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PATTERNS IN TREE BALANCE AMONG CLADISTIC,
PHENETIC, AND RANDOMLY GENERATED
PHYLOGENETIC TREES
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Abstract.—1 examine patterns in tree balance for a sample of 208 cladograms and phenograms
from the recent literature. I provide an expression for expected imbalance under a simple, uniform-
rate random speciation model, and I estimate variances by simulation for the same model. Im-
balance decreases with tree size (number of included taxa) in both theoretical and literature trees.
In contrast to previous suggestions, I find cladistic trees to be no more imbalanced than phenetic
trees when confounding variables are appropriately controlled. The degree of imbalance found in
literature trees is inconsistent with the uniform-rate speciation model; this is most likely a result
of variability in speciation and extinction rates among real lineages. The existence of such variation
is a necessary (but not sufficient) condition for the operation of the macroevolutionary processes

of species sorting and species selection.
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Phylogenetic trees, and their (intended)
close relatives cladograms and phenograms,
vary in their balance —that is, the degree to
which branch points define subgroups of
equal size (Fig. 1). Balance is an interesting
attribute of phylogenetic trees because pat-
terns in balance can reveal important fea-
tures of the underlying evolutionary pro-
cess. In particular, balance is influenced by
the degree of variability of speciation and
extinction rates among lineages; the more
variable either rate, the less balanced (on
average) the resulting trees. Variability in
these rates provides the raw material for
species sorting (sensu Eldredge, 1989), which
has been suggested (e.g., Vrba and Eldredge,
1984) to reflect important macroevolution-
ary processes.

Patterns in balance of estimated phylo-
genetic trees (the cladograms and pheno-
grams produced by systematists) might,
however, also reflect choices in definition
and inclusion of taxa to be analyzed or prop-
erties of the estimation algorithms. For in-
stance, it has been suggested (e.g., Colless,
1982; Shao and Sokal, 1990) that cladistic
trees tend to be more imbalanced than phe-
netic trees (but see Savage, 1983). Such pos-
sible methodological influences must be
ruled out or controlled before patterns in
balance can be related to evolutionary pro-
cesses, or before balance can be compared
between clades.
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Finally, the degree of balance in any par-
ticular clade is partly a result of stochastic
events in its evolution. We need to disen-
tangle the effects of evolutionary process,
methodology, and stochasticity in shaping
tree balance. Statistical analysis of large sets
of estimated trees can achieve this end by
identifying patterns in tree balance and par-
titioning variance in balance among sources.

I examined patterns in balance of 208 es-
timated trees, both cladistic and phenetic,
taken from the recent literature. I applied
an index (defined below) which measures
imbalance, ranging from O for a perfectly
balanced tree (Fig. 1a) to 1 for a perfectly
imbalanced one (Fig. 1b). I used this data
set to explore three aspects of the deter-
minants of balance.

First, I examined some possible effects of
methodology on balance. I tested the sug-
gestion of Colless (1982) and Shao and So-
kal (1990) that cladistic techniques yield
more imbalanced trees than phenetic tech-
niques. If this is true, one method must have
a systematic bias in tree estimation, which
would be unfortunate as each method is of-
ten (although not always) intended to re-
construci true evolutionary trees. I also ex-
amined two other features of systematic
analyses: type of data (molecular or mor-
phological) and taxonomic rank of the an-
alyzed taxa. Differences in balance among
taxonomic ranks have been addressed by
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Dial and Marzluff (1989) and Anderson
(1974), using classifications rather than
phylogenies, and by Guyer and Slowinski
(1991).

Second, I examined trends in balance with
tree size (number of included taxa). Ex-
pected frequencies of tree topologies vary
with tree size under several theoretical mod-
els (Savage, 1983) for combinatorical rea-
sons (Page, 1991). Therefore, it is very likely
that size will also affect the balance of sam-
ples of estimated trees.

Third, having controlled or rejected
methodological influences, I compared the
balance of estimated trees to that predicted
by a simple model of random evolution with
constant rates of speciation and extinction.
Deviation of balance from this model can
result from variability in speciation or ex-
tinction rates among real lineages, as sug-
gested by Raup et al. (1973). I discuss some
implications of patterns in balance for mac-
roevolutionary models.

