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Continuous Random Variable

A continuous random variable is any random variable whose set of all
the possible values is uncountable.
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Probability Density Function (pdf)

A probability density function (pdf) for any continuous random
variable is a function f(x) that satisfies the following two properties:

(i) f(x) is nonnegative; namely,

f(x) ≥ 0

(ii) The total area under the curve defined by f(x) is 1; namely∫ ∞
−∞

f(x)dx = 1
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Probability of any set of real numbers

Given a continuous random variable X with its probability density
function f(x), for any set B of real numbers, the probability of B is
given by

P (X ∈ B) =

∫
B
f(x)dx

For instance, if B = [a, b], then the probability of B is given by

P (a ≤ X ≤ b) =
∫ b

a
f(x)dx

Geometrically, the probability of B is the area under the curve f(x).
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Example

Consider the continuous random variable X with its probability
density function f(x) defined below

f(x) =

{
2x, 0 ≤ x ≤ 1

0, x > 1

For instance, the probability of [1/3, 2/3] is given by

P (1/3 ≤ X ≤ 2/3) =

∫ 2/3

1/3
2xdx = (2/3)2 − (1/3)2 = 1/3.

Geometrically, the probability of [1/3, 2/3] is the area under the curve
f(x) between [1/3, 2/3] .
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Note

When dealing with a continuous random variable, we assume that the
probability that the variable will take on any particular value is 0!
Instead, probabilities are assigned to intervals of values!

Therefore, give a continuous random variable X, then for any
constant a:

P (X = a) = 0
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Standard Normal Random Variable

The standard normal random variable Z has the following probability
density function:

φ(z) =
1√
2π

e−
1
2
z2 .
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Standard normal curve: Plot R code

> x<-seq(-4,4,length=200)

>y<-dnorm(x,mean=0,sd=1)

> plot(x,y,type="l",lwd=2,col="red")

Donglei Du (UNB) ADM 2623: Business Statistics 12 / 53



Properties of Standard Normal Random Variable

The pdf is symmetric around its mean x = 0, which is at the same
time the mode, the median of the distribution.

It is unimodal.

It has inflection points at +1 and -1.

Z has zero mean and unit variance; namely

E[Z] = 0

V[Z] = 1
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General Normal Random Variable

A general normal distribution has the following probability density
function for any given parameters µ and σ ≥ 0:

f(x) =
1√
2πσ

e−
1
2(

x−µ
σ )

2

.

The normal distribution is also often denoted as

X ∼ N (µ, σ2).
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General Normal Random Variable: µ = 10 and σ = 2
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General normal curve: Plot R code

> mu<-10

>sigma<-2

>x<-seq(mu-3*sigma,mu+3*sigma,length=200)

>y<-dnorm(x,mean=mu,sd=sigma)

>plot(x,y,type="l",lwd=2,col="red")
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Properties of Standard Normal Random Variable

The pdf is symmetric around its mean x = µ, which is at the same
time the mode, the median of the distribution.

It is unimodal.

It has inflection points at µ± σ.

X has mean µ and variance σ; namely

E[Z] = µ

V[Z] = σ

The 68-95-99.7 (empirical) rule, or the 3-sigma rule: About 68%
of values drawn from a normal distribution are within one standard
deviation away from the mean; about 95% of the values lie within
two standard deviations; and about 99.7% are within three standard
deviations.
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Relationship between Z ∼ N(0, 1) and X ∼ N(µ, σ2)

Given X ∼ N(µ, σ2), then

Z =
X − µ
σ

∼ N(0, 1)

Given Z ∼ N(0, 1), then

X = µ+ σZ ∼ N(µ, σ2)
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The normal table
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Given z-value, calculate probability

Example: Calculate the area between 0 and 1.23.

