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The small-world phenomenon (a.k.a, six degrees of

separation) I

The materials is adopted form Chapter 10 of (Easley and
Kleinberg, 2010).

Social networks are so rich in short paths, known as the
small-world phenomenon, or the “six degrees of separation”; and
it has long been the subject of both anecdotal and scientific
fascination.

Mathematically, small world networks of size n have an average
distance O(log n), meaning that between any two random
nodes, the expected distance is O(log n).

〈L〉 ∝ log n
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The small-world phenomenon (a.k.a, six degrees of

separation) II

Compare to the ultra-small world, where the average distance
become significantly smaller and scale as

〈L〉 ∝ log log n
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Small-world networks are abundant in real life

Small-world properties are found in many real-world phenomena:

Transportation networks in ground, air or sea;
Biology network such as food webs, gene network, protein
network, neuron network, metabolism network, immune
network;
Technology network like the Internet, electric power grids,
wireless network, cable network, telephone call graphs;
Various social networks.
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Milgram’s experiment (Travers and Milgram, 1969)

http://stanleymilgram.com/milgram.php

The first significant empirical study of the small-world phenomenon was
undertaken by the social psychologist Stanley Milgram on the global
friendship network as follows.

Randomly chosen “starter” individuals each tries forwarding a letter to a
designated “target” person living in the town of Sharon, MA, a suburb
of Boston.
The target’s name, address, occupation, and some personal information
are provided,
The participants could not mail the letter directly to the target; rather,
each participant could only advance the letter by forwarding it to a
single acquaintance that he or she knew on a first-name basis, with
the goal of reaching the target as rapidly as possible.
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Result from Milgram’s experiment

20% of initiated chains reached target

average chain length = 6.5

median =6

Hence the famous “Six degrees of separation”
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Milgram’s experiment repeated (Dodds et al.,

2003)

60,000+ participants

24,163 message chains

384 reached their targets

average path length 4.0

Median 5-7
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What can we learn from Milgram’s experiment?

Milgram’s experiment really demonstrated two striking facts
about large social networks:

First, that short paths are abundant;
Second, that people, acting without any sort of global “map” of
the network, are effective at collectively finding these short path.
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Question 1: The existence of short paths

Network grows exponentially, leading to the
the existence of short paths!

The average person has between 500 and
1500 acquaintances, leading to
5002 = 25K in one step, 5003 = 125M in
two steps, 5004 = 62.5B in four
(Figure (a)).

However, the effect of triadic closure works
to limit the number of people you can reach
by following short paths (Figure (b)).

Triadic closure: If two people in a social
network have a friend in common, then
there is an increased likelihood that they
will become friends themselves at some
point in the future.

Question: Can we make up a simple model
that exhibits both of the features: many
closed triads (high clustering), but also very
short path (small-world)?
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The Watts-Strogatz small-world network (Watts

and Strogatz, 1998) I

Small-world network satisfies two properties according to Watts
and Strogatz:

small average shortest path (global)
high clustering coefficient (local)

Such a model follows naturally from a combination of two basic
social-network ideas:

Homophily: the principle that we connect to others who are like
ourselves, and hence creates many triangles.
Weak ties: the links to acquaintances that connect us to parts
of the network that would otherwise be far away, and hence the
kind of widely branching structure that reaches many nodes in a
few steps.
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The Watts-Strogatz small-world network (Watts

and Strogatz, 1998) II

The crux of the Watts-Strogatz model: introducing a tiny
amount of randomness–in the form of long-range weak ties–is
enough to make the world “small” with short paths between
every pair of nodes.

Bollobás and Chung (1988) shows mathematically that with high
probability that the diameter is no more than O(log n), and
hence the small world phenomenon.
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How to generate the Watts-Strogatz small-world

network

Step 1. Start with a lattice of n nodes, and join each vertex to r
of its neighbors to each side.

Step 2. (Rewiring) For each edge, one end of this edge is
rewired to another vertex independently and with probability p
to a new vertex chosen randomly.

