by which that causation is thought fo act.

These tosts allow vs to aveid a vexing problem in cstsblishing key innovation
hiypotheses: the problem of multiple synapomorphies (Erwin, 1992, his Figure 1), A
diverse clade may be characterized by many innovations (sysapomorphies), any one
of which might account for the diversity. Since the bounds of the clade whose
diversity newds explaining may also be in doubt, higher or lower taxopomic level
synapomorphies might also need to be considered (Coddington, 1988; Cracrafi, 1990},
In such cases, it may not be clear which tnnovation is implicated in driving diversi-
fication., For instance, Stanley (1990) separately invoked wall plate siructure and
internal fertilization to explain the success of balanoid bamacles, The proponent of &
key innovation hypothesis must demonstrate that one of the multiple synapomorphics
is responsible for the diversification. This is not difficult in principle if both
comparative tests and ecological arguments are brought to bear. Ecological arguments
may establish that only one of the synapomorphies definiug the clade in question
can be causally linked to increased speciation or decreased extinction rates.
Comparative tests can be vsed to examine the association of each synapomorphy
with diversity over a set of clades possessing similar innovations.

" Key innovation hypotheses have been criticized on the grounds that every clade has
at least one synapomorphy, so a creative story-teller should be able to propose a key
innovation hypothesis for every clade. We stress that this is only a problem if the
hypotheses are never tested. Under the serutiny of comparative and scological tests, some
will stand up, and others will be discredited.

THREE BCOLOGICAL ROUTES TO DIVERSIFICATION
Explanations of diversification based on key innovations must be sought in

connections between particular traits of individuals and rates of speciation and
extinction. As we imply above, it will impossible to present a fully comvincing
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explanation without directly considering how innovations and diversification are
linked by the ecology of individuals and populations. There are at least three major
classes of mechanisms for this linkage. We recognize that, as in mwost classifications
of biclogical processes, there are some grey areas. However, the sssignment of a
particular key innovation hypothesis to one of these classes is a first step toward
identifying the kinds of information required to support an ecological argument,

1. “New Adaptive Zone" Key Inncvations

The most frequently discussed type of key innovation is that inn which the appearance
of n povel stracture allows a species to invade s new and relatively empty adaptive
zone, lvading to an adaptive radiation in the absence of competing taxa (Miller, 1949;
Simpson, 1944, 1953). An “adaptive zone” is a general way of life (Stmpson, 1953)
or a set of related piches (Stanley, 1979). The concept is somewhat vague, but none-
theless useful. Some putative “new adaptive zone” key innovations, taken from the
fiterature, are listed in Table 1. This table and Tables 2 and 3 list key innovations which
have been hypothesized, They are not all necessarily well documented or correct. In
fact, the most striking impression give by this iabulation of key innovation hypotheses
is how little effort has been devoted to testing them!

The essential element in explanations of the “new adaptive zone” type is that as
a result of a newly acquired trait, new habitat or resouxces become available The species
or lineage therefore becomes free to diversify without (or with reduced) competition
from other lineages. Not every innovation which results in a change of adaptive zone
would be expected 1o lead to diversification. The “new” {to the lnvading species)
zone might or might not be free of competition (Hardy, 1985), or the new way of
life might be limited in terms of resource availability or opportumity for further
specilization. Mayr (1960) gave several examples of adaptive shifts not followed by
diversification, including the evolution of herbivory by giant pandss. Fuithermore, the
ancestral lineage may continug to diversify in the old adaptive zome (Miller, 1949}
Although reduced competition hay generally been invoked, escape from predators
or parasites moight also be involved when invasion of the new adaptive zone also
jnvolves 8 move to a new habitat or the sdoption of pew sctivity pattems,

