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Abstract

Knowledge visualization is the expression of knowledge through graphical

presentations with the goal of validating or communicating knowledge. For-

mal knowledge, which is used in Data Modeling, the Semantic Web, etc., is

based on ontologies and rules, which can be represented in (Description and

Horn) logics and presented as (generalized) graphs. Graph Inscribed Logic

(Grailog) can be used to visualize RuleML knowledge. The earlier Grailog KS

Viz transforms Datalog RuleML to Grailog visualizations in Scalable Vector

Graphics (SVG).

This thesis develops a tool, Grailog KS Viz 2.0, that is able to visualize Horn

Logic (Hornlog) with Equality. It uses XSLT 2.0 with internal JavaScript to

process arbitrary levels of function nesting in a recursive manner. The tool

has also been extended from n-ary relations with n ≥ 2 to those with n ≥

1 (including classes as unary relations), based on the labelnode normal form

of Grailog.
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JavaScript is used to calculate the coordinates for positioning, and determines

the dimensions of, the SVG elements and viewport, but is no longer required

in the static image. Our Purifier thus removes the internal JavaScript from

the static Grailog/SVG visualization generated by the tool. This assures

that there are no malicious scripts, reduces the time required to render the

Grailog/SVG visualization, and greatly reduces the final file size.

The visualization of function applications with multiple levels of nesting gen-

erated by Grailog KS Viz 2.0 was evaluated using test cases that illuminate

knowledge about graph-theoretical definitions. A larger use case was devel-

oped for teaching the business rules of managing the financial aspect of a

non-profit organization. The processing speed as well as quality and accu-

racy of the rendered SVG are consistently high across common modern Web

browsers.

Grailog KS Viz 2.0 thus provides increased security, expressivity, and effi-

ciency for viewing, sharing, and storing Grailog/SVG visualizations.
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Chapter 1

Introduction

Knowledge Visualization (KV) is an area of research that focuses on the

articulation of knowledge through visualizations with the goal of communi-

cating knowledge to others or of analyzing knowledge [22]. Knowledge may

be visualized using a variety of 2-dimensional or even 3-dimensional formats,

ranging from images and graphs to interactive and dynamic immersive en-

vironments [11]. Disciplines including e-learning and e-business can benefit

from the use of KV to increase the rate and quality of knowledge transfer [22].

The Semantic Web employs formal knowledge, which may be presented vi-

sually using graph theory or represented symbolically using predicate logic.

Formal knowledge can be expressed as ontologies or rules, both of which
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can be visualized using graphs. In a graph, the nodes (vertices) represent

instances or classes and the arcs (edges) between them represent binary rela-

tionships. Formal knowledge visualizations can also use hyperarcs to connect

n ≥ 1 nodes: Directed hyperarcs can pass through intermediate nodes, al-

lowing for an encoding-free representation of n-ary relationships [6].

KV is important to be able to teach and study knowledge without need for

encoding it as a 1-dimensional (natural or formal) textual document. Instead,

KV allows a more immediate 2-dimensional knowledge (re)presentation of

entities and their connections. KV provides ways to navigate knowledge - to

find entities and their connections more easily. On a yet higher lever, KV

can also show the organization of knowledge and give a study road map.

Graph inscribed logic (Grailog) is an expressive approach to KV based both

on (generalized) graph theory and (advanced) logic. Grailog graphs contain

labelnodes which present individuals or classes/relations, the latter permit-

ted as starting points of directed hyperarcs, which can pass through multiple

nodes. The various languages of Grailog roughly correspond to languages

of the Rule Markup Language (RuleML) system, which can be serialized

in Extensible Markup Language (XML). This work will focus on the Re-

lational Grailog languages, corresponding to Datalog/Hornlog/... RuleML,

which can be used for KV of relations in mathematics, science (e.g., biology),

engineering, as well as IT (e.g., bioinformatics), including for visualizations
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of the relational data (facts) and views (rules) provided by relational speci-

fication/programming languages such as Prolog.

Grailog KS Viz [20] is a tool that transforms “Data Logic” (Datalog) RuleML/

XML knowledge to Grailog visualizations in SVG/XML (Scalable Vector

Graphics) using an XSLT (Extensible Stylesheet Language Transformations)

translator. The XSLT translates an XML file containing RuleML into SVG,

and a browser maps this SVG-encoded Grailog diagram into a 2-dimensional

rendering.

1.1 Objectives

The primary objective of this thesis is to further develop Grailog KS Viz into

a KV tool, Grailog KS Viz 2.0, for a computationally complete language on

the level of Horn Logic (Hornlog). To achieve this objective, the tool has to

be extended to include recursively nested terms visualized as complex nodes

(boxes) containing a function-application hyperarc. Two other objectives

regarding expressiveness are the visualization of head equality as in Datalog+

(and Hornlog+) represented as a special binary atom, and the visualization

of unary relations, which requires the labelnode normal form of Grailog. An

implementation-level objective is to remove the internal JavaScript from the

generated static SVG/XML file, as it is no longer required after the position
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and dimension values have been calculated. To accomplish this, an XSLT

stylesheet has to be created to complete the transformation to pure SVG.

The removal of JavaScript by our “Purifier” will serve a dual purpose. One

purpose will be to provide assurances to users that the SVG visualizations do

not contain malicious scripts. Another purpose will be to increase efficiency

for viewing, storing, and sharing the visualizations by reducing both the file

size and the time required to render them.

1.2 Thesis Organization

The remainder of this thesis is organized into the following sections:

• Chapter 2 (Background) provides an overview of knowledge visualiza-

tion and its benefits, the human readability and usability of graph

visualizations, the languages that are used in the tool, the previous im-

plementation of the tool, relevant security aspects, and related work.

• Chapter 3 (Design) describes a usage scenario of the tool, the architec-

ture of the tool, an example test case, the requirements met by the tool,

the Grailog constructs supported by the tool, and the SVG elements

used to create these constructs.

• Chapter 4 (Implementation) describes the development of the Renderer
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XSLT and Purifier XSLT.

• Chapter 5 (Use Case in Mathematics) outlines the test cases in math

education, the use case in financial mathematics, the unit testing, and

evaluation of the tool.

• Chapter 6 (Conclusion) provides a summary of the work completed in

this thesis, the results, and possible extensions of this work.
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Chapter 2

Background

The foundations that will be needed to develop this thesis are discussed in

the following sections. Section 2.1 describes knowledge visualization and its

benefits. The human readability and preferred aesthetics of visualizations

are discussed in Section 2.2. In Section 2.3, the languages used in the de-

velopment of the tool are introduced. In Section 2.4, the previous version of

Grailog KS Viz is reviewed. The research areas that are discussed in Section

2.5 address the security aspects of SVG and JavaScript. Lastly, in Section

2.6 existing related tools that are used for knowledge visualization will be

reviewed.
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2.1 Knowledge Visualization

The goal of KV is to provide a more expressive means in order to improve the

creation and transfer of knowledge. KV can also enhance the communica-

tion of new perspectives about, or connections between, prior knowledge [9].

Visualization of procedural knowledge, which includes rules and processes,

allows ease of sharing knowledge and collaboration by the use of shared men-

tal models [26]. Benefits of employing visual presentations include assisting

individuals in communicating, improving the ability to remember and recall

knowledge, capturing and retaining the attention, and promoting the discov-

ery of new insights [8]. Knowledge is constantly evolving, and its structure

continually changes to adapt [18]. The tool allows the visual presentation of

knowledge to be easily and efficiently updated or changed as new connections

and understandings are identified.

2.2 Human Readability and Usability of Vi-

sualizations

The research that has been conducted on the usability of graph visualizations

is based largely on the human readability of graphs [3]. The readability of

graphs is most commonly associated with understanding and is determined
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by the user’s ability to answer questions regarding graphs. Purchase [25]

conducted an empirical study in order to determine which aesthetics have

the most impact on the usability of graphs. In the study, usability was

determined by the performance of the participants when answering questions

about the structure of the graphs, and the participants’ preference of graph

based on the visual appeal. The graphs used in the study included both

syntactic and semantic graphs. Syntactic graphs are generic and contain no

real references or information, while semantic graphs are domain-specific [25].

The semantic graphs used in the study were Unified Modeling Language

(UML) graphs. The results of the study indicated that the performance of

participants was significantly impacted by the number of edge crossings in

the syntactic graphs. Both the response time and the number of errors were

significantly greater in graphs with many crossings compared to all other

aesthetic considerations [25]. In the semantic experiments, participants were

asked to select the UML class diagram they preferred. The highest preference

was for the diagrams with the fewest crossings. The study concluded that

the most important aesthetic to consider in graph visualizations is reducing

the number of edge crossings.

To further investigate the claim that edge crossings have the greatest impact

on the human readability of graphs, Huang [15] performed a study to de-

termine the extent of the impact. The study compared the number of edge

crossings to the crossing angle, which is the angle between crossing edges.
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The purpose of the study was to determine the relative importance of one

aesthetic over another by examining the relative impact on human perfor-

mance. Human performance was based on the accuracy of completing the

tasks, and the time and mental effort required. The study also examined

the visual efficiency of the graphs. A high visual efficiency is attained when

there is high accuracy with short response time and low mental effort [15].

The results of the study indicated that the number of edge crossings had a

greater impact on task performance, mental effort and visual efficiency than

the crossing angle. The recommendations made as a result of the study were

to minimize the number of edge crossings whenever possible, and when edge

crossings are necessary the crossing angle should be as large as possible to

reduce the negative impact of the crossing [15].

The visualization of large Grailog knowledge bases using node sharing may

result in numerous hyperarc crossings. Because of the above-discussed us-

ability findings [25, 15], Grailog KS Viz 2.0 thus uses the Grailog node-copy

normal form, which allows us to eliminate all hyperarc crossings. Therefore,

the Grailog visualizations produced by the tool should be easier to under-

stand and preferable by users compared to visualizations using node sharing.

Another consideration when using node sharing is the placement of shared

nodes in a visualization. The visualization’s layout can be significantly al-

tered by the location of a shared node, which can impact the user’s percep-
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tion and understanding of the graph [14]. Therefore, the decision of where to

place a shared node in a visualization is non-trivial and can result in layouts

of varying readability. The use of node copies in the Grailog visualizations

generated by the tool will provide consistent layouts whose readability is not

dependent on heuristic node placement.

2.3 Languages

The transformation from RuleML to Grailog visualization utilizes a variety of

languages. The languages used in the development of the tool are described

in the following subsections.

2.3.1 Graph Inscribed Logic (Grailog)

Grailog presents a given 1-dimensional symbolic data/knowledge represen-

tation in a 2-dimensional graph-logic visualization [6]. Grailog visualiza-

tions are created by mapping symbolic logic constructs to graph logic con-

structs [6]. Grailog graphs are designed to support human readability of

logic. Graph generalizations used in Grailog include n-ary directed hyper-

arcs, recursive graphs that contain nested graphs to any level of nesting,

and labelnode graphs [6]. The Grailog constructs supported by the tool are

10



described in more detail in Section 3.4.

2.3.2 RuleML

RuleML [5] constitutes a system of families of languages used for knowledge

representation. The primary focus of RuleML is the sharing and interoper-

ability of facts and rules on the Web [7]. Pretty-printed (level-indented, tree-

visualizing) RuleML/XML text [1] could be dubbed a “1 1/2”-dimensional

representation, as it is a 2-dimensional presentation but keeps copies for all

tags occurring in multiple locations of the XML tree, as in the 1-dimensional

serialization transmitted on the Web. The Grailog presentation used in this

thesis likewise keeps duplicate nodes, retaining the node-copy form of pretty-

printed RuleML/XML for a similar node-copy form of Grailog. In this thesis,

RuleML is assumed to be serialized in XML as input for KV translation to

Grailog output. Using XML serialization allows easy access and sharing on

the Web as well as translation with an XSLT stylesheet. In the thesis, the

focus will be on the Derivation RuleML languages Datalog and Hornlog.