MATERIALS AND METHODS
1. Index of Imbalance

I used a corrected version of Colless’
(1982) index to assess imbalance. I used a
calculated statistic rather than analyzing
frequency distributions (e.g., Guyer and
Slowinski, 1991) because it facilitates com-
parisons and because for large trees the
number of possible topologies becomes ex-
tremely unwieldy. The index is computed
as follows: for every interior node in a tree
of n taxa, count the number of terminal taxa
subtended by the right hand branch (7%)
and the number subtended by the left hand
branch (7). Then calculate:

> | Tp — Ty

I __ all interior nodes (1)

T (n- D - 2)2

which ranges from O (perfect balance; Fig.
la) to 1 (complete imbalance; Fig. 1b). A
score of 0 may be attained only by a tree
with n equal to a power of 2; otherwise,
perfect balance is not possible. The nor-
malizing denominator is corrected from
Colless (1982), who mistakenly used [(n)(n
- 3) + 1})2.

Shao and Sokal (1990) discuss several in-
dices which measure imbalance in slightly
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Fic. 1. Completely balanced (A) and imbalanced
(B) 8-taxon phylogenetic trees.

different ways. I have used Im because it is
simple and intuitive; it is highly correlated
with other indices. Three points are ger-
mane to the choice of an index.

First, Im cannot be applied to trees with
polytomies, whereas some indices can be.
However, polytomies probably represent
incomplete knowledge (“unresolved nodes™)
far more often than they do true multifur-
cative evolution, and little is to be gained
from the study of the topology of such trees
(although particular well-resolved clades
within such trees might be of interest). Un-
less the polytomies are thought to indicate
real multifurcations, a tree with such nodes
should be disregarded in studies of balance.

Second, some of Shao and Sokal’s (1990)
indices are normalized to range from O to
1 for every tree size. However, normaliza-
tion to O is unsatisfactory because a tree
whose size is not a power of 2 can never be
perfectly balanced (recall Fig. 1a). Im as 1
define it does not have this disadvantage;
the other indices could be improved by nor-
malizing to 1 but not to O.

Finally, Shao and Sokal (1990) recom-
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mend the use of normalized indices [their
14(3), Is(3), B,(3), and B,(3)] to allow com-
parison of trees with different numbers of
taxa. As I establish below, tree size is indeed
an important determinant of balance. How-
ever, none of their indices is actually size-
independent: expected values (under the
random speciation model) of I(3) and I(3)
decline with tree size, while B,(3) increases
and B,(3) changes nonmonotonically. Val-
ues for estimated trees behave similarly.
Tree size must be taken into account with
any index, at least for small trees or trees
of markedly different sizes.

2. Balance under a Simple Random
Evolution Model

Expected distributions of the balance in-
dex were obtained for a null hypothesis of
random, constant rate speciation. This is
equivalent to the “Markov null model” of
Simberloff et al. (1981). Results apply
equally to a somewhat more elaborate mod-
el which incorporates random extinction.

The expected value of Im for samples of
n-trees is given by

E(Im)
(n — 1)(n }22 ; (n even).
2n 1 d”1
g T— 2)[; + E 7] (n 0odd)
2

A derivation of equation (2) is provided in
the Appendix. However, to find the vari-
ance of Im analytically (needed for statis-
tical testing) would be exceedingly complex.
Frequency distributions could also, in the-
ory, be worked out using the methods of
Page (1991), but as the number of possible
topologies increases very rapidly with tree
size (Simberloff et al., 1981), this would be
prohibitively time-consuming for trees larg-
er than five or six taxa.

A simulation method proved to be the
most practical for obtaining the variances
of balance distributions, and for drawing
subsamples to compare with samples of ob-
served trees. A computer program (written
in BASIC) was therefore used to generate
balance distributions. The algorithm began
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with a pair of taxa, and at each iteration
chose one at random to split (speciate), giv-
ing a tree with one more taxon than in the
previous iteration. Each run produced one
phylogenetic tree of the desired size, with a
particular topology and set of divergence
times (equivalent to a dendrogram in Page,
1991). Ten thousand trees were generated
for each tree size from 4 to 14, and Im cal-
culated and recorded for each. Mean values
for the simulation results matched the the-
oretical values (equation 2) closely. Al-
though for the smallest tree sizes distribu-
tions could have been worked out by hand,
I chose to use the simulated distributions
for the sake of consistency.