Either speciation or extinction rates might be involved in diversification in a new
adaptive zone. Both have been assumed to respond, in macroevolutionary models, to
the proportion of “available™ (competitor-free) niches (Erwin ef al., 1987, Maurer, 1989;
Rosenzweig, 1975; Sepkoski, 1979, 1984; Walker and Valentine, 1984). Extinction
rates might be expected to decrease with reduced competition, cither because the threat
of competitive exclusion is removed (Bengtsson, 1989; Gause, 1934; Ricklefs, 1990,
p. 438ff; Stanley, 1987, p. 85), or because species with larger ranges {compelitive
release, Dismond, 1975; Karron, 1987) or higher population densities (Pimm er al, 1985;
Schoener, 1991) are more resistant to stochastic extinction. Speciation rates, on the
other hand, are likely to increase as larger ranges and population sizes result in
increased production and survival of peripheral isolates (Allmon, 1992; Farrell &7 al,
1991; Rosenzweig, 1975; Vermeij, 1977), or “diversifying selection” could lead fo the
exploitation of various unutilized resowrces, (Miter ¢ al, 1988 Rosenzweig and
Taylor, 1980).

Mitter ef al. (1988) considered insect phytophagy as a key innovation in one of the
few well documented examples (Table 1), They examined independent origins of
phytophagy and found the resulting phytophagous clades to be consistently (11 of 13
times) more diverse than their sister clades. They also discussed (but did not test)
several possible “new zone™ ecological argumenis for the canse of this difference
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These include the large resource base of plant tissues, the rarity of competition among

phytophagous insects, and the diversity of niches available to phytophages, all o
whgeh may contribute to reduce extinction rates and to increase the establishment and
survival of peripheral isolates,

Because “pew zons” Xey innovations are associated with cimnpty, orat least underexploited.
adaptive zones, they might be expected to show 2 broad-scale temporal pattern, Suck
kev innovations should have been most common early in the history of life, and perhaps
fotlowing mass extinctions (Hansen, 1987; Rosenzweig and McCord, 1991; but see Erwin
et al., 1987). Unfortunately, well-understood examples of type 1 key innovations are
oo few (if indeed any gualify as “well-understood”) to evaluate this prediction. In
conirast, this pattem is not 1o be expected in either of the other two types of key innovation
we discuss (pattern differences among types of key innovation ave summarized in Table
43.

Myers {1960), Staniey (1975), and others have discussed the anslogous situation
where radiation occurs after ceianézasma of & new geographical ares, such as &
new lake or island, rather than a new adaptive zone. Erwin (1992) treats these as
“aconomic”, as opposed to adaptive, radiations. While such radiations do not depend
on evolutionary novelty, 5o there is no key innovation, they do depend on gcologival
opportunity and would be expected to produce similar patterns.

Arguments of the “new zone” type are largely dependent on strong effecis of
interspecific competition on community structuxe, although escape from predators o
parasites might also be invoked, The extent and imporance of such effects have
been disputed (Connell, 1983; Goldberg and Barton, 1992; Gurevitch & al, 1992
Roughgarden, 1983; Schoener, 1983; Strong ef al., 1984s; papers in Strong ef ¢f, 1984b),
and at some times or for some groups competitors may not be imposiant
Furthermore, Stanley (1974) has advanced an opposite argument, that diversification
may be slower under reduced competition. Merely demonstrating reduced numbers
of compeltitors in a pew adeptive zone is not, then, sufficient to justify a hypothesis
of key innovation; the ecological and comparative arguments are essential.

It. “Inereased Fitness” Key Innovations

Not all evolutionary innovations produce the soris of adaptive shifts discussed
above; more likely, only a small fraction do so. However, evolutionary changes which
increase individual fimess, such as increases in feeding efficiency or pathogen
resistance, shouid be common whenever selection operates. Can an innovation which
simply confers increased fitness produce diversification in the lneage possessing it
at the expense of other lineages? Such arguments appesr in the Hwrature (Table 2,