Datalog and Hornlog are used to represent relational information. The infor-

mation could initially be given in the form of (controlled) natural language

but is assumed to be transformed into a set of facts and rules in an XML seri-

alization. The Datalog/XML and Hornlog/XML is then XSLT-transformed

11



to Grailog visualization.

2.3.3 Scalable Vector Graphics (SVG)

The SVG format, itself serialized in XML, is used for visualization as it

is compatible with all modern Web browsers and its scalability allows for

flexible KV. SVG graphics can be enlarged to show detail without affecting

the quality of the image. The scalability of SVG allows the same size graphic

to be viewed on devices with different screen resolutions and sizes [33]. SVG

can act as a Web application since it may contain scripts that are executed

each time the image is rendered [13]. The graphic objects required for Grailog

visualizations can all be rendered using SVG. The SVG elements used to

represent the Grailog constructs are further discussed in Section 3.5.

2.3.4 Extensible Stylesheet Language Transformations

(XSLT)

The transformation from RuleML/XML to SVG is realized by an XSLT

stylesheet that contains internal JavaScript. XSLT can be seen as a functional

programming language over XML trees [24]. We use XSLT Version 2.0 [30].

An XSLT stylesheet specifies the rules for transformations using XSL vocab-
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ulary. Templates are used in stylesheets to transform XML by describing the

output formatting for the matching nodes in the source XML [30]. A more

detailed description of templates is given in Section 4.1.4. XPath expressions

are embedded in XSLT and are used to determine the hierarchical structure

and position of nodes in the XML tree. The use of XPath expressions is dis-

cussed in more detail in Section 4.1.2. The transformation is completed by

an XSLT processor which is built into modern Web browsers. In order to au-

tomate the transformation in a Web browser, the source XML must contain

a stylesheet processing instruction in the prolog (the term “prolog” refers

to the header of XML documents and is unrelated the term “Prolog” refer-

ring to the standard logic programming language) that refers to the XSLT

stylesheet to be used.

2.3.5 JavaScript

JavaScript is an object-oriented scripting language that can be used on all

platforms and Web browsers. JavaScript is commonly used in Web applica-

tions and can be executed on-the-fly by Web browsers [28]. Grailog KS Viz

2.0 uses internal scripting in the stylesheet to change the size and position

attributes of SVG elements and the dimension of the viewport as required by

the input from the XML source document. The security aspects of JavaScript

and solutions to security concerns are expanded upon in Section 2.4.
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2.4 Grailog KS Viz

Grailog KS Viz [20] was developed in two versions; mono-spaced font and

normal. In the mono-spaced font version, the type and size of font is specified.

The font is courier which uses the same width for every character. This

allows the length of the string to be calculated by multiplying the number of

characters in the string by the width of a courier font character. The normal

version, as it is referred to in [20], does not specify the font to be used in

the visualization. The length of the string is determined using the method

getComputedTextLength. In the normal version, the font is determined by

the Web browser. The reason given for developing two versions was that

the XMLSerializer object was not supported by Google Chrome even when

using the SVG file [20]. After testing these two versions, it has been found

that the normal version in Internet Explorer (IE) does not render the directed

hyperarcs for all font settings. The normal version in Mozilla Firefox does not

calculate the length of the nodes properly to fit the text for all font settings.

The reason the mono-space font version was not supported by Google Chrome

is because the XMLSerializer object was not properly instantiated. The

SVG generated by the current implementation, Grailog KS Viz 2.0, that uses

XMLSerializer and mono-space font can be viewed in common Web browsers

including IE, Google Chrome, Firefox, and Safari. The work done in this

thesis uses the XMLSerializer and specifies mono-space font as this provides

consistent rendering and is not affected by the Web browser font settings.
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The earlier implementation [20] does not allow for the important case of unary

(n=1) relations. A unary relation - when there is only a single argument

node - corresponds to a type/class of which the argument node is a member.

Hornlog relations, characterized by arbitrarily nested functional expressions

(i.e., complex terms) as relational arguments, are not supported by Grailog

KS Viz either. Hornlog inherits the Datalog relational arguments and extends

them to also allow functional expressions [5].

2.5 Security Aspects

SVG is to be considered an application, rather than a plain image, as it may

contain active content including scripts [13]. Malicious scripts contained in

the SVG, when interpreted by the browser, can present a security risk. The

SVG/XML generated by Grailog KS Viz 2.0 contains internal JavaScript

which is executed each time the image is generated. The internal JavaScript

has two primary functions: to calculate, assign and access the position and

size values of the SVG elements and viewport, and to access the contents of

nodes provided by the user. Neither of these functions pose a threat to users

of the tool. Yet, users may choose to remove the JavaScript from the static

image of the SVG, as described in Section 3.2, to assure their clients that the

images do not contain malicious scripts.
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A commonly used security policy for Web browsers that is employed in

Google Chrome, IE, and Firefox is the Same Origin Policy (SOP). This pol-

icy requires scripts, and the resources they are accessing, to originate from

the same location [4]. The policy only allows the internal JavaScript in the

Grailog KS Viz 2.0 stylesheet to access sources or content that have the same

origin. Origin is defined as the protocol, domain name and port number

for Google Chrome. The SOPs for IE and Firefox are not as strict, as they

allow exceptions for the port number. IE only requires the same protocol

and domain name, and Firefox only requires the port number to be the same

if one is specified [23]. The SOP used in Google Chrome does not recognize

files stored locally in the same directory as having the same URL, therefore,

they are treated as having unique security origins. Consequently, Google

Chrome cannot render the Grailog SVG using files stored in a local directory

offline. IE and Firefox allow locally stored files to render the Grailog SVG.

In IE, the user is prompted to allow active content to be run, but if the user

allows them the browser will properly render the drawing. In all cases, the

browser security settings must allow JavaScript to execute in order to render

the drawing.

Another security tool that is used with Firefox is NoScript, an add-on that

deactivates JavaScript code execution [4]. If users interacting with NoScript

are not interactively allowing it, the Firefox browsers employing this add-on

would not be able to properly render the SVG as the internal JavaScript
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would not be allowed to execute.

2.6 Related Work

Similar tools are being developed to support users in the visualization of

knowledge. One piece of work is the development of SVG visualization for

the Fresnel Editor [17]. This application visualizes Resource Description

Framework (RDF) data using SVG. RDF data are statements in the form of

triples. The visualization process developed for the Fresnel Editor was also

applied to the medical field in a tool called Medico SVG used for diagnosis

purposes [17].

Another piece of work is GrOWL, which is a tool used for visualizing and

editing Web Ontology Language (OWL) [21]. The visualization is in a graph

form that utilizes colour, shape, and shading of the nodes in order to convey

distinct properties [21]. The tool was developed as a Java application and

applet as well as a Protege plug-in. Applications for GrOWL visualization

models include education and economics. GrOWL has been used to provide

estimates for ecosystem services using an Ecosystem Services Database [21]

and in bioinformatics classes as a learning tool. GrOWL does not use node-

copy normal form, creating graphs with crossing edges, which can be difficult

to read [25]. In order to provide more meaningful graphs, the tool provides
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the user with a filtering mechanism and a locality restricted view [21]. These

mechanisms alter the graphs to provide the user with only the components

that are associated with the selected node they want to view.

PaladinRM [2] is a visualization tool that graphically presents system re-

quirements and their organization. This software is primarily designed to be

used in team-based management of projects to show relationships between

system requirements. The tool uses hierarchical tree-based graph structures

that represent the relationships between defining and complying system re-

quirements. PaladinRM eliminates duplicate nodes that appear in multiple

levels of the tree structure when the data is displayed graphically. The tool

transforms RDF serialized in XML.

Google’s Knowledge Graph enhances Google Search by allowing searches to

go beyond simply matching keywords by giving users the relevant informa-

tion about their search [27]. The Knowledge Graph is composed of objects,

facts about the objects, and the relationships between the objects. Informa-

tion is added to the knowledge graph by collecting data about the entities

which represent the nodes of the graph. The entities are then connected to

closely related objects in the knowledge graph. Sources for the graph include

Freebase, Wikipedia, and the CIA World Factbook [27].

Facebook’s Open Graph allows third party applications to read and write con-

tent objects, and connections among them, in Facebook’s social graph [19].
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Facebook users can authorize the application to gain access to the content ob-

jects, such as their profile information, photos, and friends, in their Facebook

account. Users then create Open Graph stories with the application that are

shared with Facebook. These stories consist of actions which are published,

retrieved, and modified using the Graph API. The Graph API models the

information on Facebook using nodes to represent the entities (i.e., a user, a

photo), edges to represent the connections between the entities, and fields to

provide information about the entity [10].
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Chapter 3

Design

In Section 3.1, a description of how the tool is to be used is given. The high

level architecture of the tool is described in Section 3.2 and an example of

a RuleML source and its Grailog/SVG rendering is given. The requirements

of Grailog KS Viz 2.0 are discussed in Section 3.3. The Grailog constructs

that can be presented by the tool are outlined in Section 3.4. In Section 3.5,

the SVG elements needed to create the Grailog constructs are described.
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3.1 Usage Scenario

Grailog KS Viz 2.0 can be used across all platforms and requires only a

modern Web browser. The latest versions, in May 2016, of IE (11), Firefox

(45.0.1), Google Chrome (49), and Safari (9) all contain an XSLT processor

and support SVG. The transformation does not require the use of an online

XSLT processing tool, which would require two explicit inputs, the RuleML/

XML and the XSLT stylesheet. Instead, Grailog KS Viz 2.0 completes the

transformation using one explicit input, the RuleML/XML, opened in a Web

browser. The rendering of the RuleML/XML document is done by the Web

browser’s built-in XSLT processor, where the stylesheet is given as an im-

plicit input in the processing instruction of the document’s prolog [32]. The

processing instruction includes a reference to the XSLT stylesheet that the

processor uses to transform the source XML document. The use of the

Web browser’s XSLT processor allows the rendering to be done offline us-

ing documents stored as local files. The RuleML/XML source documents

can be created and edited using an XML or text editor. Users must be

able to represent the knowledge to be visualized in RuleML/XML (which

itself can be generated online from the Prolog-like RuleML/POSL syntax:

http://www.jdrew.org/oojdrew/demo.html). Reader can refer to Appendix

A.1 for the knowledge representation of a test case given in Prolog, POSL,

and RuleML. Grailog KS Viz 2.0 does not allow namespaces in the RuleML/

XML.
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3.2 Architecture

The high level architecture of Grailog KS Viz 2.0 is described in two parts.

The Renderer performs the transformation of the RuleML/XML to Grailog

visualization in SVG/XML, which contains internal JavaScript. The Purifier

removes the JavaScript from the static SVG file that results in pure SVG.

The Renderer requires a source document containing Hornlog RuleML seri-

alized in XML that includes a stylesheet processing instruction in the prolog.

The XSLT processor uses the Renderer XSLT, referred to there, to render

the Grailog/SVG/XML. The XSLT defines the mapping from the RuleML

tags to their Grailog visualization, using JavaScript to calculate the posi-

tion and size values for the SVG tags. The result of the Renderer XSLT is a

Grailog/SVG/XML visualization that contains JavaScript. The values calcu-

lated and assigned by the JavaScript are not static in the SVG/XML, instead

they are recalculated by the JavaScript each time the image is rendered.
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Figure 3.1: High level architecture of the visualization process.

Our first example of a Grailog/SVG visualization (cf. Figure 3.2) is the result

of the transformation of graph theory knowledge represented in RuleML/

XML by the Renderer XSLT. The box above the“⇒” contains five conjoined

rule premises, namely a ternary hyperarc, three unary hyperarcs, and an

equality between two variables. The box below the“⇒” contains the rule

conclusion, here written as an equality between a variable and a (non-unique)

constant name. A controlled natural language sentence describing the graph

theory knowledge is given in pretty print formatting.

If

E connects V, U,

V is Equal to U,

V is a vertex,
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U is a vertex,

And

E is an edge

Then

E is Equal to EdgeLoop

RuleML is the symbolic representation of the knowledge. The RuleML con-

tained in the source document is transformed by the Renderer XSLT.