Step 2’. (Adding) Alternatively, add a small number of new
edges to randomly selected pairs of vertices.
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Small world arises as randomness increases

Figure: Characteristic path length L(p) and
clustering coefficient C (p) for the family of
randomly rewired graphs described (Watts and
Strogatz, 1998)

The data shown in the figure are
averages over 20 random realizations
of the rewiring process, and have been
normalized by the values L(0), C (0)
for a regular lattice.
All the graphs have n = 1, 000 vertices
and an average degree of k = 10
edges per vertex.
A logarithmic horizontal scale has
been used to resolve the rapid drop in
L(p), corresponding to the onset of
the small-world phenomenon.
During this drop, C (p) remains almost
constant at its value for the regular
lattice, indicating that the transition
to a small world is almost
undetectable at the local level.
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The Watts-Strogatz random grid model:

Illustration in Netlogo

http://ccl.northwestern.edu/netlogo/

Go to File/Model Library/Networks/Small Worlds

Du (UNB) Social network 15 / 51



The Watts-Strogatz random grid model:

Illustration in R packge: igraph

# R script: small_world.R

library(igraph)

g <- watts.strogatz.game(1, 100, 5, 0.05)

plot(g,layout=layout.circle)

average.path.length(g)

transitivity(g, type="average")
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Watts-Strogatz small-world network vs Random

network

Random Watts-Strogatz regular
(chaos) (???) (order)

average path Ω
(

log n
log〈K〉

)
Ω (log n) Ω

(
n
2r

)
average clustering Ω (〈K 〉/n) ≈ 3r−3

4r−2(1− p)3 (Barrat and Weigt, 2000) ≈ 3r−3
4r−2

Random network is a small world, but not navigable.

In a random graph, although a short path exists, a local algorithm must be lucky
to find it as it can do little better than a random walk on the network.

Random network has much smaller average clustering coefficient, compared to
that of the Watts-Strogatz small-world network.
It is still an open question on the exact quantity of these measures for
Watts-Strogatz small-world network.
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The one-dimensional case: the people who lives on

a ring society
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Question 2: The Kleinberg’s decentralized search

model based on geographical distance (Kleinberg,

2000) I

Nodes on a q-dimensional grid as before, and each node still has
edges to each other node within r grid steps.

But in generating a random edge out of v , we have this edge link
to w with probability proportional to d(v ,w)−q where q ≥ 0.
More formally, for each node v , connect to w with probability

P(v linked to w) =
d(v ,w)−q∑

w

d(v ,w)−q
.

The Watts-Strogatz model therefore corresponds to the special
case where q = 0.

Du (UNB) Social network 19 / 51



Question 2: The Kleinberg’s decentralized search

model based on geographical distance (Kleinberg,

2000) II
We will need the following bound when q = 1 later for the proof
of efficiency of decentralized search:

P(v linked to w) ≥ d(v ,w)−1

2 log n
. (1)

There are two nodes at distance 1 from v , two at distance 2,
and more generally two at each distance d up to n/2 (assuming
n is even):

∑
w

1

d(v ,w)
= 2

n/2∑
k=1

1

k
≤ 2

(
1 + ln

n

2

)
≤ 2 log2 n.
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The Kleinberg model: Illustration in Netlogo

http://ccl.northwestern.edu/netlogo/

Go to File/Model Library/Networks/Small Worlds

Du (UNB) Social network 21 / 51



The Kleinberg model: Illustration in R packge:

igraph

# R script: small_world.R

library(igraph)

g <- watts.strogatz.game(1, 100, 5, 0.05)

plot(g,layout=layout.circle)

average.path.length(g)

transitivity(g, type="average")
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The main result for Kleinberg’s model:

In the limit of large network size,

When q = 0: long range contacts are chosen uniformly,
resulting in the random network which has short paths between
every pair of vertices, but no decentralized algorithm capable of
finding these paths.
If q < n: more likely to choose distant-friends where
decentralized algorithm quickly approaches the neighborhood of
the target, but then slows down till finally reaches target itself.
If q > n: more likely choose close-friends where decentralized
algorithm quickly finds target in its neighborhood, but reaches
the target slowly.
If q = n, decentralized search is most efficient: next slide ⇒ . . .
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Why q = n?