We include here at Jeast fwo cases originally proposed as potential “new adaptive
zong” key inmovations, Berenbaum (1983) and Farell e al {2992} following Ehrlich
and Raven (1964; ses also Van Valen, 1971) considered innovations in plant chemistry
that reduce herbivory as invasions of new adaptive zonss, However, if chemical defenses
affect geographical range and niche breadth only indirectly via reduced herbivory, it
seems more appropriate 1o see this as increased plant fitness rather than enlry into
& new way of life. This corresponds 1o the use of the werm “adaptive zone” in a slightly
narrower sense, one perhaps clogser to the original meaning (Simpson, 19353; see also
Wainwright, 1991

The em:togicai arguments supporting “increased fitness” key innovations are similar
to those for “new zone” key innovations, but the avoidance of competitors is not involved.
Instend, increased competitive ability attained dhrough such changes as increased
efficiency of water use (Knoll, 1984), decreased predation or parasitism {(Berenbaum,
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1983; Paxrell et al,, 1991), or faster growth rates (Stanley and Newman,1980) is usually
invoked. This results in an expanded geographic er ecological range, or increased
population density, which in tum is translated into increased speciation and/or decreased
extinction rates through svccess of peripheral isolates as was the case for “new zone”
key imnovations,

One of the best documented cases of an “increased fitness” key innovation is that
of latex and resin canals in plamts (Farrell er al, 1991) Of 16 clades which evolved
these structures mdependenﬂy;and for which sister groups are known, 13 are more diverse
than their sister clades, This is strong evidence that possession of canals does spur
diversification. The ecological argument involves increased fitness via herbivore
resistance. The hypothesis that possession of canals reduces herbivory and protects
against pathogens is well supported for many taxa. Farrell et ol (1991) also found that
canals have population-level consequences: Peruvian species with canals have greater
niche breadth and local abundance than sympatric relatives lacking canals. Greater
abundance impedes extinction (Pimm er al, 1988; Schoenes, 1591). With both a
comparative test and a relatively well-supported ecological mechanism, the resin
canal example is probably the most convinging arpument to have been made for the
role of a key innovation.

The range expausion or increased population density arising from a type II Key
innovation is usually supposed to come at the expense of one or more other 1axa, through
competitive displacement, Therefore, “increased fimess™ key innovations, unlike the two
other types we discuss, may be assoclated with a paleontological pattern of competitive
replacement. Such patterns, however, are difficult to document and have recently been
in disfavor (¢.5. Benton, 1987; Cifeili, 1981; Gould and Calloway, 1980; Marshall =
al., 1982; Rosenzweig and McCord, 1991; Valentine 2f al., 1991). It has been suggested
thaz competitive displacement is more COmMmon amMONE piants than among other organisms
(Knell, 1984). Mechanisms which do not directly involve competition, such as increased
tesistance to ablotically induced extinetion, have received less attention (but see
Benton, 1987),

Iil, “Specialization” key Innovations,

The third route for the production of diversity involves innovations which increase
potentzai for reproductive or ecological speciahzatwn The result of such an innovation
is likely to be an increased specistion rate and an increase in the number of species
which coexist within a clade. While reproductive and ecological specialization may
involve different characters and different ecclogxcat processes, we treat them together
to empbasize major similarities. Most important is that because specialization allows
subdivision of a niche or range, the increase in species number resulting
from type I key innovations need not invoive either an adaptive shift (tvype [ key
innovation) or the competitive dispiacemsnt of any other species (ype I key inmovation)
Indeed, as Stanley (1990) implies, in type III scenarios the innovation in quesuan need
not necessarily be adaptive at the individual level, Examples of type Il key innovations
proposed - in the literature are listed in Table 3.

A} Reproductive specialization

Reproductive “specialization” key innovations result directly in an increase in the rate
of formation of small, isolated populations. Evolutionary changes in dispersal capabi-
litles which have consequences for diversity are an example. The correlation
between non-plankiotrophic larvae and species diversity has been well studied in both
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motlluscs (Coben and Johnston, 1987; Hansen, 1980, 1983; Jublonski, 1980, 1982, 1986;
Schelterna, 1971, 1977, 1978; Shuto, 1974) and cheilostome bryozoans (Taylor, 1988),
Planktotrophic larvae in both groups have greater dispersal abilities than do non-
planktotrophic forms. Species with planktotrophic larvae should therefore have larger
geographic ranges and higher rates of gene flow compared to non-planktotrophic forms
(Gooch, 1975; Janson, 1987). Differences in gene flow can have direct effects
on speciation rates: non-planktotophic forms, with their tendency to fonn genetically
isolated populations, speciate more often. A similar correlation between reduced vagility
and diversity has been identified in other taxa (Templeton, 1979, Drosophila; Echelle
and Kornfield, 1984, fish; Viba, 1987, mammals; see also Rosenzweig, 1973).