<RuleML>

<Assert>

<Implies>

<And>

<Atom>

<Rel>connects</Rel>

<Var>E</Var>

<Var>V</Var>

<Var>U</Var>

</Atom>

<Equal>

<Var>V</Var>

<Var>U</Var>

</Equal>

<Atom>

<Rel>vertex</Rel>

<Var>V</Var>

</Atom>

<Atom>

<Rel>vertex</Rel>

<Var>U</Var>

</Atom>

<Atom>

<Rel>edge</Rel>

<Var>E</Var>

</Atom>
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</And>

<Equal>

<Var>E</Var>

<Ind>EdgeLoop</Ind>

</Equal>

</Implies>

</Assert>

</RuleML>

The result of the transformation by the Renderer XSLT is the above-discussed

Grailog/SVG visualization in Figure 3.2, which uses Grailog’s labelnode nor-

mal form, where a hyperarc label becomes the starting node of that hyperarc.

The Purifier uses the input of a static SVG source document that contains a

stylesheet processing instruction referring to the Purifier XSLT in the prolog.

When the static SVG source is opened in a Web browser, the XSLT proces-

sor applies the Purifier XSLT to the document. The formatting instructions

of the XSLT produce a pure SVG visualization of Grailog that contains no

JavaScript. To maintain the ability to use the tool offline and without requir-

ing additional software or the use of a Web server, the Grailog/SVG/XML

must be saved as a static SVG image by the user before the Purifier XSLT

is applied. Removing the internal JavaScript may be of interest to users of

the tool who want to provide clients with a level of security when sharing

their images. In addition to the increased security it provides, removing the

JavaScript increases efficiency by reducing both the time required to render

the visualization and the file size of the Grailog/SVG. Automating the pro-
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cess of saving a static SVG file from a Web browser is beyond the scope of

this thesis.

Figure 3.2: Sample Grailog/SVG presentation of graph theory knowledge.

26



3.3 Requirements

To move from Grailog KS Viz to Grailog KS Viz 2.0, new capability was

added to create a tool that visualizes Hornlog, which can address many

modeling needs. Hornlog is a Turing-complete RuleML language, more ex-

pressive than the Datalog language of the previous tool version, which is not

able to visualize Hornlog’s function applications. Grailog KS Viz 2.0 has

been expanded by developing advanced capability to allow the visualization

of Hornlog function applications (complex terms), which can be nested to

any depth, and of Hornlog+ equalities. The visualizations are now based

on the labelnode normal form of Grailog to allow the expression of unary

relations such as types or classes.

Grailog KS Viz 2.0 is an intermediary between graph rendering such as

Graphviz [12], where node copies are not used, and symbolic pretty printing

that uses node copies plus text wrapping with indentation. The tool devel-

oped in this thesis uses a normal form where a node is duplicated each time

it is referenced, e.g. to avoid hyperarc crossings. Assuming a virtual infinite

plane with the origin in the upper-left corner, the visualization can extend

without fixed bound in the horizontal and vertical directions, so no equiv-

alent to text wrapping will ever be required. Using this node-copy normal

form allows the algorithm’s visualization time to grow only linearly in the

number of assertions (facts and rules), which is important when dealing with
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large knowledge bases. Using the normal form thus allows scalability, which

is important when dealing with databases containing large amounts of data

(facts). Moreover, the node-copy normal form is the more favourable form for

human readability as it eliminates hyperarc crossings [25]. In [14], studies

determined that the preferred visualization of node-link diagrams is node-

copy form. Nesting of nodes, which is required for functional expressions, is

another aspect that would complicate the visualization if node sharing were

to be used. Therefore, the use of the node-copy normal form is preferable.

3.4 Supported Grailog Constructs

Grailog KS Viz 2.0 allows the visualization of unary (n=1) relations. These

relations contain only a single argument node and are used to represent a

member of a type or class. In order to accommodate unary cases, the tool

uses the labelnode normal form of Grailog.

Figure 3.3: Hyperarcs for n-ary relations with a) n=1 and, generally, b) n≥1.

Passive or constructor function applications are supported in Grailog KS
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Viz 2.0. The constructor function application contains a function node from

which the hyperarc originates, cuts through any intermediate nodes, and

points to the final node. The function application may contain n≥1 individ-

ual constants, variables, or nested constructor function applications. Used

as arguments of relation applications and equalities, constructor function

applications can be visualized as complex nodes each containing a function

application hyperarc, whose arguments may themselves contain such function

applications.

Figure 3.4: Hyperarcs for n-ary relations with (constructor) function appli-
cation in any argument position.

Figure 3.5: Arbitrary levels of nested function applications.
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Figure 3.6: Datalog+ equality.

Figure 3.7: Hornlog+ equality.

Datalog+ and Hornlog+ equality can also be visualized. Datalog+ equality

is presented as a special binary atom. Elements that may be specified as

equal include individual constants with non-unique name specifications and

individual variables. Hornlog+ equality allows function applications that

may be nested as elements. Both Hornlog+ and Datalog+ with equality in

Grailog KS Viz 2.0 are always symmetric and do not have an orientation to

distinguish syntax on the left-hand side and right-hand side.

Grailog KS Viz 2.0 has been extended to visualize single- and multi-premise

rules that contain any combination of n-ary (n≥1) relations and equalities

in the premise(s) and conclusion of the rule. The Grailog structures in the

premise(s) and conclusion may also contain nested function applications.
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Figure 3.8: Single-premise rules containing n-ary relations (n≥1) and
Datalog+ equality.

Figure 3.9: Multi-premise rules containing n-ary relations (n≥1) and
Datalog+ equality.

3.5 SVG Elements Involved

SVG elements that are used to represent the Grailog constructs include text,

rectangles, rounded rectangles, polygons, patterns, markers, straight paths,

convex paths, and concave paths. A coordinate system is used to position
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Figure 3.10: Multi-premise rule containing n-ary relations (n≥1) with arbi-
trary levels of nested function application.

Figure 3.11: Multi-premise rule containing Hornlog+ equality with arbitrary
levels of nested function application.
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the SVG elements on the SVG viewport, a rectangular area of the image

that is visible to the user. The coordinates for positioning elements and

the dimensions of the viewport are calculated using XPath expressions and

JavaScript. The XPath expressions are used to determine the position of the

nodes in the XML tree structure and the depth of the tree. JavaScript is

used to calculate the size and position of the SVG elements.

Each SVG text element is assigned the contents of the corresponding source

RuleML/XML node as its value. The font size and family of the text element

is specified so that the rendered SVG is not effected by the Web browser’s

font settings. The positioning and length of the text is crucial to calculating

the positioning of subsequent elements.

The SVG rect element [33] is used to draw a rectangle for individual con-

stants, the size of which is dependent on the length of the text in, or above,

the node. The rect element is also used to draw rectangles with rounded

corners by specifying the length of the radius of the rounded corners, us-

ing the attributes rx and ry. Rounded rectangles are used to contain the

premise(s) and conclusion of rules. The dimensions of the rounded rectangles

expand vertically and horizontally to accommodate relations and equalities

with nested function applications.

The SVG polygon element draws an enclosed shape that consists of connected

straight edges [33]. Polygons are used to represent individual variables and
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are filled with a hatched pattern that is defined using the SVG pattern ele-

ment [33]. The size of the polygon is dependent on the length of the text in

the variable node.

The marker element is used to define the drawing of an arrow head at the

end of a path element. To draw hyperarcs pointing from the labelnode to

the final node of a relation, the path element is used to draw a straight edge

and the marker attribute refers to the arrow head as defined by the marker

element to be drawn at the end of the path [33]. The hyperarc pointing from

the premise(s) to the conclusion of a rule is drawn using the line attribute

of the path element to specify the location of four lines which results in a

double-shafted arrow.

The labelnode normal form of Grailog presents the relation as a node from

which the hyperarc originates. A labelnode consists of four convex paths

that are drawn using the SVG cubic Bézier curve command [33]. The cubic

Bézier curve command is also used to draw concave edges that are required

to visualize constructor function applications.
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Chapter 4

Implementation

In Section 4.1 a description of the Renderer XSLT used to transform the

RuleML/XML source document to Grailog/SVG/XML is provided. The

Purifier XSLT, which removes the internal JavaScript from the static SVG

image of the visualization, is discussed in Section 4.2.

4.1 Renderer XSLT

The Renderer XSLT stylesheet is responsible for creating the root ‘svg’ el-

ement, establishing the viewport, and drawing the required Grailog con-

structs. The Renderer XSLT requires the use of XPath expressions and
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internal JavaScript. This section will discuss in more detail the elements and

templates developed to accomplish the required visualization.

4.1.1 Viewport

The SVG canvas allows for a virtually infinite area for the content to be

rendered [33]. The viewport is a finite rectangular subregion of this canvas

where the rendered SVG is visible to the user. The viewport is able to expand

horizontally and vertically, as required, to accommodate any actual drawing

size. The viewport originates at the upper-left corner and its dimensions

are determined by the attributes width and height. The width and height

attributes of the viewport are set to the global variables maxCoordX and

coordY, respectively, that are initialized and updated by the JavaScript. The

SVG coordinate system begins at the upper-left corner and the positive x-

coordinates point to the right and the positive y-coordinates point down [33].

Since the Grailog constructs are drawn in relation to the text contained in

the source RuleML/XML nodes, the initial x and y-coordinates allow the

SVG elements to be drawn around (to the left and above) the text element.

The unit identifier for the coordinates is not specified, which is equivalent to

pixel units and is referred to as user units [33].

The dimensions of the viewport are updated using JavaScript as each SVG
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element is created. The height of the viewport expands vertically without

bound. The JavaScript variable containing the y-coordinate is updated as

each SVG element is drawn. The width of the viewport is extended hori-

zontally to the right as required to view the widest Grailog structure. There

are two variables that contain x-coordinates that need to be updated using

JavaScript as the elements are created. The variable coordX is used to deter-

mine the relative placement of the Grailog constructs that are drawn starting

on the left-hand side of the viewport and extending across to the right. The

variable coordX is overwritten every time a construct is drawn beginning at

the left-hand side of the viewport. The variable maxCoordX is used to store

the largest x-coordinate of all the structures. After each Grailog structure is

drawn, JavaScript is used to compare the x-coordinate for that structure with

the largest x-coordinate up to that point stored in the variable maxCoordX,

and updates it as required. The following sample code is the JavaScript used

to determine the width of the viewport after the last element in a relation is

drawn.

if (parseFloat(<xsl:value-of select

="concat(’text’,’Relation’,$countRelations,position())"/>x)

+parseFloat(<xsl:value-of select

="concat(’text’,’Relation’,$countRelations,position())"/>

length)+horizSpace<![CDATA[>]]>maxCoordX){

maxCoordX=parseFloat(<xsl:value-of select="concat(’text’,

’Relation’,$countRelations,position())"/>x)

+parseFloat(<xsl:value-of select="concat(’text’,’Relation’,

$countRelations,position())"/>length)+horizSpace;}
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4.1.2 XPath Expressions

XPath is used for addressing parts of an XML document by navigating

through its hierarchical structure [34]. These expressions are used in the

tool to determine the Grailog construct each node is mapped to and the rela-

tive position of the node elements in the XML tree. A subset of XPath is used

for matching by testing XML-tree nodes against RuleML “type tags” (also

called “Nodes”, with upper-case “N”, as opposed to RuleML “role tags”,

also called “edges”, with lower-case “e”), which determines the appropriate

XSLT template to be used. To determine the Grailog construct the nodes

are located in and their position in the construct, location paths that select

a set of nodes relative to the context node are used. The commonly used

location paths include ancestor-or-self, preceding-sibling, parent, child, and

descendant. The node set functions count, position, and last are also used.

The count function returns the number of nodes in a node set, position re-

turns the position of the context node in the node set, and last returns the

position of the last node in the node set [34]. The values returned by XPath

expressions are also used in the naming of SVG elements and for calculating

the vertical spacing between nested elements.