At least two other models for expected
topology frequencies have been discussed:
the equiprobable-trees model (Simberloff et
al., 1981) and the proportional-to-distin-
guishable-types model (Rosen, 1978; Sim-
berloff et al., 1981). However, these are
based only on assumed uniform distribu-
tions of tree shapes; they might be realistic
only if systematists did no better at tree re-
construction than random choices among
all possible trees. Only the random specia-
tion model is underlain by any plausible
evolutionary process (Page, 1991; Savage
1983). The failure of the equiprobable and
distinguishable-types models to fit evolu-
tionary data (Savage, 1983; but see Guyer
and Slowinski, 1991, for 5-trees) is therefore
unsurprising, and I discuss these models no
further.

3. Data Compilation

Recent issues of 12 journals were sur-
veyed for published trees (Table 1). All trees
that met the following conditions were in-
cluded: a) Between 4 and 14 taxa included.
Sample sizes for larger trees would have been
too small for useful analysis; only one to-
pology is possible for smaller trees. b) No
polytomies. As discussed above, Im is ap-
plicable only to fully resolved trees, and lit-
tle would be gained from the study of the
topology of unresolved trees. ¢) Analyzed
taxa of consistent rank. Trees including taxa
of very different rank (e.g., “Arthropods”
and “Mus musculus’) were omitted. In a
very few cases, trees with most taxa being
species (or genera) but a few species (or gen-
era) further broken down were included af-
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ter lumping the taxa of lower rank. d) Meth-
od of analysis (cladistic/phenetic) and type
of data (molecular/morphological) reported
(only a few trees lacked this information). I
did not discriminate among methods within
the phenetic and cladistic classes, although
there may be some differences (e.g.,
UPGMA versus single-linkage pheno-
grams; Rohlf, 1982). I did not distinguish
between strongly and weakly supported
trees, nor did I require that trees included
all members of the presumed monophyletic
group. The latter point was addressed by
Guyer and Slowinski (1991), who found that
random omission of taxa from ‘“complete”
trees did not affect conclusions about tree
balance.

For each selected tree, I recorded size, the
imbalance index Im, the type of analysis
(cladistic or phenetic), the type of data (mo-
lecular or morphological), and the rank of
the analyzed taxa (populations/subspecies,
species, or higher taxa). If the tree included
outgroups, the number of taxa and Im were
recorded both with and without the out-
group(s). The values without outgroups were
used in all analyses (except as noted), be-
cause outgroups (by definition) are not part
of the groups of primary interest in system-
atic analyses.

In a few cases, two trees based on different
analysis types or data types were reported
for a single set of taxa. In these cases, if an
analysis drew a contrast such that one tree
was in each group, both were retained; but
otherwise, one tree was selected at random
to avoid pseudoreplication. A full list of trees
used is available on request.

4. Comparisons and Statistical Testing

A number of tests were used to examine
patterns in Im, contrasting different sets of
estimated trees and comparing estimated to
randomly generated trees. Expected distri-
butions of Im are discrete and highly non-
normal; therefore, randomization and
Monte Carlo methods [using microcom-
puter programs written in BASIC and SAS
Version 6.03 (SAS, 1988)] were applied.
These methods eliminate the need to meet
the continuous distribution and normality
assumptions of standard statistical testing
(Manley, 1991). Because not all the analyses
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TABLE 1.
nograms.

Journals surveyed for cladograms and phe-

Journal Volumes?

Annals of the Entomological

Society of America 78-83
Biological Journal of the
Linnean Society 24-36, 39-41b

Botanical Journal of the
Linnean Society
Canadian Journal of

90-98, 102-104b

Botany 63-68
Canadian Journal of

Zoology 63-68
Cladistics 1-6
Evolution 39-44
Molecular Biology and

Evolution 3-7
Plant Systematics and

Evolution 149-173
Systematic Botany 10-15
Systematic Zoology 34-39

Zoological Journal of the

Linnean Society 84-95, 98—-100P

2 Covering 1985 to 1990 inclusive.
b Some volumes not surveyed due to incomplete library holdings.

use standard packaged procedures, I de-
scribe the major ones in some detail here.

a) Sources of variance in Im among es-
timated trees. I began by running two 4-way
ANOVAs (SAS, PROC GLM) on the com-
piled data: one using standard parametric
methods, and the other with all Im values
replaced with their ranks. The discrete, non-
normal distributions of Im violate the as-
sumptions of the parametric test, and the
fact that the distributions of Im differ across
tree sizes violates the assumptions of both
tests. However, they were still useful as a
first pass at the data. In particular, since the
type of data (morphological versus molec-
ular) explained almost no variance (F <
0.25) in either test, this variable was dropped
from subsequent analyses.