An important caveat comes from Bleiweiss’ (1990) work on hummingbirds.
Bleiweiss compared vagility and ecological specialization between the Phasthorgithinee
{approx. 35 species) and the Trochilinae (approx. 295 species). In this case, the
diverse trochilines are bofh more vagile and less ecologically specialized than the
depauperate phaethomithinines. Similar examples of a positive comelation between
incressed vagility and diversity have been found in molluscs (Vermelj, 1987) and
ungulates (Vrba, 1980, however, vagility in this example is confounded with ecelogical
specialization), and argued for spiders (Zeh and Zeh, 1589). These counter examples
illustrate an important point: hypotheses involving the effect of vagility on diversifi.
cation depend on the geographic context in which the radiation takes place. Although
vagile species may experience incressed gene flow between populations, they may
also be superior colonizers of new regions (MacArthur and Wilson, 1967; Williamson,
1981; Zeh and Zeh, 1989). Intermadiate levels of vagility may actually promote
speciation (Allmon, 1992; Taylor, 1988), Bleiweiss (1950} argues that that this is
most likely to be the case when there is exireme environmental heterogeneity or
topographic complexity. In a similar vein, Slatkin (1987) has discussed situations
where gene flow between populations might promote the production of reproductively
isolated populations.

In reviews of parasite biology Price (1977, 1980) discussed changes in population
structure that are likely to follow the adoption of a parasitic habit. Two important
features of parasite population structure are a high frequency of founder cvents as
single females duplication give tise to populations in new hosts, and highly fractionated
gene pools as parasite populations in different host individuals are isolated from one
another. Combined with high reproductive rates, these can lead to rapid differentiation
of populations, so Price (1977, 1980) suggested that parasitism should be linked to
diversification, However, thid prediction has not been well tested. It appears not to
bold for camivorous parasitic insects; parasitic insect clades are if anything less
diverse than their non-parasitic sister clades (Wiegmann ef ol , 1993),

Changes in mating systems (reproductive morphology or behavior) which incieass
the likelihood of reproductive isolation have also been associated with increased
speciation rates. For instance, female preference for mating calls is an important
behavioral isolating mechanism in frogs, no two species having the same call (Blaw,
1964; Capranica, 1976). Ryan (1986) found a strong correlation among families of
anurans between species diversity and the complexity of the amphibian papilla of the
inner ear, More complex papillze allow detection of a greater yange of frequencies
(Lewis, 1981) and presumably allow a greater diversity of recognizable calls. A similay
Argument has been advanced for diversity and the passerine syrinx (Fitzpatrick, 1988;
Raikow, 1986; Vermeij, 1988} The cansality has also been srgued in reverse; species
in more diverse clades may be under more pressure to evolve effective species-
recognition mechanisms (Williams and Rand, 1977). Here a good phylogenetic recon-
struction, including the relevant character state transitions, Is indispensable If
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flexibility in mating calls is conferred by an innovation that arose once in the clade’s
common ancestor, mating call diversity can be a cavse of taxopomic diversity but not
a result of it.

West-Eberhard (1983) has discussed the connection betwesn sexual selection and
high speciation rates in detail. In general, innovations which result in & greater potential
for sexual selection increase the probability of morphological diversification and
speciation. Templeton (1979; see also Carson, 1978) invoked a combination of strong
sexual selection due to lekking behavior and repeated founder effects to acconnt for
the diversity of Hawatiaw Drosophila Furthermore, other imnovations in mating
systermis may be especially efficient at producing diversity when they are exposed
to sexusl selection, which can produce very rapid evolutionary change {(O’Donald,
1977) and reproductive isolation (Ringe, 1977).