One limitation of XPath expressions, that had to be overcome in order to

recursively nest constructor function applications, was the inability to dis-

tinguish between the descendants of siblings that had the same (element-
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name) path to the parent node. To accomplish this, the NestedExpr tem-

plate, which is responsible for rendering the function applications, uses the

parameter countFunctInLevel. The calling template sets the parameter to

the number of preceding-siblings in the node set that are function applica-

tions. When a nested function application occurs, the NestedExpr template

is called recursively and the parameter is updated by adding the number of

preceding-siblings in that node set to the previous value in the parameter.

This parameter ensures that when siblings both contain nested functions in

the same nested position, their elements will have unique ID names (further

discussed in Section 4.1.3).

4.1.3 Constructing ID Names for SVG Elements

All SVG elements have the ID attribute available to them. An element

can only specify one ID attribute that is used to identify them and it must

be unique for each element [31]. The JavaScript uses the ID attributes of

elements in order to retrieve (get) and assign (set) their size and position

attributes. Each time a template processes a matching node, unique ID

names are assigned to each of the elements. To ensure each element has

a unique ID name, they are created by concatenating a sequence of strings

and numbers. In order to create meaningful ID names, the strings that are

used include the type of SVG element (text, rect, etc.) and the Grailog
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structure the element is mapped to (relation, rule, etc.). The numbers in the

ID name refer to the hierarchical position of the node in the XML tree. By

using the position of the nodes for the numerical values in the ID name, the

JavaScript can refer to the attributes of other SVG elements by calculating

their position relative to the context node.

The numbers used in the ID name of relations and equalities include the

number of previous Grailog structures in the XML of that type and a number

representing the position of the context node in the node set. In the case of

single- and multi-premise rules, the SVG elements require additional numbers

in their ID names that are used to index each equality and relation in the

premise(s) and conclusion of the rule. The string component of the ID name

for elements in rules, relations, and equalities are literal values. The sample

code shown below is the XSLT used to specify the ID name attribute for a

rectangle element that is used to represent an individual in a relation.

<xsl:attribute name="id">

<xsl:value-of select="concat(’rect’,’Relation’,

$countRelations,position())"/>

</xsl:attribute>

The ID names for constructor function application elements contain even

more numeric values to represent the level of nesting, the number of preceding

siblings on the same level that are function applications, a number that is

used to index the descendants of siblings, and the position of the context node
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in the node set. The string component describing the Grailog structure used

in the ID name for the function application elements is a variable instead of

a literal value. The string is passed as a parameter to the template to ensure

that function applications that occur in different types of Grailog constructs

are given unique ID names. The following sample code is the XSLT used

to specify the ID name attribute for a polygon element used to represent a

variable in a function application.

<xsl:attribute name="id">

<xsl:value-of select="concat(’polygon’,$constantType,

$countType,$countFunctions,$countFunctInLevel,

$functionLevel,position(),$index)"/>

</xsl:attribute>

The JavaScript, when referring to the elements using their ID name, must

follow the same concatenation pattern that the XSLT used to create them.

Since multiple elements are often used in the JavaScript calculations, a single

calculation can result in a long line of code.

4.1.4 XSLT Templates

Templates define the processing that can be applied to nodes [30]. The two

types of XSLT templates used in Grailog KS Viz 2.0 are templates that are

applied to nodes that match a specific pattern and named templates that
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are invoked when they are called by name [30]. In the Renderer XSLT, the

templates applied to matching nodes, including RuleML, Assert, Implies,

And, Atom, and Equal are given RuleML tag names. The named templates,

Initialize and NestedExpr, are given descriptive names as the templates are

called by name; they are not matched against a node pattern. Templates may

contain parameters that specify the variables whose values are set when the

template is called. Since XSLT variable elements are bound to the supplied

value, template parameters are used to update or change the binding of a

variable [30].

4.1.4.1 RuleML, Initialize, and Assert Templates

The root SVG node is constructed in a template that matches the pattern

of the root RuleML node in the XML source. This template defines the

hatched pattern used for variables, and the arrow head marker that is drawn

at the end of hyperarcs. The template calls the named template Initialize

which assigns the initial x and y-coordinates, and instantiates the JavaScript

object XMLSerializer and String variables used for determining the length

of text in the nodes. The Initialize template applies the Assert template

to nodes with the matching pattern. The Assert template contains only

the XSLT apply-templates element with no attribute specified, therefore all

the child nodes of Assert are selected. For each child node that is selected,
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the XSLT processor finds the template that matches the node’s pattern and

applies the template to the node [30].

4.1.4.2 Implies Template

The Implies template processes matching nodes that are encountered in

the RuleML/XML. The template draws the surrounding rectangles for the

premise(s) and conclusion of single- and multi-premise rules, and the hyper-

arc that originates at the bottom of the rectangle surrounding the premise(s)

and points down to the rectangle surrounding the conclusion. The template

uses JavaScript-calculated values to determine the position and size of the

drawings. The rounded rectangles require unbounded vertical and horizontal

growth to accommodate nested function applications that may be present

in the elements contained in the rule. The height of each rounded rectan-

gle is calculated by finding the difference between the y-coordinate of the

first element in the premise(s) and the y-coordinate after drawing the final

element in the premise(s). The Implies template allows both relations and

equalities in the premise(s) of the rule and either a relation or equality in the

conclusion. The template uses conditional statements to match the pattern

of child nodes. The XPath count function is used to determine if the rule is

single- or multi-premise and if the child nodes are relations or equalities so

that the appropriate template is called to draw each element. In a single-

43



premise rule, if the premise or conclusion matches the pattern Atom then the

template Atom is applied. If the premise or conclusion of a single-premise

rule matches the pattern Equal, then the template Equal is applied. If there

is a multi-premise rule which is determined by matching the pattern And,

then the template And is applied to draw the elements in the premises, and

either the Atom or Equal template is applied to draw the conclusion.

4.1.4.3 And Template

The template And is responsible for drawing the Grailog constructs contained

in the multi-premise of a rule. The And template uses a for-each instruction

to process the child nodes. Conditional statements are used to determine if

the child node matches the pattern Atom or Equal, and draws the appropriate

elements. The relations and equalities drawn in the multi-premise of the

rule may contain constructor function applications. If the child node of either

a relation or equality is a function application, then the named template

NestedExpr is invoked and the required parameters are passed.

4.1.4.4 Atom Template

The template Atom processes nodes with a matching pattern. The parent of

the Atom node is matched as either Implies or Assert. If the parent node is

44



Assert, then the JavaScript sets the coordinates to start at the left-hand side

of the viewport. If the parent node is Implies, then the template determines if

the relation is the premise of a single-premise rule, or the conclusion of either

a single- or multi-premise rule and determines the correct starting coordinate

for each case.

In order to render Grailog using the labelnode-normal form, the Atom tem-

plate draws the relation node found in the first position inside a labelnode.

Subsequent nodes up to, but not including, the last node are all processed

using a for-each instruction. The context node pattern is matched as either a

variable, individual, or constructor function application. If the context node

is a variable or individual, then the Grailog construct is drawn by the Atom

template. If the context node is a function application, then the Nested-

Expr template is called and the required parameters are passed. As each

child node of Atom is processed, the JavaScript updates the x-coordinate

by adding the length of the element and additional spacing to separate the

elements.

To process the last node, there is a separate for-each instruction. The last

element is matched as either a variable, individual, or function application.

The path originating at the labelnode and pointing to the final node is drawn

first. The coordinates for the path to begin and end at are calculated using

JavaScript before drawing the last element. To render the last element, the
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for-each instruction either draws the variable or individual element, or calls

the NestedExpr template to draw the nested function application.

4.1.4.5 Equal Template

The template Equal is applied when nodes with a matching pattern are

encountered. Equality is drawn as a special binary atom with no orientation

tags that distinguish their placement. The child node in the first position

is drawn on the left-hand side and the child node in the second position is

drawn on the right-hand side. Datalog+ equality may contain individuals

and variables, Hornlog+ equality may additionally contain nested function

applications.

The parent of the Equal node is determined by matching it with the pattern

Assert or Implies. The starting coordinates of the first child element of Equal

is calculated using JavaScript. For each child node in the first position, the

template uses conditional statements to determine if it matches the pattern

for a variable, individual, or function application. If the child node is a vari-

able or individual, then the Equal template draws the appropriate element.

If the child node is a function application, then it is drawn by calling the

NestedExpr template and passing the required parameters. A separate for-

each instruction is used to process the child node in the second (and last)

position. In this instruction the second element and a double path between
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the elements, representing equality, are drawn. The starting coordinate of

the paths are calculated using JavaScript by adding the x-coordinate of the

first element to the length of the element. The second element is drawn at

the end of the double path.

4.1.4.6 NestedExpr Template

The NestedExpr template is a recursive, named template. The template

draws constructor function applications as an element within a relation or

equality. The function application may be nested to any depth. There are

local parameters declared for the template that are used to create unique ID

names for each element that is drawn. The sample code given below is the

XSLT that creates the named template NestedExpr and defines the template

parameters.

<xsl:template name="NestedExpr">

<xsl:param name="constantType" select="’’"/>

<xsl:param name="functionLevel" select="1"/>

<xsl:param name="countType" select="0"/>

<xsl:param name="countFunctInLevel" select

="count(preceding-sibling::Expr)+1"/>

<xsl:param name="index" select

="count(preceding-sibling::Expr)+1"/>

When the template is invoked, the parameters that are passed replace the

default values defined by the template. The parameters that are passed by
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the calling template include a string that indicates the Grailog structure the

function application occurs in. This variable is used as part of each element’s

ID name. The other parameters include numerical values that are also used

in the creation of ID names. The parameter that indicates the number of

levels of nesting is set to one by the calling template and is incremented only

when the NestedExpr template is called recursively. Another numerical value

passed by the calling template is the number of matching Grailog structures

(rules, relations, or equalities) that have previously occurred in the XML

tree. This value is not changed when the template is called recursively. The

following sample XSLT code is from the Atom template. The NestedExpr

template is called, and parameter values are passed in order to draw nested

function applications within a relation.

<xsl:variable name="countFunctionsInAtom" select

="count(preceding-sibling::Expr)+1"/>

<!-- call template to draw function in a relation -->

<xsl:call-template name="NestedExpr">

<xsl:with-param name="constantType"

select="’FunctionInAtom’"/>

<xsl:with-param name="functionLevel" select="1"/>

<xsl:with-param name="countType" select="$countRelations"/>

<xsl:with-param name="countFunctInLevel"

select="$countFunctionsInAtom"/>

<xsl:with-param name="index" select="$countFunctionsInAtom"/>

</xsl:call-template>

In order to differentiate between nested function applications that have the

same (element-name) path to the root node, a parameter containing the
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number of preceding-siblings that are function applications in the node set

is passed to the NestedExpr template. When the template is called recur-

sively, the number of preceding-siblings in the current level is added to the

preceding-siblings in the previous level. Lastly, the number of preceding-

siblings that are function applications in the node set of the calling template

is passed as a parameter and is not changed when the template is called re-

cursively. The following sample code is the XSLT for calling the NestedExpr

template recursively.

<xsl:if test="ancestor-or-self::Expr">

<xsl:call-template name="NestedExpr">

<xsl:with-param name="constantType"

select="$constantType"/>

<xsl:with-param name="functionLevel"

select="$functionLevel+1"/>

<xsl:with-param name="countType" select="$countType"/>

<xsl:with-param name="countFunctInLevel" select

="$countFunctInLevel+$countCurrentLevelFunctions"/>

<xsl:with-param name="index" select="$countFunctInLevel"/>

</xsl:call-template>

</xsl:if>

The template processes the child nodes of the function application using for-

each instructions. The child node in the first position of the function appli-

cation, the function element, is processed inside its own for-each instruction.

The coordinates of the function element are determined by examining the

current level of nesting. For the first level of nesting, the function element is

drawn using the last updated x and y-coordinate. For levels of nesting deeper
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than one, the x-coordinate is incremented by a global constant to leave a hor-

izontal space between elements. The y-coordinate of the function element,

for levels deeper than one, is calculated by adding a multiple of the level of

nesting to the y-coordinate of the first level function element. This allows

the function applications to expand vertically to accommodate any depth of

nesting. The subsequent nodes up to, but not including, the last node are

drawn using another for-each instruction. Each node’s pattern is matched

using conditional statements to either variable, individual, or expression tags.

