Lecture 7: Continuous Random Variable

Donglei Du
(ddu@unb.edu)

Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton
E3B 9Y2

Table of contents

(1) Continuous Random Variable

- Probability Density Function (pdf)
- Probability of any set of real numbers
(2) Normal Random Variable
- Standard Normal Random Variable
- General Normal Random Variable
(3) Relationship between $Z \sim N(0,1)$ and $X \sim N\left(\mu, \sigma^{2}\right)$
(4) Calculations with Standard Normal Random Variable via the Normal Table
- Given z-value, calculate probability
- Given probability, calculate z-value
(5) Calculations with General Normal Random Variable via the Normal Table
- Given x-value, calculate probability
- Given probability, calculate x-value

Layout

(1) Continuous Random Variable

- Probability Density Function (pdf)
- Probability of any set of real numbers
(2) Normal Random Variable
- Standard Normal Random Variable
- General Normal Random Variable
(3) Relationship between $Z \sim N(0,1)$ and $X \sim N\left(\mu, \sigma^{2}\right)$
(4) Calculations with Standard Normal Random Variable via the Normal Table
- Given z-value, calculate probability
- Given probability, calculate z-value
(5) Calculations with General Normal Random Variable via the Normal Table
- Given x-value, calculate probability
- Given probability, calculate x-value

Continuous Random Variable

- A continuous random variable is any random variable whose set of all the possible values is uncountable.

Probability Density Function (pdf)

- A probability density function (pdf) for any continuous random variable is a function $f(x)$ that satisfies the following two properties:
(i) $f(x)$ is nonnegative; namely,

$$
f(x) \geq 0
$$

(ii) The total area under the curve defined by $f(x)$ is 1 ; namely

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

Probability of any set of real numbers

- Given a continuous random variable X with its probability density function $f(x)$, for any set B of real numbers, the probability of B is given by

$$
P(X \in B)=\int_{B} f(x) d x
$$

- For instance, if $B=[a, b]$, then the probability of B is given by

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

- Geometrically, the probability of B is the area under the curve $f(x)$.

Example

- Consider the continuous random variable X with its probability density function $f(x)$ defined below

$$
f(x)= \begin{cases}2 x, & 0 \leq x \leq 1 \\ 0, & x>1\end{cases}
$$

- For instance, the probability of $[1 / 3,2 / 3]$ is given by

$$
P(1 / 3 \leq X \leq 2 / 3)=\int_{1 / 3}^{2 / 3} 2 x d x=(2 / 3)^{2}-(1 / 3)^{2}=1 / 3
$$

- Geometrically, the probability of $[1 / 3,2 / 3]$ is the area under the curve $f(x)$ between $[1 / 3,2 / 3]$.

Example

Note

- When dealing with a continuous random variable, we assume that the probability that the variable will take on any particular value is 0 ! Instead, probabilities are assigned to intervals of values!
- Therefore, give a continuous random variable X, then for any constant a :

$$
P(X=a)=0
$$

Layout

(1) Continuous Random Variable

- Probability Density Function (pdf)
- Probability of any set of real numbers
(2) Normal Random Variable
- Standard Normal Random Variable
- General Normal Random Variable
(3) Relationship between $Z \sim N(0,1)$ and $X \sim N\left(\mu, \sigma^{2}\right)$
(4) Calculations with Standard Normal Random Variable via the Normal Table
- Given z-value, calculate probability
- Given probability, calculate z-value
(5) Calculations with General Normal Random Variable via the Normal Table
- Given x-value, calculate probability
- Given probability, calculate x-value

Standard Normal Random Variable

- The standard normal random variable Z has the following probability density function:

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}}
$$

Standard normal curve: Plot R code

$>\mathrm{x}<-$ seq $(-4,4$, length $=200)$
$>y<-\operatorname{dnorm}(x$, mean $=0, s d=1)$
> plot(x,y,type="l",lwd=2,col="red")

Properties of Standard Normal Random Variable

- The pdf is symmetric around its mean $x=0$, which is at the same time the mode, the median of the distribution.
- It is unimodal.
- It has inflection points at +1 and -1 .
- Z has zero mean and unit variance; namely

$$
\begin{aligned}
\mathbb{E}[Z] & =0 \\
\mathbb{V}[Z] & =1
\end{aligned}
$$

General Normal Random Variable

- A general normal distribution has the following probability density function for any given parameters μ and $\sigma \geq 0$:

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} .
$$

- The normal distribution is also often denoted as

$$
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

General Normal Random Variable: $\mu=10$ and $\sigma=2$

General normal curve: Plot R code

$>\mathrm{mu}<-10$
>sigma<-2
$>x<-$ seq (mu-3*sigma, mu $+3 *$ sigma, length=200)
$>y<-\operatorname{dnorm}(x$, mean=mu,sd=sigma)
>plot (x, y, type="l", lwd=2, col="red")

Properties of Standard Normal Random Variable

- The pdf is symmetric around its mean $x=\mu$, which is at the same time the mode, the median of the distribution.
- It is unimodal.
- It has inflection points at $\mu \pm \sigma$.
- X has mean μ and variance σ; namely

$$
\begin{aligned}
\mathbb{E}[Z] & =\mu \\
\mathbb{V}[Z] & =\sigma
\end{aligned}
$$

- The 68-95-99.7 (empirical) rule, or the 3-sigma rule: About 68\% of values drawn from a normal distribution are within one standard deviation away from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations.

Layout

(1) Continuous Random Variable

- Probability Density Function (pdf)
- Probability of any set of real numbers
(2) Normal Random Variable
- Standard Normal Random Variable
- General Normal Random Variable
(3) Relationship between $Z \sim N(0,1)$ and $X \sim N\left(\mu, \sigma^{2}\right)$

4 Calculations with Standard Normal Random Variable via the Normal Table

- Given z-value, calculate probability
- Given probability, calculate z-value
(5) Calculations with General Normal Random Variable via the Normal Table
- Given x-value, calculate probability
- Given probability, calculate x-value

Relationship between $Z \sim N(0,1)$ and $X \sim N\left(\mu, \sigma^{2}\right)$

- Given $X \sim N\left(\mu, \sigma^{2}\right)$, then

$$
Z=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

- Given $Z \sim N(0,1)$, then

$$
X=\mu+\sigma Z \sim N\left(\mu, \sigma^{2}\right)
$$

Layout

(1) Continuous Random Variable

- Probability Density Function (pdf)
- Probability of any set of real numbers
(2) Normal Random Variable
- Standard Normal Random Variable
- General Normal Random Variable
(3) Relationship between $Z \sim N(0,1)$ and $X \sim N\left(\mu, \sigma^{2}\right)$

4. Calculations with Standard Normal Random Variable via the Normal Table

- Given z-value, calculate probability
- Given probability, calculate z-value
(5) Calculations with General Normal Random Variable via the Normal Table
- Given x-value, calculate probability
- Given probability, calculate x-value

The normal table

Areas under the Normal Curve

Given z-value, calculate probability

- Example: Calculate the area between 0 and 1.23.
- Solution: The area is equal to the probability between 0 and 1.23 under the standard normal curve. So from the table

$$
P(0 \leq Z \leq 1.23)=0.3907
$$

R code

- > mu<-1
>sigma<-0
> pnorm(1.23, mean=mu, sd=sigma)-0.5
\#[1] 0.3906514
- Or simply run the following code for the standard normal distribution where $\mu=0$ and $\sigma=1$
> pnorm(1.23)-0.5
\#[1] 0.3906514

Given z-value, calculate probability

- Example: Calculate the area between -2.15 and 2.23.
- Solution: The area is equal to the probability between -2.15 and 1.23 under the standard normal curve. So from the table

$$
\begin{aligned}
P(-2.15 \leq Z \leq 2.23) & =P(-2.15 \leq Z \leq 0)+P(0 \leq Z \leq 2.23) \\
& =P(0 \leq Z \leq 2.15)+P(0 \leq Z \leq 2.23) \\
& =0.4842+0.4871=0.9713
\end{aligned}
$$

ADM 2623: Business Statistics

R code

> $\mathrm{z} 1<--2.15$
> z2<-2.23
$>\mathrm{mu}<-0$
> sigma<-1
> pnorm(z2, mean=mu, sd=sigma)-pnorm(z1, mean=mu, sd=sigma)
[1] 0.9713487

Given probability, calculate z-value

- Example: Given the area between 0 and z is 0.3264 , find z.
- Solution: We want to find z such that

$$
P(0 \leq Z \leq z)=0.3264
$$

- From the table, we find $z=0.94$.