A propensity smong certain plant lineages to form Polyploids and especially
zmphiploids (Jackson, 1976; Lewis, 1980) might aiso be thought of a a type I key
innovation. Because polyploidy results in immediate reproductive isolation, iincages
where it is conmon should have high speciation rates {Stebbins, 1982). Levin and Wilson
{1976) found a positive correlation between high chromosome numbers  (which reflect,
in part, the ocourence of polyploidy) and species diversity in seed plants.

B} Ecological specialization

Increased ecological specialization may also produce diversification, although less
directly than is the case for reproductive specialization. Here, reproductive isolation
must avolve secondarily, possibly as a consequence of different habitats or selection
againgt intermediate forms.

An important set of key innovations make further morphologicel, physiological, or
behavioral specialization possible (“morphopotentiality’). For instance, new structural
features in the pharyngeal jaw of labroid fishes are said to have freed the oral jaws
from the task of food preparstion, allowing them to specialize for food collection
{(Fryver and Iles, 1069; Jengen, 1990; Liem, 1974; Liem and Osse, 1975; Stiassney and
Jensen, 1987). As a result the clade bas been able fo “specialize progressively into
diversified subzones, ramifying prodigiously” (Liem, 1974, p. 425). Cichlids, the largest
family of labroids, have adapted the oral jaw for such diverse roles as moiluse
crushing, fish capture, and phytoplankton grazing, Note that increased morphopotentiality
in reproductive structures (genitali) would be expected to produce diversity by
“reproductive specialization”™ route.

The connection between scological specialization (stenotopy) and diversification
has been discussed by several authors (Eldredge, 1979; Eldredge and Cracraft, 1580,
Novacek, 1984; Stanley, 1985; Vrba, 1980, 1983, 1984). The usual argument hoids
that ceological generalists are less sensitive o environmental variation and therefore
less prone to isolation and divergent selection among populations than specialists. An
evelutionary change favoring specialization that persists in descendent taxa can cause
increased diversity in the resultant clade. This is an “effect” in the sense of Vrba (1980,
1983). For instance, Vrba (1984:76) argues that directional selection “auts on populations
whose resource base has been removed or severely altered by environmental change”™.
Narrowly specialized species are miost likely to be affected, while generalists with
alternative habifats are more likely to be under stabilizing selection. Vrba (1984)
accounted in this way for the high diversity of alcelaphines (wildebeest and relatives},
which require open grassland, compared to their sister taxon, the impala, which is
more flexible and feeds in bush, grassland, and ecotones,
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Benton {1990) connected increased ecological specialization and diversity on a ruch
broader scale. Me invoked increasing specialization over geologic time to account for
increasing world-wide taxonomic diversity over the Phanerozoic. This hypothesis was
supported by a pattern in increased alpha (single site) diversity in well-preserved
terrestrial tetrapod assemblages from the Carboniferous through the Tertiary. Howgver,
Benton {1990) did not atternpt to explain diversity in pasticular clades.

Becausé both reproductive and ecological “specialization” key innovations involve
niche subdivision rather than niche expansion, species in a more diverse clade might
often be expected to have smaller geographic ranges or population densities. Viba
¢1984) teported that most alcelaphines have low population densitics comparcd o
impalas, their low-diversity sister taxon. As a result, “specialization” key innovations
are not likely to be linked to low extinction rates. In fact, small ranges and low population
densities may result in relatively high extinction rates (Hansen, 1980; Staniey, 1550,
Taylor, 1988), so high net diversification must be driven by high speciation 1ates.
This stands in sharp contrast to the situation for type I and I key innovations, where
species in the more diverse clade might have equal or greater ranges or densities, and
therefore alsc lower extinction rates.