The variable and individual elements are drawn in the matching conditional

statements. If the node is an expression, the NestedExpr template is called

recursively and the appropriate parameters are incremented or updated. The

final for-each instruction in the template processes the last node in the func-

tion application. In addition to this, the instruction draws the hyperarc that

originates from the function element and points to the last node, and the four

paths that form the rectangle with a concave top and bottom that encloses

all the elements of the function application. The coordinates for each path in

the rectangle are calculated using JavaScript. The first and last position el-

ements in the node set, along with the number of descendants of the context

node that are function applications, are used to calculate the coordinates of

the paths. The number of descendants of the context node that are function

applications does not give the exact depth of nesting within the node as it

counts child nodes and siblings of child nodes. However, this measure of

depth allows enough vertical spacing to enclose all nested elements as the
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number of descendants is greater than or equal to the level of nesting.

4.2 Purifier XSLT

The Purifier XSLT stylesheet removes the internal JavaScript from the static

SVG image of a Grailog visualization. The use of this stylesheet is optional

as it does not change the presentation of the SVG elements. The Purifier

XSLT is made up of two templates. The identity template [30], which is

widely known, matches all nodes and their attributes, and just copies them.

To remove the JavaScript, an empty template that matches the script nodes

is used. This script template matches a specific node pattern and therefore

has a higher priority than the identity template, which matches all nodes.

Therefore, the script nodes are only processed by the empty template where

nothing is generated, resulting in the script elements not being copied. All

other nodes are matched only by the identity template, which copies the node

and its attributes. The result of applying the Purifier XSLT is pure SVG.

The following code is the XSLT for the two templates used in the Purifier

XSLT.

<!-- Identity template recursively copies

nodes and their attributes -->

<xsl:template match="@*|node()">

<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
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</xsl:copy>

</xsl:template>

<!-- Empty template does not copy script elements -->

<xsl:template match="svg:script"/>

Reader can refer to Appendix A.1 for the underlying SVG/XML without

JavaScript, which is provided for the test case. The JavaScript was removed

by applying the Purifier XSLT.
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Chapter 5

A Use Case in Mathematics

In Section 5.1, the test cases in math education that were developed to

evaluate the tool are described. A larger use case in financial mathematics is

discussed in Section 5.2. In Section 5.3, a description of the unit testing that

compares Grailog KS Viz and Grailog KS Viz 2.0 is given. An evaluation of

the size and time efficiency of Grailog KS Viz 2.0 is given in Section 5.4.

The evaluation of the tool will include its practicability (visualization accu-

rateness, response times, file size, maintainability) for users of the system.

Users must be able to represent the knowledge to be visualized in RuleML.
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5.1 Test Cases in Math Education

Grailog visualization can have many uses in education, science, and IT. Ed-

ucation uses a variety of graphic organizers to present knowledge, including

concept maps which show relationships between concepts. KV tools have

many applications in the science domain. For example, KV is used in the

medical field for diagnosis and for mapping of scientific knowledge. By ex-

tending the Grailog visualizations to include Hornlog, Grailog KS Viz 2.0

can be used to present equality-defined mathematical functions, thereby ex-

panding its use to math and science education.

In order to evaluate the capability of the KV tool, a set of input and out-

put pairs were used for unit testing. The test cases were designed to test

specific features by designing inputs to ensure the output requirements are

met [16]. The test cases demonstrate the tool’s visualization accurateness,

including its ability to visualize functions for building complex terms with

multiple levels of nesting. There were five test cases created to visualize

graph theory knowledge. Portions of graph theory in textbook English were

first manually visualized in Grailog. The RuleML/XML was then written

and the visualization rendered using the tool in order to validate the output

against the manual visualization. The ensuing feedback loop led to the 2.0

version of the tool. Using graph theory as the topic of the test cases also

serves another purpose, as background knowledge in this field is relevant for
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understanding Grailog visualization. Reader can refer to Appendix A for

the complete set of test cases, including the RuleML/XML source and the

rendered Grailog/SVG visualization.

5.2 Use Case in Financial Mathematics

A single larger use case was developed in the area of financial mathematics.

The use case is for teaching business rules for managing the financial aspect

of a non-profit organization. Ultimately, the use case could evolve into a form

of corporate memory which captures the knowledge of domain experts in an

organization in such a way that it can be used, e.g., for knowledge transfer

(such as training new personnel) and knowledge validation.

For concreteness, business rules for the non-profit organization RuleML Inc

were employed as a use case instantiation. These financial rules were first

represented in Hornlog RuleML and then transformed to Grailog/SVG by the

Renderer XSLT. The financial rules that are covered by the use case include

incoming and outgoing transactions, and transfers between accounts. Reader

can refer to Appendix B for the Hornlog RuleML and resulting Grailog/SVG

visualization.
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5.3 Unit Testing

The evaluation of the Datalog visualization using Grailog KS Viz and Hornlog

visualization using Grailog KS Viz 2.0 compares the expressiveness of the

graphs and the suitability of the tools. Sample knowledge bases of increasing

graph-logic expressivity were visualized by the Grailog KS Viz and Grailog

KS Viz 2.0 tools. The resulting KVs were systematically contrasted with

each other and tool benchmarks were taken (cf. Table 5.1). The criteria for

expressiveness comparison are obvious from the table.

To compare the quality of the SVG that is produced as a result of using the

tool to transform RuleML/XML to Grailog/SVG/XML, the W3C Markup

Validation Service [29] was used. The same RuleML/XML source was trans-

formed by both Grailog KS Viz and Grailog KS Viz 2.0 and the resulting

SVG was tested online using the validation service. The SVG/XML that

was generated when Grailog KS Viz was referenced in the stylesheet process-

ing instruction was considered invalid. The validation service found errors

while checking the SVG produced by Grailog KS Viz as SVG 1.1. The

SVG/XML that was generated using Grailog KS Viz 2.0 to transform the

same RuleML/XML source was checked as valid. The online service success-

fully performed a formal validation of the SVG produced by Grailog KS Viz

2.0 as SVG 1.1. The validation was performed before the Purifier XSLT was

applied and is therefore independent of the Purifier.

56



Grailog KS Viz Grailog KS Viz 2.0

Relation labels on hyperarcs Labelnode normal form
Visualizes n-ary (n>1) relations Visualizes n-ary (n≥1) relations
Source code containing JavaScript Source code with JavaScript (op-

tionally) removed
Visualizes Datalog+ with equality
as a special binary atom
Visualizes Hornlog nested function
applications
Visualizes Hornlog+ with equality
as a special binary atom

Table 5.1: Comparison of Grailog KS Viz and Grailog KS Viz 2.0 features.

5.4 Evaluation

The testing of response time was carried out by using increasingly large file

sizes of RuleML/XML transformed by Grailog KS Viz 2.0. Testing was con-

ducted using files stored in offline directories and the built-in XSLT processor

in IE. The visualization of a RuleML/XML source was evaluated based on

the time required to render the Grailog/SVG which included executing the

internal JavaScript. The Grailog/SVG was subsequently saved as a static

image with the calculated values embedded in the SVG, which does not re-

quire the scripts to recalculate the values. The time required to render the

static image was then measured. Finally, the Purifier XSLT was applied to

the static Grailog/SVG and the internal JavaScript was removed. The time

required to render the pure Grailog/SVG was also measured. Another aspect
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of evaluating the efficiency of the tool was to compare the file sizes of the

generated Grailog/SVG before and after applying the Purifier XSLT.

Employing Grailog KS Viz 2.0 to render any SVG/XML visualization in a

Web browser requires the use of JavaScript. The transformation of any

RuleML/XML source by the Renderer XSLT will invoke the Initialize tem-

plate. The Initialize template uses JavaScript to initialize the height and

width variables used in calculating the dimensions of the viewport, as well as

variables used in other templates. Each additional element that is required

in the visualization utilizes JavaScript to calculate the dimensions of the el-

ement and the coordinates for placement of the element on the viewport.

Therefore, even the most basic SVG visualization will contain JavaScript

that can be removed by the Purifier XSLT, resulting in a smaller file size.

To demonstrate this, a small visualization of a unary relation represented in

RuleML/XML was transformed to Grailog/SVG/XML using the Renderer

XSLT. The RuleML/XML representation contained in a file size of 1KB is

given below.

<RuleML>

<Assert>

<Atom>

<Rel>vertex</Rel>

<Var>V</Var>

</Atom>

</Assert>

</RuleML>
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The resulting visualization was saved as a static SVG file, which contains

JavaScript. The static SVG file was 9KB in size and contained 121 lines

of code. The Purifier XSLT was then applied to the static Grailog/SVG to

remove the internal JavaScript. The file size of the pure Grailog/SVG was

2KB and contained 26 lines of code. Its visualization is provided below.

Larger file sizes of RuleML/XML were then used to compare the rendering

time and file sizes of the Grailog/SVG in its various forms. The visualization

of a 28KB RuleML/XML file containing 1,607 lines required on average 2.70

seconds to complete, which includes executing the internal JavaScript. Ren-

dering the visualization using the static image required less time, since the

scripts do not have to be executed again, and took on average 1.23 seconds.

The file size of the static Grailog/SVG file was 4,049KB. After the Purifier

XSLT was applied to the static Grailog/SVG, the resulting SVG file was re-

duced to 577KB in size. The time required to render the pure Grailog/SVG

was on average of 0.439 seconds.

The input RuleML/XML file size of 55KB, which has 3,207 lines, completed

the JavaScript execution and visualization in an average of 6.41 seconds.

The file size of the static SVG image was 8,118KB. The rendering of the
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static Grailog/SVG required on average 2.57 seconds. The removal of the

JavaScript using the Purifier XSLT resulted in a file size of 1,159KB, whose

rendering took on average 0.992 seconds.

When the file size was increased to 108KB with 6,407 lines, the time to visual-

ize the Grailog/SVG was on average 13.94 seconds. The static Grailog/SVG

image was 16,392KB in size. The time required to render the static SVG

image was on average 6.59 seconds. The file size was 2,348KB after the Pu-

rifier XSLT removed the JavaScript and the rendering of the visualization

required 1.89 seconds on average.

From the results of the three data groups it is hypothesized that the vi-

sualization time for the input RuleML/XML increases linearly with the file

size. The removal of the JavaScript using the Purifier XSLT reduces the time

required to render the visualization, and results in significantly smaller file

sizes. Grailog KS Viz 2.0 thus provides users the option to more efficiently

view, store, and share visualizations.
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Chapter 6

Conclusions

The objective of this thesis was to move from Grailog KS Viz to Grailog KS

Viz 2.0 by adding new capability including visualizing Hornlog, a computa-

tionally complete language. In Section 6.1, a summary of the results of this

work is given. Suggestions for future work that could enhance the tool are

provided in Section 6.2.

6.1 Results

Grailog KS Viz 2.0 has been extended to the labelnode normal form of

Grailog including n-ary (e.g., unary) relations. The tool is able to visual-
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ize Datalog+ with (head) equality as a binary atom and Hornlog, including

Hornlog+ equality, allowing complex terms with arbitrary levels of nested

function applications. Single- and multi-premise rules containing any combi-

nation of n-ary relations, Datalog+ equality, and Hornlog in the premise(s)

and conclusion are visualized using the tool.

The tool developed in this thesis uses a normal form of visualization where

node copies are created, instead of node sharing. A main reason for this

approach is the scalability of the node-copy normal form for large databases.

On the other hand, the growth rate when sharing nodes is not scalable since

reuse requires searching for the location of each node in the graph. Another

benefit is that the readability of the node-copy form, which avoids any hy-

perarc crossings, is significantly greater (while the graph connectivity is not

made explicit).

In order to draw nested function applications, a recursive template with

parameters is used. The recursive template utilizes parameters to set the

variables that are required in the creation of unique ID names for the SVG

elements. When the template for nested function applications is called, the

parameters are passed by the calling template. This approach is significantly

different from the original design in that the recursive template is used to

draw nested function applications that occur in any construct by using pa-

rameters.
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To provide assurances that there are no malicious scripts contained in the

generated SVG, the internal JavaScript can be removed. The rendered SVG,

when saved as a static image and by referencing the Purifier XSLT in its

stylesheet processing instruction, can be transformed to contain only pure

SVG. The removal of JavaScript, which is no longer required in the static

image, provides increased security when sharing the Grailog/SVG visualiza-

tions.

