Lecture 8: Sampling Methods

Donglei Du
(ddu@unb.edu)

Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton E3B 9Y2
Table of contents

1. Sampling Methods
 - Why Sampling
 - Probability vs non-probability sampling methods
 - Sampling with replacement vs without replacement
 - Random Sampling Methods

2. Simple random sampling with and without replacement
 - Simple random sampling without replacement
 - Simple random sampling with replacement

3. Sampling error vs non-sampling error

4. Sampling distribution of sample statistic
 - Histogram of the sample mean under SRR

5. Distribution of the sample mean under SRR: The central limit theorem
1. Sampling Methods
 - Why Sampling
 - Probability vs non-probability sampling methods
 - Sampling with replacement vs without replacement
 - Random Sampling Methods

2. Simple random sampling with and without replacement
 - Simple random sampling without replacement
 - Simple random sampling with replacement

3. Sampling error vs non-sampling error

4. Sampling distribution of sample statistic
 - Histogram of the sample mean under SRR

5. Distribution of the sample mean under SRR: The central limit theorem
Why sampling?

- The physical impossibility of checking all items in the population, and, also, it would be too time-consuming
- The studying of all the items in a population would not be cost effective
- The sample results are usually adequate
- The destructive nature of certain tests
Sampling Methods

- **Probability Sampling**: Each data unit in the population has a known likelihood of being included in the sample.
- **Non-probability Sampling**: Does not involve random selection; inclusion of an item is based on convenience.
Sampling Methods

- Sampling with replacement: Each data unit in the population is allowed to appear in the sample more than once.
- Sampling without replacement: Each data unit in the population is allowed to appear in the sample no more than once.
Random Sampling Methods

- Most commonly used probability/random sampling techniques are
 - Simple random sampling
 - Stratified random sampling
 - Cluster random sampling
Simple random sampling

- Each item (person) in the population has an equal chance of being included.

Stratified random sampling

- A population is first divided into strata which are made up of similar observations. Take a simple random sample from each stratum.

Cluster random sampling

- A population is first divided into clusters which are usually not made up of homogeneous observations, and take a simple random sample from a random sample of clusters.

Figure: Credit: Open source textbook: OpenIntro Statistics, 2nd Edition, D. M. Diez, C. D. Barr, and M. Cetinkaya-Rundel (http://www.openintro.org/stat/textbook.php)
Sampling Methods

1. Why Sampling
 - Probability vs non-probability sampling methods
 - Sampling with replacement vs without replacement

2. Random Sampling Methods
 - Simple random sampling with replacement
 - Simple random sampling without replacement

3. Sampling error vs non-sampling error

4. Sampling distribution of sample statistic
 - Histogram of the sample mean under SRR

5. Distribution of the sample mean under SRR: The central limit theorem
Simple random sampling without replacement (SRN)

- Repeat the following process until the requested sample is obtained:
 - Randomly (with equal probability) select an item, record it, and discard it
 - Example: draw cards one by one from a deck without replacement.
- This technique is the simplest and most often used sampling technique in practice.
R code

- Given a population of size \(N \), choose a sample of size \(n \) using SRN

  ```
  > N<-5
  > n<-2
  > sample(1:N, n, replace=FALSE)
  ```
Simple random sampling with replacement (SRR)

- Repeat the following process until the requested sample is obtained:
 - Randomly (with equal probability) select an item, record it, and replace it
 - Example: draw cards one by one from a deck with replacement.
- This is rarely used in practice, since there is no meaning to include the same item more than once.
- However, it is preferred from a theoretical point of view, since
 - It is easy to analyze mathematically.
 - Moreover, SRR is a very good approximation for SRN when N is large.
Given a population \(\{1, \ldots, N\}\) of size \(N\), choose a sample of size \(n\) using SRR

```r
> N<-5
> n<-2
> sample(1:N, n, replace=TRUE)
```
Sampling Methods
- Why Sampling
- Probability vs non-probability sampling methods
- Sampling with replacement vs without replacement
- Random Sampling Methods