R code

$>p<-0.3264$
>qnorm (p+0.5)
[1] 0.9400342

Given probability, calculate z-value

- Example: Given the area between less than z is 0.95 , find z.
- Solution: We want to find z such that

$$
P(Z \leq z)=0.95 \Leftrightarrow P(0 \leq Z \leq z)=0.95-0.5=0.45
$$

- From the table, we find $z=1.65$.

R code

$>p<-0.95$
>qnorm(p)
[1] 1.644854

Layout

(1) Continuous Random Variable

- Probability Density Function (pdf)
- Probability of any set of real numbers
(2) Normal Random Variable
- Standard Normal Random Variable
- General Normal Random Variable
(3) Relationship between $Z \sim N(0,1)$ and $X \sim N\left(\mu, \sigma^{2}\right)$

4 Calculations with Standard Normal Random Variable via the Normal Table

- Given z-value, calculate probability
- Given probability, calculate z-value
(5) Calculations with General Normal Random Variable via the Normal Table
- Given x-value, calculate probability
- Given probability, calculate x-value

Given x-value, calculate probability

- Example: Given a normal random variable $X \sim N\left(50,8^{2}\right)$, calculate the area between 50 and 60 .
- Solution: The area is equal to the probability between 50 and 60 under the normal curve.

$$
\begin{aligned}
P(50 \leq X \leq 60) & =P\left(\frac{50-50}{8} \leq \frac{X-\mu}{\sigma} \leq \frac{60-50}{8}\right) \\
& =P(0 \leq Z \leq 1.25)=0.394
\end{aligned}
$$

R code

```
> pnorm(1.25)-0.5
[1] 0.3943502
```


Given x-value, calculate probability

- Example: Given a normal random variable $X \sim N\left(50,8^{2}\right)$, calculate the area between 40 and 60 .
- Solution: The area is equal to the probability between 40 and 60 under the normal curve.

$$
\begin{aligned}
P(40 \leq X \leq 60) & =P\left(\frac{40-50}{8} \leq \frac{X-\mu}{\sigma} \leq \frac{60-50}{8}\right) \\
& =P(-1.25 \leq Z \leq 1.25)=2 P(0 \leq Z \leq 1.25) \\
& =2(0.394)=0.688
\end{aligned}
$$

(

R code

> pnorm(1.25)-pnorm(-1.25)
[1] 0.7887005

Given probability, calculate x-value

- Example: Given a normal random variable $X \sim N\left(50,8^{2}\right)$, and the area below x is 0.853 , find x ?
- Solution: We want to find x such that

$$
\begin{aligned}
P(X \leq x)=0.853 & \Leftrightarrow P\left(\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right)=0.853 \\
& \Leftrightarrow P(Z \leq z)=0.853 \\
& \Leftrightarrow P(0 \leq Z \leq z)=0.853-0.5=0.353
\end{aligned}
$$

where

$$
z:=\frac{x-\mu}{\sigma}
$$

- From the table, we find $z=1.05$, implying that

$$
x=\mu+z \sigma=50+1.05(8)=58.4
$$

Plot

R code

$>p<-0.853$
>qnorm(p)
[1] 1.049387

Practical example

- Example: Professor X has determined that the scores in his statistics course are approximately normally distributed with a mean of 72 and a standard deviation of 5 . He announces to the class that the top 15 percent of the scores will earn an A.
- Problem: What is the lowest score a student can earn and still receive an A ?

Practical example

- Solution: Let X be the students' scores. Then $X \sim N\left(72,5^{2}\right)$. Let x be the score that separates an A from the rest. Then

$$
\begin{aligned}
P(X \geq x)=0.15 & \Leftrightarrow P\left(\frac{X-\mu}{\sigma} \geq \frac{x-\mu}{\sigma}\right)=0.15 \\
& \Leftrightarrow P(Z \geq z)=0.15 \\
& \Leftrightarrow P(0 \leq Z \leq z)=0.5-0.15=0.35
\end{aligned}
$$