The removal of JavaScript from the Grailog/SVG also results in faster gener-

ation of the SVG and smaller file sizes for more efficient storage and sharing.

The file size of the efficiency test cases used in the evaluation of the tool

was each reduced by 86%. The gains of time efficiency by using the pure

SVG to render the visualization were increasingly greater as the file size in-

creased. The time required to render the visualization of the largest file was

reduced by 53% when the static Grailog/SVG image was rendered compared

to the Grailog/SVG with active scripts. When the JavaScript was removed

using the Purifier XSLT, the time to render the Grailog/SVG was reduced

by another 71% compared to the rendering time of the static image. When

large knowledge bases are being visualized, these time and space efficiencies

become increasingly more important and evident.

The SVG/XML generated by the Renderer XSLT of Grailog KS Viz 2.0

has been validated using the W3C Markup Validation Service [29], and was
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successfully checked as SVG 1.1. The tool has been successfully tested on

common Web browsers using only their built-in XSLT processor to complete

the rendering. The quality and accuracy of the visualizations are consistent

for all tested Web browsers. IE and Firefox are able to render the Grailog

visualization using a RuleML/XML source file stored in a local or online

directory. Google Chrome and Safari transform the RuleML/XML source

file stored in an online directory.

The advantages of using KV were evident in the development of the test cases

and use case. The Grailog/SVG visualization was consistently chosen by the

users over the source RuleML representation when working collaboratively

on improvements.

6.2 Future Work

The work done in this thesis uses only the XSLT processor built into the

Web browser. This approach requires the RuleML/XML source to contain

a stylesheet processing instruction in the prolog referring to the Renderer

XSLT. Likewise, the static SVG image must also contain a stylesheet pro-

cessing instruction referring to the Purifier XSLT. The user must edit the

static SVG image and add the stylesheet processing instruction. The benefit

of using the built-in XSLT processor is that the tool can be used offline and
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without the need for additional tools. Another approach would be to use

an online XSLT processing tool to complete the transformations by provid-

ing both the RuleML/XML and the Renderer XSLT as inputs. The use of

an online processing tool would allow the user to apply the Purifier XSLT

to the static SVG image without having to first add the stylesheet process-

ing instruction. Other considerations for future work could include the use

of a Web service that would automate the saving of the rendered Grailog

visualization as a static image file and apply the Purifier XSLT stylesheet.

The recursive template to visualize nested function applications, which was

developed to meet the main objective of this thesis, demonstrates how the

software could be improved to increase reusability for future development.

This template demonstrates how improvements to existing templates could

be made that will allow the tool to be expanded more efficiently.

A possible extension to the tool, for the visualization of nested functions,

is to have them appear increasingly smaller in size according to their depth

of nesting. The scaled-down functions could then be viewed using the zoom

function of the browser.

Other future work could include the optional merging of labelnode copies.

Eliminating duplicate nodes is a common approach to visualization and is

used in tools such as GrOWL [21] and PaladinRM [2]. When node copies are

removed, readability of the graphs is diminished. Therefore, if node copies
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are eliminated, then other capabilities should be added to allow the user

the option to select a narrow view of the graph to reduce confusion from

crossing edges. As a follow-up on our experimental findings, the time and

space complexity of Grailog KS Viz 2.0 could be formally analyzed.

A complementary tool that could be developed would be an inverse transla-

tor. Such a conversion of Grailog visualization to RuleML knowledge repre-

sentation could lead to visual editing of machine-readable logic.

New capability could also be added to the tool in order to visualize more

languages of (Deliberation) RuleML. For example, the tool could be extended

to allow First Order Logic (FOL), Higher-Order, or Modal RuleML.
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Appendix A

Graph-Theory Test Cases

The test cases depicting graph theory knowledge were developed using Horn-

log RuleML serialized in XML. The Renderer XSLT was applied to the

RuleML/XML using the XSLT processor built into the Web browser. The

resulting Grailog/SVG visualization accurately displays the RuleML/XML.

A.1 Test Case 1

This test case is written in controlled natural language, then represented

in machine-readable logic using Prolog, POSL, and RuleML, and then pre-

sented in Grailog/SVG as rendered by the tool. The underlying SVG/XML
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after the internal JavaScript is removed by the Purifier XSLT is also given.

Due to the large size of the SVG/XML source with the internal JavaScript

(607 lines) it is not provided here but can be viewed online (GraphTheory-

TestCase1.ruleml.xml) by selecting view source from the context menu of the

browser.

If

Vk is a vertex,

Vj is a vertex,

And

the pair of vertices Vk, Vj is an edge

Then

Vk is an adjacent vertex to Vj

adjacentVertex(Vk,Vj) :-

vertex(Vk),

vertex(Vj),

edge(pair(Vk,Vj)).

adjacentVertex(?Vk,?Vj) :-

vertex(?Vk),

vertex(?Vj),

edge(pair[?Vk,?Vj]).
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<RuleML>

<Assert>

<Implies>

<And>

<Atom>

<Rel>vertex</Rel>

<Var>Vk</Var>

</Atom>

<Atom>

<Rel>vertex</Rel>

<Var>Vj</Var>

</Atom>

<Atom>

<Rel>edge</Rel>

<Expr>

<Fun per="copy">pair</Fun>

<Var>Vk</Var>

<Var>Vj</Var>

</Expr>

</Atom>

</And>

<Atom>

<Rel>adjacentVertex</Rel>

<Var>Vk</Var>

<Var>Vj</Var>

</Atom>

</Implies>

</Assert>

</RuleML>
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<?xml version="1.0" encoding="iso-8859-1"?>

<?xml-stylesheet type="text/xsl" href="Purifier.xslt"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg id="rootSVG" width="491.313" height="900" version="1.1"

xmlns="http://www.w3.org/2000/svg">

<defs>

<marker id="arrow" viewBox="0 0 15 15" refX="1" refY="6"

markerUnits="strokeWidth" markerWidth="10" markerHeight="7"

orient="auto">

<path style="fill: none; stroke: black; stroke-width: 2;"

d="M 0 1 L 10 6 L 0 11 L 10 6 L 0 6"></path>

</marker>

<pattern id="hatched" patternUnits="userSpaceOnUse"

patternTransform="rotate(45)" x="0" y="0" width="3.5"

height="3.5">

<path fill="none" stroke="#01a9db" stroke-linecap="square"

stroke-width="1" d="M 0 0 l 0 3.5"></path>

</pattern>

</defs>

<path id="double_arrowRule1" style="fill: none; stroke: black;

stroke-width: 2;" d="M 55 580 L 65 590 L 75 580 L 68 587

L 68 560 L 68 587 L 65 590 L 62 587 L 62 560"></path>

<rect id="round_rect1Rule1" style="fill: none; stroke: #000000;

stroke-width: 1;" x="30" y="60" width="361.313" height="500"

rx="10" ry="10"></rect>

<rect id="round_rect2Rule1" style="fill: none; stroke: #000000;

stroke-width: 1;" x="30" y="592" width="312.969" height="148"

rx="10" ry="10"></rect>

<path id="curvePathMPRule1111" style="fill: none; stroke: black;

stroke-width: 1;" d="M 50 105 C 35 90 122.656 90 107.656 105">

</path>

<path id="curvePath2MPRule1111" style="fill: none; stroke: black;

stroke-width: 1;" d="M 107.656 105

C 122.656 90 122.656 140 107.656 125"></path>

<path id="curvePath3MPRule1111" style="fill: none; stroke: black;

stroke-width: 1;" d="M 107.656 125
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C 122.656 140 35 140 50 125"></path>

<path id="curvePath4MPRule1111" style="fill: none; stroke: black;

stroke-width: 1;" d="M 50 105 C 35 90 35 140 50 125"></path>

<text id="textMPRule1111" style="font-family: courier,monospace;

font-size: 16px;" x="50" y="120">vertex</text>

<polygon id="polygonMPRule1112" style="fill: url(#hatched);

stroke:#000000; stroke-width: 1;" points="157.656,95 176.875,95

186.875,105 186.875,125 176.875,135 157.656,135 147.656,125

147.656,105"></polygon>

<text id="textMPRule1112" style="font-family: courier,monospace;

font-size: 16px;" x="157.6563" y="120">Vk</text>

<path id="pathMPRule111" fill="none"

marker-end="url(&quot;#arrow&quot;)"

stroke="black" stroke-width="1.5"

d="M 107.656 100 L 144.656 100"></path>

<path id="curvePathMPRule1121" style="fill: none; stroke: black;

stroke-width: 1;" d="M 50 215

C 35 200 122.656 200 107.656 215"></path>

<path id="curvePath2MPRule1121" style="fill: none; stroke: black;

stroke-width: 1;" d="M 107.656 215

C 122.656 200 122.656 250 107.656 235"></path>

<path id="curvePath3MPRule1121" style="fill: none; stroke: black;

stroke-width: 1;" d="M 107.656 235

C 122.656 250 35 250 50 235"></path>

<path id="curvePath4MPRule1121" style="fill: none; stroke: black;

stroke-width: 1;" d="M 50 215

C 35 200 35 250 50 235"></path>

<text id="textMPRule1121" style="font-family: courier,monospace;

font-size: 16px;" x="50" y="230">vertex</text>

<polygon id="polygonMPRule1122" style="fill: url(#hatched);

stroke:#000000; stroke-width: 1;" points="157.656,205 176.875,

205 186.875,215 186.875,235 176.875,245 157.656,245 147.656,235

147.656,215"></polygon>

<text id="textMPRule1122" style="font-family: courier,monospace;

font-size: 16px;" x="157.6563" y="230">Vj</text>
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<path id="pathMPRule112" fill="none"

marker-end="url(&quot;#arrow&quot;)" stroke="black"

stroke-width="1.5" d="M 107.656 210 L 144.656 210"></path>

<path id="curvePathMPRule1131" style="fill: none; stroke: black;

stroke-width: 1;" d="M 50 325

C 35 310 103.438 310 88.4375 325"></path>

<path id="curvePath2MPRule1131" style="fill: none; stroke: black;

stroke-width: 1;" d="M 88.4375 325

C 103.438 310 103.438 360 88.4375 345"></path>

<path id="curvePath3MPRule1131" style="fill: none; stroke: black;

stroke-width: 1;" d="M 88.4375 345

C 103.438 360 35 360 50 345"></path>

<path id="curvePath4MPRule1131" style="fill: none; stroke: black;

stroke-width: 1;" d="M 50 325 C 35 310 35 360 50 345"></path>

<text id="textMPRule1131" style="font-family: courier,monospace;

font-size: 16px;" x="50" y="340">edge</text>

<path id="pathMPRule113" fill="none"

marker-end="url(&quot;#arrow&quot;)" stroke="black"

stroke-width="1.5" d="M 88.4375 320 L 123.438 320"></path>

<text id="textMPRule1132" x="88.4375"></text>

<path id="curvePathFunctionInMPMPRule131111" style="fill: none;

stroke: black; stroke-width: 1;" d="M 139.438 355

C 154.438 370 192.875 370 207.875 355"></path>

<path id="curvePath2FunctionInMPMPRule131111" style="fill: none;

stroke: black; stroke-width: 1;" d="M 207.875 355

C 192.875 370 192.875 390 207.875 405"></path>

<path id="curvePath3FunctionInMPMPRule131111" style="fill: none;

stroke: black; stroke-width: 1;" d="M 207.875 405

C 192.875 390 154.438 390 139.438 405"></path>

<path id="curvePath4FunctionInMPMPRule131111" style="fill: none;

stroke: black; stroke-width: 1;" d="M 139.438 355

C 154.438 370 154.438 390 139.438 405"></path>

<text id="textFunctionInMPMPRule1311111"

style="font-family:courier,monospace; font-size: 16px;"