Solution: The area is equal to the probability between 0 and 1.23
under the standard normal curve. So from the table

P (0 ≤ Z ≤ 1.23) = 0.3907.
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R code

> mu<-1

>sigma<-0

> pnorm(1.23, mean=mu, sd=sigma)-0.5

#[1] 0.3906514

Or simply run the following code for the standard normal distribution
where µ = 0 and σ = 1

> pnorm(1.23)-0.5

#[1] 0.3906514

Donglei Du (UNB) ADM 2623: Business Statistics 23 / 53



Given z-value, calculate probability

Example: Calculate the area between -2.15 and 2.23.
Solution: The area is equal to the probability between -2.15 and 1.23
under the standard normal curve. So from the table

P (−2.15 ≤ Z ≤ 2.23) = P (−2.15 ≤ Z ≤ 0) + P (0 ≤ Z ≤ 2.23)

= P (0 ≤ Z ≤ 2.15) + P (0 ≤ Z ≤ 2.23)

= 0.4842 + 0.4871 = 0.9713
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R code

> z1<--2.15

> z2<-2.23

> mu<-0

> sigma<-1

> pnorm(z2, mean=mu, sd=sigma)-pnorm(z1, mean=mu, sd=sigma)

[1] 0.9713487
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Given probability, calculate z-value

Example: Given the area between 0 and z is 0.3264, find z.

Solution: We want to find z such that

P (0 ≤ Z ≤ z) = 0.3264

From the table, we find z = 0.94.
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R code

>p<-0.3264

>qnorm(p+0.5)

[1] 0.9400342
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Given probability, calculate z-value

Example: Given the area between less than z is 0.95, find z.

Solution: We want to find z such that

P (Z ≤ z) = 0.95⇔ P (0 ≤ Z ≤ z) = 0.95− 0.5 = 0.45

From the table, we find z = 1.65.
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R code

>p<-0.95

>qnorm(p)

[1] 1.644854
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Given x-value, calculate probability

Example: Given a normal random variable X ∼ N(50, 82), calculate
the area between 50 and 60.
Solution: The area is equal to the probability between 50 and 60
under the normal curve.

P (50 ≤ X ≤ 60) = P

(
50− 50

8
≤ X − µ

σ
≤ 60− 50

8

)
= P (0 ≤ Z ≤ 1.25) = 0.394
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R code

> pnorm(1.25)-0.5

[1] 0.3943502
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Given x-value, calculate probability

Example: Given a normal random variable X ∼ N(50, 82), calculate
the area between 40 and 60.
Solution: The area is equal to the probability between 40 and 60
under the normal curve.

P (40 ≤ X ≤ 60) = P

(
40− 50

8
≤ X − µ

σ
≤ 60− 50

8

)
= P (−1.25 ≤ Z ≤ 1.25) = 2P (0 ≤ Z ≤ 1.25)

= 2(0.394) = 0.688
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R code

> pnorm(1.25)-pnorm(-1.25)

[1] 0.7887005
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Given probability, calculate x-value

Example: Given a normal random variable X ∼ N(50, 82), and the
area below x is 0.853, find x?

Solution: We want to find x such that

P (X ≤ x) = 0.853 ⇔ P

(
X − µ
σ

≤ x− µ
σ

)
= 0.853

⇔ P (Z ≤ z) = 0.853

⇔ P (0 ≤ Z ≤ z) = 0.853− 0.5 = 0.353,

where

z :=
x− µ
σ

From the table, we find z = 1.05, implying that

x = µ+ zσ = 50 + 1.05(8) = 58.4
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Plot
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R code

>p<-0.853

>qnorm(p)

[1] 1.049387
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Practical example

Example: Professor X has determined that the scores in his statistics
course are approximately normally distributed with a mean of 72 and
a standard deviation of 5. He announces to the class that the top 15
percent of the scores will earn an A.