We look at the two-dimensional case where
n = 2.
Taking a node v in the network, and a fixed
distance d , and considering the ring area
where group of nodes lying at distances
between d and 2d from v :
What is the probability that v forms a link
to some node inside this group?

Area ∝ d2 =⇒ number of nodes therein
∝ d2.
Probability that v links to any one node
therein ∝ d−2 according to the model.
These two terms approximately cancel out.
Therefore the probability that a random
edge links from v into some node therein
is approximately independent of the value
of d .
Consequently, when q = n = 2: long-range
weak ties are being formed in a way that is
spread roughly uniformly over all different
scales of resolution.
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From geographic data on friendship to rank-based

friendship (Liben-Nowell et al., 2005)

Question to answer: how friendship links scale with distance and
look for evidence of the exponent q = 2, that is, the probability
of a random chosen link p(v ,w) ∝ d(v ,w)−2!

Data: Blogging site LiveJournal

Roughly 500,000 users who provided a U.S. ZIP code for their
home address, as well as links to their friends on the system.
We now have a friendship network with location as one of the
node attributions
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Method I

Consider pairs of nodes which are d distance away from each
pother, and calculate what fraction f of these pairs are actually
friends, as a function of d .

One difficulty: the inverse-square distribution is useful for finding
targets when nodes are uniformly spaced in two dimensions

But the population density of the users within any country is
extremely non-uniform...

What’s a reasonable generalization to the case in which they can
be spread very non-uniformly?

One approach that works well is to determine link probabilities
not by physical distance, but by rank.
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Method II

Suppose that as a node v looks out at all other nodes, it ranks
them by proximity: the rank of a node w , denoted rank(w), is
equal to the number of other nodes that are closer to v than w
is.
if a node w in a uniformly-spaced grid is at distance d from v ,
then it lies on the circumference of a disc of radius d , which
contains about d2 closer nodes - so its rank is approximately d2.
Thus, linking to w with probability proportional to d−2 is
approximately the same as linking with probability rank(w)−1,
so this suggests that exponent p = 1 is the right generalization
of the inverse-square distribution.

Liben-Nowell et al. were able to prove that for essentially any
population density, if random links are constructed using
rank-based friendship with exponent 1, the resulting network
allows for efficient decentralized search with high probability.
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Method III

In addition to generalizing the inverse-square result for the grid,
this result has a nice qualitative summary: to construct a
network that is efficiently searchable, create a link to each node
with probability that is inversely proportional to the number of
closer nodes.
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Results

The relationship between friendship probability and rank. 

Liben-Nowell D et al. PNAS 2005;102:11623-11628

©2005 by National Academy of Sciences
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Back into the future I

In this case study, one follows a sequence of steps in which
1 start from an experiment (Milgram’s),
2 build mathematical models based on this experiment

(combining local and long-range links),
3 make a prediction based on the models (the value of the

exponent controlling the long-range links), and then
4 validate this prediction on real data (from LiveJournal and

Facebook, after generalizing the model to use rank-based
friendship).

This is very much how one would hope for such an interplay of
experiments, theories, and measurements to play out.
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Back into the future II

But it is also a bit striking to see the close alignment of theory
and measurement in this particular case, since the predictions
come from a highly simplified model of the underlying social
network, yet these predictions are approximately borne out on
data arising from real social networks.
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Social Distance

The social distance between two people is the size of the smallest focus
that includes both of them.

Figure: the node labeled v belongs to five foci of sizes 2, 3, 5, 7, and 9 (with the
largest focus containing all the nodes shown).
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Network model based on social distance

(Kleinberg, 2001; Adamic and Adar, 2005) I

Following the style of earlier models, construct a link between
each pair of nodes v and w with probability proportional to
dist(v ,w)−p.

One can show, subject to some technical assumptions on the
structure of the foci, that when links are generated this way with
exponent p = 1, the resulting network supports efficient
decentralized search with high probability.