x="154.4375" y="385">pair</text>

80



<polygon id="polygonFunctionInMPMPRule1311121"

style="fill: url(#hatched); stroke: #000000; stroke-width: 1;"

points="242.875,360 262.094,360 272.094,370 272.094,390 262.094,

400 242.875,400 232.875,390 232.875,370"></polygon>

<text id="textFunctionInMPMPRule1311121"

style="font-family: courier,monospace; font-size: 16px;"

x="242.875" y="385">Vk</text>

<path id="pathFunctionInMPMPRule131111" fill="none"

marker-end="url(&quot;#arrow&quot;)" stroke="black"

stroke-width="1.5" d="M 199.875 365 L 297.094 365"></path>

<polygon id="polygonFunctionInMPMPRule1311131"

style="fill: url(#hatched); stroke: #000000; stroke-width: 1;"

points="312.094,360 331.313,360 341.313,370 341.313,390 331.313,

400 312.094,400 302.094,390 302.094,370"></polygon>

<text id="textFunctionInMPMPRule1311131"

style="font-family: courier,monospace; font-size: 16px;"

x="312.0938" y="385">Vj</text>

<path id="curvePathExprFunctionInMPMPRule131111"

style="fill: none; stroke: black; stroke-width: 1;"

d="M 129.438 300 C 139.438 305 366.313 310 371.313 300"></path>

<path id="curvePathExpr2FunctionInMPMPRule131111" style="fill: none;

stroke: black; stroke-width: 1;"

d="M 371.313 300 L 371.313 440"></path>

<path id="curvePathExpr3FunctionInMPMPRule131111" style="fill: none;

stroke: black; stroke-width: 1;" d="M 371.313 440

C 361.313 435 134.438 430 129.438 440"></path>

<path id="curvePathExpr4FunctionInMPMPRule131111" style="fill: none;

stroke: black; stroke-width: 1;"

d="M 129.438 300 L 129.438 440"></path>

<path id="curvePathRule121" style="fill: none; stroke: black;

stroke-width: 1;" d="M 50 650

C 35 635 199.531 635 184.531 650"></path>

<path id="curvePath2Rule121" style="fill: none; stroke: black;
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stroke-width: 1;" d="M 184.531 650

C 199.531 635 199.531 685 184.531 670"></path>

<path id="curvePath3Rule121" style="fill: none; stroke: black;

stroke-width: 1;" d="M 184.531 670

C 199.531 685 35 685 50 670"></path>

<path id="curvePath4Rule121" style="fill: none; stroke: black;

stroke-width: 1;" d="M 50 650 C 35 635 35 685 50 670"></path>

<text id="textRule121" style="font-family: courier,monospace;

font-size: 16px;" x="50" y="665">adjacentVertex</text>

<polygon id="polygonRule122" style="fill: url(#hatched);

stroke: #000000; stroke-width: 1;" points="234.531,640 253.75,

640 263.75,650 263.75,670 253.75,680 234.531,680 224.531,670

224.531,650"></polygon>

<text id="textRule122" style="font-family: courier,monospace;

font-size: 16px;" x="234.5313" y="665">Vk</text>

<polygon id="polygonRule123" style="fill: url(#hatched);

stroke: #000000; stroke-width: 1;" points="303.75,640 322.969,

640 332.969,650 332.969,670 322.969,680 303.75,680 293.75,670

293.75,650"></polygon>

<text id="textRule123" style="font-family: courier,monospace;

font-size: 16px;" x="303.7501" y="665">Vj</text>

<path id="pathRule12" fill="none"

marker-end="url(&quot;#arrow&quot;)" stroke="black"

stroke-width="1.5" d="M 184.531 645 L 290.75 645"></path>

</svg>
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A.2 Test Case 2

This test case is again written in controlled natural language, then repre-

sented in RuleML logic, and finally presented in Grailog/SVG as rendered

by the tool.

If

U is a vertex,

V is a vertex,

W is a vertex,

E is

Equal to

the pair of vertices U, V,

F is

Equal to

the pair of vertices V, W,

E is an edge,

And

F is an edge

Then

E is an adjacent edge to F

<RuleML>

<Assert>

<Implies>

<And>

<Atom>

<Rel>vertex</Rel>

<Var>U</Var>

</Atom>

<Atom>

<Rel>vertex</Rel>

<Var>V</Var>
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</Atom>

<Atom>

<Rel>vertex</Rel>

<Var>W</Var>

</Atom>

<Equal>

<Var>E</Var>

<Expr>

<Fun per="copy">pair</Fun>

<Var>U</Var>

<Var>V</Var>

</Expr>

</Equal>

<Equal>

<Var>F</Var>

<Expr>

<Fun per="copy">pair</Fun>

<Var>V</Var>

<Var>W</Var>

</Expr>

</Equal>

<Atom>

<Rel>edge</Rel>

<Var>E</Var>

</Atom>

<Atom>

<Rel>edge</Rel>

<Var>F</Var>

</Atom>

</And>

<Atom>

<Rel>adjacentEdge</Rel>

<Var>E</Var>

<Var>F</Var>

</Atom>

</Implies>

</Assert>

</RuleML>
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A.3 Test Case 3

This test case is a way to capture: The graph over a vertex set and edge set

is the same as the pair constructed from the set of vertices and the set of

pairs of vertices.

<RuleML>

<Assert>

<Implies>

<And>

<Atom>

<Rel>vertex</Rel>

<Var>Vk</Var>

</Atom>

<Atom>

<Rel>vertex</Rel>

<Var>Vj</Var>

</Atom>

</And>

<Equal>

<Expr>

<Fun per="copy">graph</Fun>

<Var>V</Var>

<Var>E</Var>

</Expr>

<Expr>

<Fun per="copy">pair</Fun>

<Expr>

<Fun per="copy">set</Fun>

<Var>Vk</Var>

</Expr>

<Expr>
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<Fun per="copy">set</Fun>

<Expr>

<Fun per="copy">pair</Fun>

<Var>Vk</Var>

<Var>Vj</Var>

</Expr>

</Expr>

</Expr>

</Equal>

</Implies>

</Assert>

</RuleML>
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A.4 Test Case 4

This test case is a way to capture: A graph over a vertex set and edge set is

a simple graph if there is a vertex set of 1 or more vertices and an edge set

of 0 or more pairs of vertices, where the pairs of vertices must be distinct.
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<RuleML>

<Assert>

<Implies>

<And>

<Atom>

<Rel>vertex</Rel>

<Var>Vk</Var>

</Atom>

<Atom>

<Rel>vertex</Rel>

<Var>Vj</Var>

</Atom>

<Atom>

<Rel>distinct</Rel>

<Expr>

<Fun per="copy">pair</Fun>

<Var>Vk</Var>

<Var>Vj</Var>

</Expr>

</Atom>

<Equal>

<Var>V</Var>

<Expr>

<Fun per="copy">set</Fun>

<Var>Vk</Var>

</Expr>

</Equal>

<Equal>

<Var>E</Var>

<Expr>

<Fun per="copy">set</Fun>

<Expr>

<Fun per="copy">pair</Fun>

<Var>Vk</Var>

<Var>Vj</Var>

</Expr>

</Expr>

</Equal>
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<Atom>

<Rel>greaterOrEqual</Rel>

<Expr>

<Fun per="copy">cardinality</Fun>

<Var>V</Var>

</Expr>

<Ind>1</Ind>

</Atom>

<Atom>

<Rel>greaterOrEqual</Rel>

<Expr>

<Fun per="copy">cardinality</Fun>

<Var>E</Var>

</Expr>

<Ind>0</Ind>

</Atom>

</And>

<Atom>

<Rel>simpleGraph</Rel>

<Expr>

<Fun per="copy">graph</Fun>

<Var>V</Var>

<Var>E</Var>

</Expr>

</Atom>

</Implies>

</Assert>

</RuleML>
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A.5 Test Case 5

This test case is a way to capture: A graph constructed from a set of vertices

and edges is a subgraph if it contains a subset of edges and vertices that are

the result of removing a graph over some vertex and edge elements from a

larger graph.

<RuleML>

<Assert>

<Implies>

<And>

<Atom>

<Rel>vertex</Rel>

<Var>U</Var>

</Atom>

<Atom>

<Rel>vertex</Rel>

<Var>W</Var>

</Atom>

<Equal>

<Var>E2</Var>

<Expr>

<Fun per="copy">edgeSubSet</Fun>

<Var>E1</Var>

</Expr>

</Equal>

<Equal>

<Var>V2</Var>

<Expr>

<Fun per="copy">vertexSubSet</Fun>

<Var>V1</Var>

</Expr>

</Equal>

<Equal>
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<Expr>

<Fun per="copy">graph</Fun>

<Var>V2</Var>

<Var>E2</Var>

</Expr>

<Expr>

<Fun per="copy">graphDiff</Fun>

<Expr>

<Fun per="copy">graph</Fun>

<Var>V1</Var>

<Var>E1</Var>

</Expr>

<Expr>

<Fun per="copy">graph</Fun>

<Var>U</Var>

<Expr>

<Fun per="copy">set</Fun>

<Expr>

<Fun per="copy">pair</Fun>

<Var>U</Var>

<Var>W</Var>

</Expr>

</Expr>

</Expr>

</Expr>

</Equal>

</And>

<Atom>

<Rel>subGraph</Rel>

<Expr>

<Fun per="copy">graph</Fun>

<Var>V2</Var>

<Var>E2</Var>

</Expr>

<Expr>

<Fun per="copy">graph</Fun>

<Var>V1</Var>

<Var>E1</Var>
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</Expr>

</Atom>

</Implies>

</Assert>

</RuleML>
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Appendix B

Financial Use Case

Typical financial business rules for international non-profit organizations such

as RuleML Inc were transformed from RuleML/XML to Grailog/SVG vi-

sualization. The financial rules that were covered by the use case include

incoming and outgoing transactions.

B.1 Hornlog RuleML

In developing the use case, the financial rules involving different sources of

income and expense were expressed in Hornlog RuleML. The size of this

RuleML/XML input file is 8KB.
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<RuleML>

<Assert>

<!-- Sponsor Level is associated with

a colour and amount in USD -->

<Atom>

<Rel>sponsorLevel</Rel>

<Ind>Bronze</Ind>

<Ind>500.00</Ind>

</Atom>

<Atom>

<Rel>sponsorLevel</Rel>

<Ind>Silver</Ind>

<Ind>1000.00</Ind>

</Atom>

<Atom>

<Rel>sponsorLevel</Rel>

<Ind>Gold</Ind>

<Ind>3000.00</Ind>

</Atom>

<Atom>

<Rel>sponsorLevel</Rel>

<Ind>Platinum</Ind>

<Ind>5000.00</Ind>

</Atom>

<Atom>

<Rel>sponsorLevel</Rel>

<Ind>Emerald</Ind>

<Ind>7500.00</Ind>

</Atom>

<!-- Sponsor of RuleML Symposium -->

<Atom>

<Rel>sponsor</Rel>

<Expr>

<Fun per="copy">name</Fun>

<Ind>OASISLegalXML</Ind>

</Expr>

<Ind>Silver</Ind>

</Atom>

97



<!-- Speakers at RuleML Symposium -->

<Atom>

<Rel>speaker</Rel>

<Expr>

<Fun per="copy">name</Fun>

<Ind>MichaelGruninger</Ind>

</Expr>

<Ind>Keynote</Ind>

</Atom>

<Atom>

<Rel>speaker</Rel>

<Expr>

<Fun per="copy">name</Fun>

<Ind>BenjaminGrosof</Ind>

</Expr>

<Ind>InvitedTalk</Ind>

</Atom>

<!-- Type of speaker is associated

with a reimbursement -->

<Atom>

<Rel>reimburse</Rel>

<Ind>Keynote</Ind>

<Ind>400.00</Ind>

</Atom>

<Atom>

<Rel>reimburse</Rel>

<Ind>InvitedTalk</Ind>

<Ind>0.00</Ind>

</Atom>

<Atom>

<Rel>reimburse</Rel>

<Ind>Tutorial</Ind>

<Ind>0.00</Ind>

</Atom>

<!-- Registration fee is associated

with a type of participant -->

<Atom>

<Rel>registrationFee</Rel>
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<Ind>Student</Ind>

