*e*FMD: Fermionic Molecular Dynamics for electronic structure theory.

Stijn De Baerdemacker¹

¹Department of Chemistry University of New Brunswick, Canada www2.unb.ca/~sde6 stijn.debaerdemacker@unb.ca \$\overline\$\$ @cortogantese

WATOC2020 Vancouver, BC, Canada Jul 5, 2022

イロト イボト イヨト イヨト

Who?

Vivek Das (QuNB)

Anthony Balchin (University of Surrey) Chris Cousins

イロト 不良 とくほとくほう

Attosecond chemistry

Attosecond

t(i)dse ●00

- X/UV pulse trains at $\Delta t \sim 10^{-16} {
 m s}$
- Within Born-Oppenheimer

E. P. Manson et. al. (2014), Nat. Phys. 10, 207

J. Mauritsson (2008), Phys. Rev. Lett. 100, 073003

Time Dependent Schrödinger equation

■ Time-dependent expansion

$$|\psi(t)
angle = \sum_{oldsymbol{lpha}\in\mathsf{PES}} c_{oldsymbol{lpha}}(t) |\Psi_{oldsymbol{lpha}}
angle$$

ground + excited states

F Remacle, M Nest & R D Levine (2007) Phys. Rev. Lett. 99, 183902

イロト イヨト イヨト イヨ

Free particle

Exact Gaussian

$$|\psi(x,t)|^2 = rac{e^{-rac{(x-vt)^2}{1+t^2}}}{\sqrt{\pi(1+t^2)}}$$

Approximate in finite basis

$$|\psi(x,t)|^2 = \left|\sum_n c_n(t)\phi_n(x)\right|^2$$

イロト イヨト イヨト イヨト

Time Dependent Variational Principe (TDVP)

Stationary Action

$$\mathcal{S} = \int_{t_1}^{t_2} \langle \psi[\pmb{q}] | i\hbar rac{\partial}{\partial t} - \mathcal{H} | \psi[\pmb{q}]
angle dt$$

Euler-Lagrange equations

$$i\hbar\sum_{k}C_{ik}\dot{\mathbf{q}}_{k}=\frac{\partial\langle H\rangle}{\partial \mathbf{q}_{i}^{*}}$$

- Dynamical system
- Exact in full Hilbert space

イロト 不得 トイヨト イヨト

 \rightarrow Approximations

Fermionic Molecular Dynamics (FMD)

- Nuclear structure physics
- Slater Determinant of Gaussians
- Semi-classical interpretation

$$\mu(t) = \langle \hat{x}(t)
angle - rac{i\sigma(t)}{\hbar} \langle \hat{
ho}(t)
angle$$

H Feldmeier & T. Neff (2017) Nuclear Particle Correlations and Cluster Physics

イロト 不得 トイヨト イヨト

Electronic Structure theory

project timeline

- Heisenberg (1e⁻)
- Pauli (Ne⁻)
- t-dependent interactions
- Correlation

イロト 不得 トイヨト イヨト

Electronic Structure theory

project timeline

■ Heisenberg (1*e*⁻)

hydrogen

"Kepler" orbits

Observables

 $egin{aligned} &\langle ec{r}(t)
angle &= \langle \psi(t) | ec{r} | \psi(t)
angle \ & {f E}(t) &= \langle T(t)
angle + \langle V(t)
angle \end{aligned}$

hydrogen

"Kepler" orbits

Observables

 $egin{aligned} &\langle ec{r}(t)
angle &= \langle \psi(t) | ec{r} | \psi(t)
angle \ & {f E}(t) &= \langle T(t)
angle + \langle V(t)
angle \end{aligned}$

э

<ロト <回ト < 三ト < 三ト

hydrogen

Add damping
 Observables

 $\begin{aligned} \langle \vec{r}(t) \rangle &= \langle \psi(t) | \vec{r} | \psi(t) \rangle \\ E(t) &= \langle T(t) \rangle + \langle V(t) \rangle \end{aligned}$

hydrogen

Add damping
 Observables

 $egin{aligned} &\langle ec{r}(t)
angle &= \langle \psi(t) | ec{r} | \psi(t)
angle \ & {f E}(t) &= \langle T(t)
angle + \langle V(t)
angle \end{aligned}$

Test case 2: H₂⁺

Test case 2: H₂⁺

di-hydrogen cation others ... Observables $\langle \vec{r}(t) \rangle = \langle \psi(t) | \vec{r} | \psi(t) \rangle$ $E(t) = \langle T(t) \rangle + \langle V(t) \rangle$

tmd 0000C

Conclusions & Outlook

t-Dependent Variational Principle *e*⁻ Fermionic MD

thanks!

UNIVERSITY OF NEW BRUNSWICK

conclusions