Problem: What is the lowest score a student can earn and still
receive an A?
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Practical example

Solution: Let X be the students’ scores. Then X ∼ N(72, 52). Let
x be the score that separates an A from the rest. Then

P (X ≥ x) = 0.15 ⇔ P

(
X − µ
σ

≥ x− µ
σ

)
= 0.15

⇔ P (Z ≥ z) = 0.15

⇔ P (0 ≤ Z ≤ z) = 0.5− 0.15 = 0.35,

where

z :=
x− µ
σ

From the table, we find z = 1.04, implying that

x = µ+ zσ = 72 + 1.04(5) = 77.2
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Plot
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R code

>p<-0.85

>qnorm(p)

[1] 1.036433
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Practical example

Example: A manufacturer of aircraft is likely to be very concerned
about the ability of potential users to use the product. If a lot of
pilots cannot reach the rudder pedals or the navigation systems, then
there is trouble. Suppose a manufacturer knows that the lengths of
pilot’s legs are normally distributed with mean 76 and standard
deviation of 5 cm.

Problem: If the manufacturer wants to design a cockpit such that
precisely 90% of pilots can reach the rudder pedals with their feet
while seated, what is the desired distance between seat and pedals?
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Practical example

Solution: Let X be the the lengths of pilot’s legs. Then
X ∼ N(76, 52). Let x be the desired distance. Then

P (X ≥ x) = 0.90 ⇔ P

(
X − µ
σ

≥ x− µ
σ

)
= 0.90

⇔ P (Z ≥ z) = 0.90

⇔ P (z ≤ Z ≤ 0) = 0.9− 0.5 = 0.4

⇔ P (0 ≤ Z ≤ −z) = 0.4

where

z :=
x− µ
σ

From the table, we find z = −1.28, implying that

x = µ+ zσ = 76− 1.28(5) = 69.6
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Plot

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

y

Donglei Du (UNB) ADM 2623: Business Statistics 44 / 53



R code

>p<-0.10

>qnorm(p)

[1] -1.281552
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Practical example

Example: Suppose that a manufacturer of aircraft engines knows
their lifetimes to be a normally distributed random variable with a
mean of 2,000 hours and a standard deviation of 100 hours

Problem: What is the probability that a randomly chosen engine has
a lifetime between 1,950 and 2,150 hours?
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Practical example

Solution: Let X be the lifetimes of their aircraft engines. Then
X ∼ N(2000, 1002). Then

P (1950 ≤ X ≤ 2150)

= P

(
1950− 2000

100
≤ X − µ

σ
≤ 2150− 2000

100

)
= P (−0.5 ≤ Z ≤ 1.5) = P (0 ≤ Z ≤ 0.5) + P (0 ≤ Z ≤ 1.5)

= 0.1915 + 0.4332 = 0.6247.
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Plot
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R code

> z1<--0.5

> z2<-1.5

> pnorm(z2)-pnorm(z1)

[1] 0.6246553
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The Probability of a market Crash

Example: Suppose that the annualized S&P 500 index returns,
µ ≈ 12% and σ ≈ 15%.

Problem: A negative surprise: on October 19, 1987, the S&P 500
index dropped more than 23% on one day. What is the probability for
such a event?
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Solution

Solution: Let r denote the daily return, then r is normally distributed
with

mean
0.12/252 ≈ 0.00048,

and standard deviation

0.15/
√
252 = 0.0094.

Namely r ∼ N(0.00048, 0.00942). Then

P (r ≤ −0.23)

= P

(
r − µ
σ
≤ −0.23− 0.00048

0.0094

)
= P (Z ≤ −24) ≈ 10−127.
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The empirical rule

We now derive the empirical rule (Back in Lecture 4) from the
Normal table: assume X ∼ N(µ, σ2), then

P (µ− kσ ≤ X ≤ µ− kσ) = P
(
−k ≤ X − µ

σ
≤ k

)
= P(−k ≤ Z ≤ k)

For k = 1, 2, 3, we obtain 0.68, 0.95, and 99.7 from the Normal table.
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