where

$$
z:=\frac{x-\mu}{\sigma}
$$

- From the table, we find $z=1.04$, implying that

$$
x=\mu+z \sigma=72+1.04(5)=77.2
$$

Plot

R code

$>p<-0.85$
>qnorm(p)
[1] 1.036433

Practical example

- Example: A manufacturer of aircraft is likely to be very concerned about the ability of potential users to use the product. If a lot of pilots cannot reach the rudder pedals or the navigation systems, then there is trouble. Suppose a manufacturer knows that the lengths of pilot's legs are normally distributed with mean 76 and standard deviation of 5 cm .
- Problem: If the manufacturer wants to design a cockpit such that precisely 90% of pilots can reach the rudder pedals with their feet while seated, what is the desired distance between seat and pedals?

Practical example

- Solution: Let X be the the lengths of pilot's legs. Then $X \sim N\left(76,5^{2}\right)$. Let x be the desired distance. Then

$$
\begin{aligned}
P(X \geq x)=0.90 & \Leftrightarrow P\left(\frac{X-\mu}{\sigma} \geq \frac{x-\mu}{\sigma}\right)=0.90 \\
& \Leftrightarrow P(Z \geq z)=0.90 \\
& \Leftrightarrow P(z \leq Z \leq 0)=0.9-0.5=0.4 \\
& \Leftrightarrow P(0 \leq Z \leq-z)=0.4
\end{aligned}
$$

where

$$
z:=\frac{x-\mu}{\sigma}
$$

- From the table, we find $z=-1.28$, implying that

$$
x=\mu+z \sigma=76-1.28(5)=69.6
$$

Plot

R code

```
>p<-0.10
>qnorm(p)
[1] -1.281552
```


Practical example

- Example: Suppose that a manufacturer of aircraft engines knows their lifetimes to be a normally distributed random variable with a mean of 2,000 hours and a standard deviation of 100 hours
- Problem: What is the probability that a randomly chosen engine has a lifetime between 1,950 and 2,150 hours?

Practical example

- Solution: Let X be the lifetimes of their aircraft engines. Then $X \sim N\left(2000,100^{2}\right)$. Then

$$
\begin{aligned}
& P(1950 \leq X \leq 2150) \\
= & P\left(\frac{1950-2000}{100} \leq \frac{X-\mu}{\sigma} \leq \frac{2150-2000}{100}\right) \\
= & P(-0.5 \leq Z \leq 1.5)=P(0 \leq Z \leq 0.5)+P(0 \leq Z \leq 1.5) \\
= & 0.1915+0.4332=0.6247 .
\end{aligned}
$$

Plot

R code

$$
\begin{aligned}
& >\mathrm{z} 1<--0.5 \\
& >\text { z2<-1.5 } \\
& >\text { pnorm }(\mathrm{z} 2) \text {-pnorm }(\mathrm{z} 1) \\
& \text { [1] } 0.6246553
\end{aligned}
$$

The Probability of a market Crash

- Example: Suppose that the annualized S\&P 500 index returns, $\mu \approx 12 \%$ and $\sigma \approx 15 \%$.
- Problem: A negative surprise: on October 19, 1987, the S\&P 500 index dropped more than 23% on one day. What is the probability for such a event?

Solution

- Solution: Let r denote the daily return, then r is normally distributed with
- mean

$$
0.12 / 252 \approx 0.00048
$$

- and standard deviation

$$
0.15 / \sqrt{252}=0.0094
$$

Namely $r \sim N\left(0.00048,0.0094^{2}\right)$. Then

$$
\begin{aligned}
& P(r \leq-0.23) \\
= & P\left(\frac{r-\mu}{\sigma} \leq \frac{-0.23-0.00048}{0.0094}\right) \\
= & P(Z \leq-24) \approx 10^{-127}
\end{aligned}
$$

The empirical rule

- We now derive the empirical rule (Back in Lecture 4) from the Normal table: assume $X \sim N\left(\mu, \sigma^{2}\right)$, then
$\mathbb{P}(\mu-k \sigma \leq X \leq \mu-k \sigma)=\mathbb{P}\left(-k \leq \frac{X-\mu}{\sigma} \leq k\right)=\mathbb{P}(-k \leq Z \leq k)$
- For $k=1,2,3$, we obtain $0.68,0.95$, and 99.7 from the Normal table.