Simple random sampling with and without replacement
- Simple random sampling without replacement
- Simple random sampling with replacement

Sampling error vs non-sampling error

Sampling distribution of sample statistic
- Histogram of the sample mean under SRR

Distribution of the sample mean under SRR: The central limit theorem
Sampling error vs non-sampling error

- **Sampling error**: the difference between a sample statistic and its corresponding population parameter. This error is inherent in
 - The sampling process (since sample is only part of the population)
 - The choice of statistics (since a statistics is computed based on the sample).
- **Non-sample Error**: This error has no relationship to the sampling technique or the estimator. The main reasons are human-related
 - data recording
 - non-response
 - sample selection
Sampling Methods

- Why Sampling
- Probability vs non-probability sampling methods
- Sampling with replacement vs without replacement
- Random Sampling Methods

Simple random sampling with and without replacement

- Simple random sampling without replacement
- Simple random sampling with replacement

Sampling error vs non-sampling error

Sampling distribution of sample statistic

- Histogram of the sample mean under SRR

Distribution of the sample mean under SRR: The central limit theorem
Sampling distribution of sample statistic: The probability distribution consisting of all possible sample statistics of a given sample size selected from a population using one probability sampling.

Example: we can consider the sampling distribution of the sample mean, sample variance etc.
An example of the sampling distribution of sample mean under SRR

- Consider a small population \(\{1, 2, 3, 4, 5\} \) with size \(N = 5 \). Let us randomly choose a sample of size \(n = 2 \) via SRR.

- It is understood that sample is ordered. Then there are \(N^n = 5^2 = 25 \) possible samples; namely

<table>
<thead>
<tr>
<th>sample</th>
<th>(\bar{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>1</td>
<td>(2,1)</td>
<td>1.5</td>
<td>(3,1)</td>
<td>2</td>
<td>(4,1)</td>
<td>2.5</td>
<td>(5,1)</td>
<td>3</td>
</tr>
<tr>
<td>(1,2)</td>
<td>1.5</td>
<td>(2,2)</td>
<td>2</td>
<td>(3,2)</td>
<td>2.5</td>
<td>(4,2)</td>
<td>3</td>
<td>(5,2)</td>
<td>3.5</td>
</tr>
<tr>
<td>(1,3)</td>
<td>2</td>
<td>(2,3)</td>
<td>2.5</td>
<td>(3,3)</td>
<td>3</td>
<td>(4,3)</td>
<td>3.5</td>
<td>(5,1)</td>
<td>4</td>
</tr>
<tr>
<td>(1,4)</td>
<td>2.5</td>
<td>(2,4)</td>
<td>3</td>
<td>(3,4)</td>
<td>3.5</td>
<td>(4,4)</td>
<td>4</td>
<td>(5,1)</td>
<td>4.5</td>
</tr>
<tr>
<td>(1,5)</td>
<td>3</td>
<td>(2,5)</td>
<td>3.5</td>
<td>(3,5)</td>
<td>4</td>
<td>(4,5)</td>
<td>4.5</td>
<td>(5,1)</td>
<td>5</td>
</tr>
</tbody>
</table>
An example of the sampling distribution of sample mean under SRR

Let us find the sampling distribution of the sample mean:

<table>
<thead>
<tr>
<th>\bar{X}</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1/25$</td>
</tr>
<tr>
<td>1.5</td>
<td>$2/25$</td>
</tr>
<tr>
<td>2</td>
<td>$3/25$</td>
</tr>
<tr>
<td>2.5</td>
<td>$4/25$</td>
</tr>
<tr>
<td>3</td>
<td>$5/25$</td>
</tr>
<tr>
<td>3.5</td>
<td>$4/25$</td>
</tr>
<tr>
<td>4</td>
<td>$3/25$</td>
</tr>
<tr>
<td>4.5</td>
<td>$2/25$</td>
</tr>
<tr>
<td>5</td>
<td>$1/25$</td>
</tr>
</tbody>
</table>
Let us find the mean and variance of the sampling distribution of the sample mean:

<table>
<thead>
<tr>
<th>\bar{X}</th>
<th>$P(\bar{X})$</th>
<th>$\bar{X}P(\bar{X})$</th>
<th>$\bar{X}^2P(\bar{X})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/25</td>
<td>1/25</td>
<td>1/25</td>
</tr>
<tr>
<td>1.5</td>
<td>2/25</td>
<td>3/25</td>
<td>4.5/25</td>
</tr>
<tr>
<td>2.5</td>
<td>4/25</td>
<td>10/25</td>
<td>25/25</td>
</tr>
<tr>
<td>3</td>
<td>5/25</td>
<td>15/25</td>
<td>45/25</td>
</tr>
<tr>
<td>3.5</td>
<td>4/25</td>
<td>14/25</td>
<td>49/25</td>
</tr>
<tr>
<td>4</td>
<td>3/25</td>
<td>12/25</td>
<td>48/25</td>
</tr>
<tr>
<td>4.5</td>
<td>2/25</td>
<td>9/25</td>
<td>40.5/25</td>
</tr>
<tr>
<td>5</td>
<td>1/25</td>
<td>5/25</td>
<td>25/25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75/25 = 3</td>
<td>250/25 = 10</td>
</tr>
</tbody>
</table>
So the mean and variance of the sample mean are given as

\[\bar{x} = 3 \]
\[s^2 = 10 - 3^2 = 1 \]

On the other hand, the population mean and variance are given as

\[\mu = \frac{1 + 2 \ldots + 5}{5} = 3 \]
\[\sigma^2 = \frac{55 - \frac{15^2}{5}}{5} = 2 \]
Relationship between sample and population mean and variance under SRR

- So from this example

\[
\bar{x} = \mu = 3
\]
\[
s^2 = \frac{\sigma^2}{2} = \frac{2}{2} = 1
\]

- The above relationship is true for any population of size \(N\) and sample of size \(n\)

\[
\bar{x} = \mu
\]
\[
s^2 = \frac{\sigma^2}{n}
\]
Distribution of the sample mean under SRR

- Let us look the histogram of the sample mean in the above example.
Distribution of the sample mean under SRR for various population

- Let us look the histogram of the sample mean for various population.
Sampling Methods
- Why Sampling
- Probability vs non-probability sampling methods
- Sampling with replacement vs without replacement
- Random Sampling Methods

Simple random sampling with and without replacement
- Simple random sampling without replacement
- Simple random sampling with replacement

Sampling error vs non-sampling error

Sampling distribution of sample statistic
- Histogram of the sample mean under SRR

Distribution of the sample mean under SRR: The central limit theorem
Distribution of the sample mean under SRR: The central limit theorem

- **The central limit theorem**: The sampling distribution of the means of all possible samples of size n generated from the population using SRR will be approximately normally distributed when n goes to infinity.

$$
\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)
$$

- How large should n be for the sampling mean distribution to be approximately normal?
 - In practice, $n \geq 30$
 - If n large, and we do not know σ, then we can use sample standard deviation instead. Then Central Limit Theorem is still true!
Distribution of the sample mean under SRR for small sample

- If n small, and we do not know σ, but we know the population is normally distributed, then replacing the standard deviation with sample standard deviation results in the Student’s t distribution with degrees of freedom $df = n - 1$:

$$T = \frac{\bar{X} - \mu}{s/\sqrt{n}} \sim t(n - 1)$$

- Like Z, the t-distribution is continuous
- Takes values between $-\infty$ and ∞
- It is bell-shaped and symmetric about zero
- It is more spread out and flatter at the center than the z-distribution
- For larger and larger values of degrees of freedom, the t-distribution becomes closer and closer to the standard normal distribution
Comparison of \(t \) Distributions with Normal distribution

Comparison of \(t \) Distributions

<table>
<thead>
<tr>
<th>Distribution Type</th>
<th>df = 1</th>
<th>df = 3</th>
<th>df = 8</th>
<th>df = 30</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(x \) value

Donglei Du (UNB)