Type Il and multistep key innovations

Some key innovations may be difficnlt 1o identify or classify because evolufionary
changes triggered by a type I key innovation are themselves key innovations of another
type. After a type ITI key innovation, a clade will produce many more specialized variants,
which may only subdivide the niche occupied by the ancestral species. However, some
varignts may alse expand beyond the ancestral niche. A possible consequence of the
proliferation of forms, particularly when the specialization is ecological, is the production
of new species that are capable of exploiting new resources or habitats, or which represent
“improvements” that can displace competing taxa. In other words, the initial propensity

Figare 1 A hypothetical phylogeny illugtrating the wndency for type Il key innovations to trigger funther,
secondary radiadons, The type Il koy innovation vonferred on the lineage a propensity to fom isolates and/
or variants, resulling in the first radiation Some of these variants themselves possessed innovations that atiowed
them either to invade & new adaprive zonc {type I key inmovation) or 1o displace other taxa compotitively
(type T koy innovitiony, in sach case a secondary vadistion rosulted.
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for specialization arose as a type III key innovation, but some of the particular changes
producing specialists may in turn constitute type I or type Il key innovations and produce
secondary radiations (Figure 1), When this occurs it dramatically accelerates
diversification of the clade as a whole.

For instance, returning to the case of labreid ﬁshes, the trigger for diversification
has been argued to be morphopotentiality in oral jaw design (Jensen, 1990). This
presumably allowed 2 generalist-feeding ancestor to radiate, producing many
specialized descendents: a type I key innovation in our scheme. However, some of
these descendents possessed features that allowed them 1o exploif resources not available
to the generalized ancestor (Liem, 1974). Features which correspond to type I key
innovations may have lad 1o secondary radiations. Alternatively, some descendents may
have acquired fitness advantages over their potential competitors (type II key innovations;
Liem and Osse, 1975). A clearer picture of the relative roles of specialization and the
invasion of new adaptive zones in labroid diversification will tequire (at lsast) more
detailed knowledge of labroid phylogeny and paleoecology.

In an argument that may be related, Vermeij (1973) held that there is a geperal
trend among plants and animals toward greater vessatility of form, and that this has
resulied in increased mechanical efficiency and effectiveness in exploiting resources.
This would imply a role for versatlity in producing advances in fitness, some of
which might be type 11 key innovations.

Table 4 Summary of major differences in palterns of evelution expected to result from types I, 1, and I
key inpovations,

Pattern type 1 type I type HI
more commorn early in earth history (or afier mass extinctons) Yes No No
associated with competitve replacement of other taxa No Yes No
change in averngs geographic range or population density in

species possessing the key innovaton likely T T likety L
CONCLUSION

A full understaﬂdmg of evolution, diversity, and the history of life will require careful
study of the ways in which traits of individusls influence spemaﬂon and extinction
rates. When evolutionary change in an individual trait or traits is vesponsible for
increased diversification, we recognize the new trait(s) as a key innovation.

Convineing support for a hypothesis of key inmovation will incleds both 2
comparative test and an well-sapported argument for an ecélogical mechanism. Very
few studies have mustered beth, and a large number of key innovation hypotheses lack
any such support (Tables 1-3). The acaingical mechanisms for key innovations suggested
so far fall into three major classes: invasion of new adaptive zones, increases in fitmess
generally leading to compelitive replacervent, and increased propensity for specialization,
gither reproductive or ecological.

Key innovations with different ecological mechanisms are likely to show different
evolutionary patterns (surnmarized in Table 4) and they will be supported by different
kinds of evidence. Assigning a key innovation hypothesis to one of the three classes
provides guidance for the design of tests and development of a supporting ecological
argument. For instance, atypz I or II hypothes;s would be supparted by data suggesting
oreater averace nomilation densitv in snecies possessine the kev innovation, while a tvpe
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11 hypothesis would be undermined by the same data. Grouping putative key innovations
as we do hete improves our ability to construct and fest clear, unambiguous, and wseful
key inmovation hypotheses, and therefore ultimaiely to understand the evoluticonary
processes that le behind patierms of taxonomic diversity.
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