To examine the importance of analysis
type and taxon rank, I performed separate
analyses for each tree size (4 to 14), except
that I was forced to pool some larger size
trees (10 with 11, 12 and 13 with 14) to
attain useful sample sizes. This procedure
avoids difficulty with the dissimilarity of
distributions of Im for small trees; for larger
trees Im distribution changes relatively lit-
tle in mean (Fig. 2) or shape. For each size,
I ran a 2-way ANOVA (SAS PROC GLM),
evaluating significance by randomization (as
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Fig. 2. Mean imbalance for 195 estimated trees
and expected imbalance for the random, uniform-rate
specication model. Bars for estimated trees are two
standard errors (jackknifed estimates); due to severe
non-normality, for the smaller sample sizes two stan-
dard errors are only a very approximate 95% C.I. Num-
bers with data points are sample sizes. Expected values
for the random model are from equation 2; symbols
cover two standard errors (bootstrapped, from simu-
lations, 10,000 trees for each size).

detailed in Manley, 1991). I combined the
tests for different tree sizes, which are in-
dependent under the null hypothesis of no
effects, using Fisher’s method (Manley,
1985, his case 2). This procedure yields a
powerful, single chi-square test, while still
controlling effectively for tree size.

Finally, to verify the effect of size in es-
timated trees, I used a regression analysis,
pooling across analysis type and taxon rank
(nonsignificant in the test above). Although
the Im values themselves are discretely and
non-normally distributed, the mean values
for each tree size should be much less so
(central limit theorem). Therefore, I re-
gressed the means against tree size, weight-
ing by sample sizes (Kleinbaum et al., 1988).

b) Comparison of estimated trees with the
random, uniform-rate speciation model.
Mean Im values for estimated trees were
tabulated by tree size, pooling across data
type, analysis type, and taxon rank. Because
of the severe non-normality of expected bal-
ance distributions, each tree size sample was
compared to the distributions for the ran-
dom model using a Monte Carlo procedure.
Ten thousand samples (of the appropriate
number of trees) were drawn from the sim-
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ulation Im distribution for that tree size,
and the fraction equal to or exceeding the
observed values was recorded. These in-
dependent P-values were combined using
Fisher’s method to give a single overall test.
This procedure treats the sample of 10,000
simulations as if it were the population; the
error introduced by this approximation is
very small.

RESULTS AND DiscussION

1. Imbalance of Randomly Generated
Trees

Expected values of Im for trees generated
under the model of random speciation (and
extinction) decline markedly with tree size,
even though Im is normalized to range from
0to 1 (Eq. 2; Fig. 2). This has the important
implication that comparisons of imbalance
must always be controlled for tree size. The
importance of tree size for imbalance echoes
its importance in determining phenogram
estimation accuracy (Astolfi et al., 1981),
and suggests that tree size might influence
other tree properties. I control for tree size
in all analyses reported here, except as noted
(“naive” test, below).

2. Imbalance of Estimated Trees

In the 4-way (data type, analysis type, tax-
on rank, tree size) ANOVAs, data type ex-
plained almost no variance (parametric F =
0.08, P = 0.8; ranked F = 0.21, P = 0.6).
The unimportance of this factor is so clear
that more robust (and complicated) analy-
ses were considered unnecessary. Data type
was omitted from subsequent analyses.

Analysis type and taxon rank had no sig-
nificant effects on balance in the combined
2-way ANOVAs (analysis type: X2 = 20.59,
df= 16, P = 0.805; taxon rank: X2 = 20.56,
df=16, P =0.804). Further analyses pooled
across both factors. Mean imbalance values
are plotted in Figure 2.

The unimportance of analysis type con-
trasts with the suggestions of Colless (1982)
and Shao and Sokal (1990). In fact, a “na-
ive” t-test, which deliberately neither con-
trolled tree size nor removed outgroups from
cladograms, found cladograms less bal-
anced (although the difference was of mar-
ginal significance; randomization P = 0.059).
This can be accounted for on the grounds
that cladistic trees were smaller (Wilcoxon



TREE BALANCE

test, normal approximation, Z = 2.82, P =
0.0048; and small trees are more imbal-
anced), and trees with outgroups (always
cladograms) were more imbalanced (43
more, 7 less, 7 equal; sign test P < 0.0001).
Clearly, although artificial data sets can be
constructed for which the methods disagree
markedly on topology (E. Theriot, pers.
comm.), comparable samples of real cladis-
tic and phenetic trees are indistinguishable
in terms of balance; the previous sugges-
tions appear to have been ill-founded.