<Ind>Early</Ind>

<Ind>150.00</Ind>

</Atom>

<Atom>

<Rel>registrationFee</Rel>

<Ind>Student</Ind>

<Ind>Late</Ind>

<Ind>250.00</Ind>

</Atom>

<Atom>

<Rel>registrationFee</Rel>

<Ind>MemberOrPartner</Ind>

<Ind>Early</Ind>

<Ind>400.00</Ind>

</Atom>

<Atom>

<Rel>registrationFee</Rel>

<Ind>MemberOrPartner</Ind>

<Ind>Late</Ind>

<Ind>500.00</Ind>

</Atom>

<Atom>

<Rel>registrationFee</Rel>

<Ind>NonMember</Ind>

<Ind>Early</Ind>

<Ind>450.00</Ind>

</Atom>

<Atom>

<Rel>registrationFee</Rel>

<Ind>NonMember</Ind>

<Ind>Late</Ind>

<Ind>550.00</Ind>

</Atom>

<!-- The web service fee is associated

with a type of participant -->

<Atom>

<Rel>webServiceFee</Rel>
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<Ind>Student</Ind>

<Ind>4.74</Ind>

</Atom>

<Atom>

<Rel>webServiceFee</Rel>

<Ind>MemberOrPartner</Ind>

<Ind>9.95</Ind>

</Atom>

<Atom>

<Rel>webServiceFee</Rel>

<Ind>NonMember</Ind>

<Ind>9.95</Ind>

</Atom>

<!-- Participants at RuleML Symposium -->

<Atom>

<Rel>participant</Rel>

<Expr>

<Fun per="copy">id</Fun>

<Ind>179676719</Ind>

</Expr>

<Ind>Student</Ind>

<Ind>Late</Ind>

</Atom>

<Atom>

<Rel>participant</Rel>

<Expr>

<Fun per="copy">id</Fun>

<Ind>177691773</Ind>

</Expr>

<Ind>MemberOrPartner</Ind>

<Ind>Early</Ind>

</Atom>

<!-- Conversion from USD to CAD

at a rate of 1.3 -->

<Implies>

<Atom>

<Rel>mulitply</Rel>

<Var>USDAmount</Var>
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<Ind>1.3</Ind>

<Var>CADAmount</Var>

</Atom>

<Atom>

<Rel>convertUSDToCAD</Rel>

<Var>USDAmount</Var>

<Var>CADAmount</Var>

</Atom>

</Implies>

<!-- Income of sponsorship from an organization

is converted and deposited into the CAD account -->

<Implies>

<And>

<Atom>

<Rel>sponsor</Rel>

<Expr>

<Fun per="copy">name</Fun>

<Var>Organization</Var>

</Expr>

<Var>Level</Var>

</Atom>

<Atom>

<Rel>sponsorLevel</Rel>

<Var>Level</Var>

<Var>AmountUSD</Var>

</Atom>

<Atom>

<Rel>convertUSDToCAD</Rel>

<Var>AmountUSD</Var>

<Var>AmountCAD</Var>

</Atom>

<Atom>

<Rel>incoming</Rel>

<Expr>

<Fun per="copy">name</Fun>

<Var>Organization</Var>

</Expr>

<Var>AmountCAD</Var>
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<Ind>CIBCToronto</Ind>

</Atom>

</And>

<Atom>

<Rel>income</Rel>

<Expr>

<Fun per="copy">sponsorship</Fun>

<Expr>

<Fun per="copy">name</Fun>

<Ind>OASISLegalXML</Ind>

</Expr>

<Var>Level</Var>

<Var>AmountCAD</Var>

</Expr>

</Atom>

</Implies>

<!-- Conversion from gross income to net income -->

<Implies>

<And>

<Atom>

<Rel>webServiceFee</Rel>

<Var>ParticipantType</Var>

<Var>FeeAmount</Var>

</Atom>

<Atom>

<Rel>subtract</Rel>

<Var>GrossUSDAmount</Var>

<Var>FeeAmount</Var>

<Var>NetUSDAmount</Var>

</Atom>

</And>

<Atom>

<Rel>convertGrossToNet</Rel>

<Var>GrossUSDAmount</Var>

<Var>NetUSDAmount</Var>

<Var>ParticipantType</Var>

</Atom>

</Implies>
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<!-- Income of registration from a participant

is deposited into the Paypal account -->

<Implies>

<And>

<Atom>

<Rel>participant</Rel>

<Expr>

<Fun per="copy">id</Fun>

<Var>IDNumber</Var>

</Expr>

<Var>ParticipantType</Var>

<Var>RegistrationType</Var>

</Atom>

<Atom>

<Rel>registrationFee</Rel>

<Var>ParticipantType</Var>

<Var>RegistrationType</Var>

<Var>AmountUSD</Var>

</Atom>

<Atom>

<Rel>convertGrossToNet</Rel>

<Var>AmountUSD</Var>

<Var>NetAmountUSD</Var>

<Var>ParticipantType</Var>

</Atom>

<Atom>

<Rel>incoming</Rel>

<Expr>

<Fun per="copy">id</Fun>

<Var>IDNumber</Var>

</Expr>

<Var>NetAmountUSD</Var>

<Ind>Paypal</Ind>

</Atom>

</And>

<Atom>

<Rel>income</Rel>

<Expr>
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<Fun per="copy">registration</Fun>

<Expr>

<Fun per="copy">id</Fun>

<Var>IDNumber</Var>

</Expr>

<Var>ParticipantType</Var>

<Var>RegistrationType</Var>

<Var>NetAmountUSD</Var>

</Expr>

</Atom>

</Implies>

<!-- Expense of a speaker is converted and

withdrawn from the CAD bank account -->

<Implies>

<And>

<Atom>

<Rel>speaker</Rel>

<Expr>

<Fun per="copy">name</Fun>

<Var>SpeakerName</Var>

</Expr>

<Var>SpeakerType</Var>

</Atom>

<Atom>

<Rel>reimburse</Rel>

<Var>SpeakerType</Var>

<Var>AmountUSD</Var>

</Atom>

<Atom>

<Rel>convertUSDToCAD</Rel>

<Var>AmountUSD</Var>

<Var>AmountCAD</Var>

</Atom>

<Atom>

<Rel>outgoing</Rel>

<Expr>

<Fun per="copy">name</Fun>

<Var>SpeakerName</Var>
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</Expr>

<Var>AmountCAD</Var>

<Ind>CIBCToronto</Ind>

</Atom>

</And>

<Atom>

<Rel>expense</Rel>

<Expr>

<Fun per="copy">symposiumSpeaker</Fun>

<Expr>

<Fun per="copy">name</Fun>

<Var>SpeakerName</Var>

</Expr>

<Var>SpeakerType</Var>

<Var>AmountCAD</Var>

</Expr>

</Atom>

</Implies>

</Assert>

</RuleML>

B.2 Grailog/SVG

The Renderer XSLT was used to transform the Hornlog RuleML/XML source

to Grailog/SVG visualization of the financial rules. The size of the Grailog/

SVG/XML output file with JavaScript is 634KB, and without JavaScript is

97KB. It took on average 0.410s to render the visualization from the RuleML/

XML. The rendering using the static SVG required on average 0.082s, and

the pure SVG with the JavaScript removed took on average 0.076s to render.
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Appendix C

Installation and Use

Grailog KS Viz 2.0 is employed to visualize rule-knowledge bases in RuleML/

XML as Grailog graphs in SVG/XML using common modern Web browsers.

The SVG initially contains internal JavaScript that is used to calculate and

assign position values and attribute values. The Grailog KS Viz 2.0 files, re-

ferred to in this guide using relative URL’s, are located at the root URL

https://github.com/RuleML/GrailogKSViz/blob/2.0/. The GraphTheory

test case for testing Grailog KS Viz 2.0 was implemented: starting with

a RuleML/XML document GraphTheory.ruleml (GraphTheory.ruleml.xml)

(save file and open in an XML or text editor to view and edit the source

RuleML), adding a stylesheet processing instruction in the prolog, and visual-

izing it with any common Web browser as SVG/XML document
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GraphTheory.svg. The RuleML/XML as input is transformed using the Web

browser’s XSLT 2.0 processor. To perform all testing using only the browser’s

XSLT processor, the XML document’s prolog must contain a stylesheet pro-

cessing instruction that references the XSLT to be applied. For local and

online testing browser security settings must allow JavaScript to run.

C.1 Local Testing of the Renderer

For testing Grailog KS Viz 2.0 on local machines, all documents must be

stored as local files in the same directory. The RuleML/XML document

must contain a reference to the Renderer XSLT stylesheet (Renderer.xslt) in

order to apply the transformation. Open the saved GraphTheory.ruleml file

in an editor and copy the stylesheet processing instruction into the prolog:

<?xml-stylesheet type="text/xsl" href="Renderer.xslt"?>

To view the Grailog visualization, open the RuleML/XML document in a

common Web browser (e.g., IE or Firefox), either by dragging and dropping

the RuleML/XML file onto the application (shortcut) or choosing the ‘open

with’ option from the context menu and selecting the Web browser applica-

tion. Local testing cannot be done using Google Chrome due to its strict

Same Origin Policy (SOP), which does not recognize the files stored in the
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same local directory as being from the same origin.

C.2 Online Testing of the Renderer

For testing Grailog KS Viz 2.0 online, the RuleML/XML document Graph-

Theory.ruleml and the Renderer XSLT stylesheet must be stored in the same

online directory. Then create a hyperlink to the RuleML/XML document.

In the Web browser, select the hyperlink to the RuleML/XML document:

the browser’s XSLT processor will render the Grailog visualization. Online

testing can be done using common Web browsers (e.g., IE, Firefox, Google

Chrome, or Safari).

C.3 Using the Purifier

The internal JavaScript can be removed (only) after the visualization has

been rendered and saved as a static SVG image. The Purifier XSLT stylesheet

(Purifier.xslt) must be stored in the same directory as the static SVG image.

Due to strict security policies, Google Chrome cannot be used to perform the

purifying. To remove JavaScript tags from the generated Grailog SVG/XML:

1. render the Grailog visualization in browser
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2. save the SVG image in the same directory as the Purifier XSLT by

selecting from the browser’s context menu:

(a) ‘Save picture as’ in IE

(b) ‘Save page as’ in Firefox

3. open the saved SVG file in an editor and copy the stylesheet processing

instruction into the prolog:

<?xml-stylesheet type="text/xsl" href="Purifier.xslt"?>

4. open the edited file in IE or Firefox to get the Purifier XSLT applied

The final SVG may be saved to any location and will not contain any

JavaScript. The final rendering may be viewed in IE and Firefox. Due

to strict security policies, to view the final SVG in Google Chrome, the file

must be edited again to remove the stylesheet processing instruction from the

prolog, which is no longer required after the Purifier has been applied. Once

the reference is removed, the SVG can also be viewed in Google Chrome.

C.4 GraphTheory Test Case

In the current section the RuleML/XML for the GraphTheory test case em-

ployed in this Installation and Use guide is provided. The test case is written
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in controlled natural language, then represented in RuleML logic, and finally

presented in Grailog.

If

N1 is a node

And

N2 is a node

Then

the undirected arc from N1 to N2 is

Equal to

the undirected arc from N2 to N1

<RuleML>

<Assert>

<Implies>

<And>

<Atom>

<Rel>node</Rel>

<Var>N1</Var>

</Atom>

<Atom>

<Rel>node</Rel>

<Var>N2</Var>

</Atom>

</And>

<Equal>

<Expr>

<Fun per="copy">undirectedArc</Fun>

<Var>N1</Var>

<Var>N2</Var>

</Expr>

<Expr>

<Fun per="copy">undirectedArc</Fun>

<Var>N2</Var>
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<Var>N1</Var>

</Expr>

</Equal>

</Implies>

</Assert>

</RuleML>

Figure C.1: Grailog/SVG visualization of GraphTheory RuleML/XML.
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