Two conclusions:

As with rank-based friendship, there is a simple description of
the underlying principle: when nodes link to each other with
probability inversely proportional to their social distance, the
resulting network is efficiently searchable.
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Network model based on social distance

(Kleinberg, 2001; Adamic and Adar, 2005) II

Moreover, the exponent p = 1 is again the natural
generalization of the inverse-square law for the simple grid
model.
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Decentralized Problem-Solving

The notion that social networks can be effective at this type of
decentralized problem solving is an intriguing and general
premise that applies more broadly than just to the problem of
path-finding that Milgram considered.

There are many possible problems that people interacting in a
network could try solving, and it is natural to suppose that their
effectiveness will depend both on the difficulty of the problem
being solved and on the network that connects them

Du (UNB) Social network 38 / 51



Ways to generate small-world networks

As the output of an optimization problem (Mathias and Gopal,
2001; Gastner and Newman, 2006).

As the output of a growth process: add links with probability
depending on property of existing nodes, edges (preferential
attachment, link copying).

As the equilibrium of a game: simulate nodes as agents deciding
whether to rewire or add links.
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The mathematics behind: myoptic search is

efficient in expectation I

Choose a random start node s and a random target node t on
the random ring network equipped with Kleinberg’s inverse
power distribution.

The goal is to forward a message from s to t, with each
intermediate node on the way only knowing the locations of its
own neighbors, and the location of t, but nothing else about the
full network.

Myoptic search: when a node v is holding the message, it
passes it to the contact that lies as close to t on the ring as
possible
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The mathematics behind: myoptic search is

efficient in expectation II

We will show the myoptic search constructs a path that is
exponentially smaller: proportional to log2 n, although myoptic
usually cannot give us the shortest path.

Namely, we will show that E[X ] ≤ O(log2 n), where, X is a
random variable indicating the number of steps required by
myopic search.

Du (UNB) Social network 41 / 51



Idea of the proof I

Given s and t, as the message moves from s to t, it is in phase j
of the search if its distance from the target is between 2j and
2j+1.

There are at most log2 n different phases.
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Idea of the proof II

Let Xj (j = 1, . . . , log2 n) be the number of steps taken in Phase
j . Then

X =

log2 n∑
j=1

Xj

⇓

E[X ] =

log2 n∑
j=1

E[Xj ]

=

log2 n∑
j=1

∞∑
k=1

P(Xj ≥ k)
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Idea of the proof III

So it suffices to bound from above each P(Xj ≥ k), which is the
probability that Phase j runs for at least k steps, implying that
phase j failed to terminate k − 1 steps in a row.

We shall show that

P(Xj ≥ k) ≤
(

1− 1

3 log n

)k−1
(2)

⇓

E[Xj ] =
∞∑
k=1

P(Xj ≥ k)

≤
∞∑
k=1

(
1− 1

3 log2 n

)k−1
= 3 log2 n

⇓ (1)

E[Xj ] ≤ O(log22 n).
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Idea of the proof IV

To show (2), it suffices to show that (due to the independence
of the steps within a phase)

P(Phase j terminates after one step) ≥ 1

3 log n.
(3)

Suppose the message is at a node v whose distance to the
target t is some number d ∈ [2j , 2j+1].

Phase j terminates after one step only if the next connected
node w is at most d(v , t)/2 distance away from t.

Let S be the set of nodes at distance d(v , t)/2 from t, namely
S = {w : d(w , t) ≤ d(v , t)/2}.
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Idea of the proof V
For each w ∈ S , we have

d(v ,w) ≤ d(v , t) + d(w , t) ≤ 3d(v , t)/2

implying that

P(v linked to w) ≥︸︷︷︸
(1)

d(v ,w)−1

2 log n

≥ 1

2 log n

1

3d(v , t)/2
=

1

3d(v , t) log n
.

Since |S | = d(v , t) + 1, there are more than d(v , t) nodes in S .
Therefore the probability that one of them is linked to v is at
least

d(v , t)
1

3d(v , t) log n
=

1

3 log n

and this proves (3).
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Fragility and caveats of the small-world

phenomenon

Myth or fact? (Kleinfeld, 2002; Marvel et al., 2013)
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