The unimportance of taxon rank is con-
sistent with the results of Dial and Marzluff
(1989) for classifications. On the other hand,
Guyer and Slowinski (1991) found that trees
of genera were more balanced than those of
species. This lack of agreement is puzzling,
and the topic is worthy of further exami-
nation.

Regression analysis confirmed the im-
portance of tree size. When data were pooled
across taxon rank and analysis type, tree size
explained 82% of the variation in mean tree
imbalance (mean imbalance = 0.878 —0.039
X (tree size), R? = 0.82; P < 0.0001). This
result reinforces the conclusion that tree size
must be considered in analyzing balance.

3. Estimated Trees and the Random
Speciation Model

Estimated trees were much less balanced
than expected from the random speciation
model (combined test: X? = 108.06, df =
22, P < 0.0001; see Fig. 2). Guyer and Slo-
winski (1991) and Raup et al. (1973) re-
ported similar discrepancies. Savage (1983)
found significant differences (between to-
pology frequencies of estimated and ran-
dom-speciation trees) for 5S-member trees,
but not for 4-, 6-, or 7-member trees. He
did not comment on any differences in mean
imbalance, and because his sets of trees of
different sizes were not independent (some
small trees were subsets of larger trees) his
tests for different sizes cannot be combined.

The equivalent phenomenon in classifi-
cations is also familiar, although rarely ex-
plicitly tested: one or a few subtaxa often
account for much of the diversity of a larger
taxon. For instance, most mammals are ro-
dents, most birds are passerines, and most
insects are beetles (e.g., Anderson, 1974;
Willis and Yule, 1922; Dial and Marzluff,
1989).
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A tendency for speciation or extinction
rates to vary randomly among lineages
would produce more imbalanced trees.
Grant (1963) and Stanley (1979) have
pointed out that non-random variation of
rates would also produce imbalanced trees.
Although many studies have implied or
demonstrated variable speciation or extinc-
tion rates (Bush et al., 1977; Eldredge, 1989;
Levin and Wilson, 1976; Raup et al., 1973;
Simpson, 1953; Stanley et al., 1981; papers
in Eldredge and Stanley, 1984), the degree,
causes, and implications of such variability
are contentious (e.g., Eldredge, 1984; Stan-
ley 1984).

Variability of speciation or extinction
rates provides the necessary raw material
for the operation of species sorting (Eld-
redge, 1989). That patterns in balance of
estimated trees are inconsistent with the
uniform-rate model corroborates (from a
novel angle) the existence of such variabil-
ity, although it need not necessarily imply
an important role of species sorting in mac-
roevolution. Variable rates have also been
held necessary to account for observed ra-
diations of some groups (e.g., Bivalvia since
the Triassic; Stanley et al., 1981).

The balance predictions of more sophis-
ticated speciation models, incorporating
specific patterns of variable rates, would be
worthy of attention. When corrected for tree
size, comparisons of balance using Im on
cladograms, phenograms, and simulated
trees provide a direct, powerful approach to
the study of patterns in branching evolu-
tion. Studies comparing balance among dif-
ferent theoretical models, major clades or
ecological types could prove rewarding.
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APPENDIX

Derivation for Expected Imbalance under
Random Speciation

Recall that the imbalance index is:

|TR - TLI

all interior nodes

(n—=1)(n—-2)2

where 7 is the number of terminal taxa in the tree, and
Tk and T, are the numbers of terminal taxa arising
from the right and left branches of each interior node.

The derivation of the mean value of Im, assuming
random branching, is in three parts. First, we find the
expected number of j-nodes (nodes with exactly j de-
scendent taxa) in an n-tree. Second, we determine the
expected value of |7, — 7' | for a j-node. Finally, we
combine these expected values in equation Al. The
logic is easiest to follow when related to a tree as it
grows (evolves) rather than to the static end product.
Recall that in a uniform-rate random speciation pro-
cess, at any given time any of the extant taxa in a tree
is equally likely to be involved in the next speciation
event.

Im = (A1)

Part 1. Number of j-nodes in an n-tree.

Consider a tree of n terminal taxa. The earliest spe-
ciation event split the common ancestor into two des-
cendents. This is the root of the tree; label it node 1.
The subsequent proliferation of the clade involved (n
— 1) further bifurcations; label the corresponding nodes
asnode 2, 3,...(n — 1).

Now consider node i (corresponding to the i*" spe-
ciation event). What is the probability that this node
will have j descendent terminal taxa when the tree has
grown to size n? Node i, after the speciation event, has
two immediate descendent taxa; the rest of the tree has
(f — 1) taxa. The next speciation event will occur at
random among the (/ + 1) extant taxa. This situation
is equivalent to repeatedly drawing balls from an urn
which initially contains two black balls and (i — 1) red
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balls, if at each drawing the chosen ball is replaced and
another of the same color is added (a Polya urn; Feller,
1968). After (n — i — 1) such draws, there will be n
balls; the probability we want is that of drawing (j —
2) black and (n — i — j + 1) red balls, leaving us with
a total of j blacks and (n — j) reds (i.e., j descendents
from our node ). This probability is given (Feller, 1968)
by

P10
1, i=1,j=n

(2 75)
—i=j+1
={g-pN T

otherwise.

So, the expected number of j-nodes in an n-tree is
E(# j-nodes)

1, j=n
—-j+1
__(,_1)2 i
n—1
n—i—1
Working with the case j < n,
E(# j-nodes)
n—j—1
ngrt |[\R— 0 —j+ 1

=(-10
=2 n—1
<n—i—l>

n—j—1
nel n—i—j+1

+G-1) X o\
1=n—j+2 n —
<n —i— 1)

LK (m == Din =i = D!
U= 2 [(n~1)'(z~2)v(n~z—J+1)] 0

_ 22 Q! G+ Ditn—j— 1)
G+ 2 2G-D-2n—i—j+ 1)

(n =it j— 1
n! n—1
G+ 1\[n—j—1
5y |\ 2 i=2 )
> |—————] (A2

TG n 4 Cﬂ nei
i

But the summation in equation A2 is equal to 1,
because it is a probability distribution (in particular,
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for the probability of needing exactly (i + 1) draws to
pick three red balls (without replacement) from an urn
containing (j + 1) red and (n — j — 1) black balls).
Therefore we have simply

1, j=n
E(# j-nodes) = - n
-_—, Jj<n
JG+ 1D

Part 2. Expected value of |7y — T | for a j-node.

Any j-node in the tree began as a speciation event
yielding two taxa; each subsequent speciation event
then split one descendent taxon at random into two.
This is equivalent to a Polya urn beginning with one
black and one red ball, with drawings continuing until
there are j balls in the urn (Feller, 1968). The distri-
bution of T is therefore uniformon [1, 2, ... (G — 1)],
and T is just (j — Ty), so the expected value is:

i— 1
U . ), j odd
EleR*TL|:'j(j*2) ) (A3)
P E— even
G-
Part 3. Expected value of Im.
E(Im)
|TR - TLl
— all interior nodes
(n— )(n— 2)2
2
MTESTCE) Z[E(# j-nodes)]'[E,| T — T.|]
(n—1)(n-2) 5
n—1 2
= 27 {2.. E|Tx — T.|
(n—Dn—-2) =G+ D

1
+ _'EanR - TLl
n

Substituting appropriately from equation A3, we
have:

Case 1: for n even.
E(Im)
2n - Jj-1
S
(n=NDm-2),55 JG+ 1D
n-2 s
+ E j—z_
ze U= DU+ D)
n—2
+ —
2(n — 1):|
2n - | < |1
= = |2 _ -
(n— 1)(n-2) [ 5 J 1 ,E J
3 n—2 1
+ — —_—
32
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=__£1__P,
(n— 1)(n —2) y

2n
=m—nm—ﬂk'

__ 2n
S (n— D(n-2)

+

J

n/2

2z

=2

STEPHEN B. HEARD

1 22 1 n—2 Case 2: for n odd.
5‘,:224 i=1 2m-1 E(Im)
n=l 1 _ 2n [ o Jj-1
~ g+ (n—Dn=-2),55 G+
n—1 ) ~1
11, »n-2 Y L ]
n—1 2 2mn-1 S G-DU+ D 2n
T 2n [1 X’ 1] .
- 4 = |- —| (similarly).
:325 Jt1 O] (n—1)n—=2) |n ,2/
1
J



