Principal bundles in NC Riemannian geometry

Glavni svežnjevi u nekomutativnoj Riemannovoj geometriji

Branimir Ćaćić

Zagreb Workshop on Operator Theory 2020
University of New Brunswick, Fredericton

Shameless self-promotion

References

B. Ć. and B. Mesland, Gauge theory on noncommutative Riemannian principal bundles, arXiv:1912.04179
B. Ć., Non-trivial gauge theory on cleft quantum principal bundles, (in preparation)

Shameless self-promotion

References

B. Ć. and B. Mesland, Gauge theory on noncommutative Riemannian principal bundles, arXiv:1912.04179
B. Ć., Non-trivial gauge theory on cleft quantum principal bundles, (in preparation)

Note

Today, we specialise to unital NC principal U(1)-bundles with totally geodesic orbits of unit length.

Cod-Hegelian dialectic

Let G be a compact connected Lie group.
What is a NC (Yang-Mills) gauge theory with structure group G?
Thesis (Brzeziński-Majid et al.)
Connections on principal $\mathcal{O}(\mathrm{G})$-comodule algebras.
Antithesis (Chamseddine-Connes et al.)
The spectral action principle on suitable spectral triples.
Synthesis? (cf. Brain-Mesland-Van Suijlekom)
The very latest in unbounded KK-theory.

Basic setup

Let $G=U(1)$, so that $\mathfrak{g}=\mathbb{R} \frac{\partial}{\partial t}$, where

$$
\forall \mathrm{f} \in \mathcal{O}(\mathrm{G}), \forall z \in \mathrm{G}, \quad\left(\frac{\partial}{\partial \mathrm{t}} \mathrm{f}\right)(z):=\lim _{s \rightarrow 0} \frac{\mathrm{f}\left(z e^{i s}\right)-\mathrm{f}(z)}{\mathrm{s}}
$$

hence, $\mathfrak{g}^{*}=\mathbb{R} d t$ for $d t:=-\mathfrak{i} \frac{d z}{z}$ with $\left(d t, \frac{\partial}{\partial \mathrm{t}}\right)=1$.

Basic setup

Let $G=U(1)$, so that $\mathfrak{g}=\mathbb{R} \frac{\partial}{\partial \mathrm{t}}$, where

$$
\forall \mathrm{f} \in \mathcal{O}(\mathrm{G}), \forall z \in \mathrm{G}, \quad\left(\frac{\partial}{\partial \mathrm{t}} \mathrm{f}\right)(z):=\lim _{s \rightarrow 0} \frac{\mathrm{f}\left(z e^{i s}\right)-\mathrm{f}(z)}{\mathrm{s}}
$$

hence, $\mathfrak{g}^{*}=\mathbb{R} d t$ for $d t:=-\mathfrak{i} \frac{d z}{z}$ with $\left(d t, \frac{\partial}{\partial \mathrm{t}}\right)=1$.
Thus, a unital G-C*-algebra (A, α) is principal iff
$\forall n \in \mathbb{Z}, \quad \overline{A_{n}^{*} \cdot A_{n}}=A^{G}, \quad A_{n}:=\left\{a \in A \mid \forall z \in G, \alpha_{z}(a)=z^{n} a\right\}$,
in which case $A \hookleftarrow A^{G}$ is a NC topological principal G-bundle.

Example (Matsumoto, cf. Brzeziński-Sitarz)

The θ-deformed \mathbb{C}-Hopf fibration $\mathrm{C}\left(\mathrm{S}_{\theta}^{3}\right) \hookleftarrow \mathrm{C}\left(\mathrm{S}_{\theta}^{3}\right)^{\mathrm{G}} \cong \mathrm{C}\left(\mathrm{S}^{2}\right)$.

Running example

Fix $\theta \in \mathbb{R}$, so \mathbb{Z} acts on $C(G)$ by $\left(f \triangleleft_{\theta} m\right)(z):=f\left(z \cdot e^{2 \pi i m \theta}\right)$.
The rotation algebra $A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z}$ admits:

Running example

Fix $\theta \in \mathbb{R}$, so \mathbb{Z} acts on $C(G)$ by $\left(f \triangleleft_{\theta} m\right)(z):=f\left(z \cdot e^{2 \pi i m \theta}\right)$.
The rotation algebra $A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z}$ admits:

1. an action α of $G:=U(1)=\widehat{\mathbb{Z}}$ defined by

$$
\forall \zeta \in \mathrm{G}, \forall \mathrm{~m} \in \mathbb{Z}, \forall \mathrm{f} \in \mathrm{C}(\mathrm{G}), \quad \alpha_{z}\left(\lambda_{\mathrm{m}} \mathrm{f}\right):=z^{m} \lambda_{\mathrm{m}} f
$$

Running example

Fix $\theta \in \mathbb{R}$, so \mathbb{Z} acts on $C(G)$ by $\left(f \triangleleft_{\theta} m\right)(z):=f\left(z \cdot e^{2 \pi i m \theta}\right)$.
The rotation algebra $A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z}$ admits:

1. an action α of $G:=U(1)=\widehat{\mathbb{Z}}$ defined by

$$
\forall \zeta \in G, \forall \mathrm{~m} \in \mathbb{Z}, \forall f \in \mathrm{C}(\mathrm{G}), \quad \alpha_{z}\left(\lambda_{\mathrm{m}} \mathrm{f}\right):=z^{m} \lambda_{\mathrm{m}} f
$$

2. a G-invariant faithful trace τ defined by

$$
\forall \mathrm{m} \in \mathbb{Z}, \forall \mathrm{f} \in \mathrm{C}(\mathrm{G}), \quad \tau\left(\lambda_{\mathrm{m}} \mathrm{f}\right):=\int_{\mathrm{G}} \delta_{\mathrm{m}, 0} \mathrm{f}(z) \frac{1}{2 \pi \mathrm{i}} \frac{\mathrm{~d} z}{z}
$$

Running example

Fix $\theta \in \mathbb{R}$, so \mathbb{Z} acts on $C(G)$ by $\left(f \triangleleft_{\theta} m\right)(z):=f\left(z \cdot e^{2 \pi i m \theta}\right)$.
The rotation algebra $A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z}$ admits:

1. an action α of $G:=U(1)=\widehat{\mathbb{Z}}$ defined by

$$
\forall \zeta \in G, \forall \mathrm{~m} \in \mathbb{Z}, \forall f \in \mathrm{C}(\mathrm{G}), \quad \alpha_{z}\left(\lambda_{\mathrm{m}} \mathrm{f}\right):=z^{m} \lambda_{\mathrm{m}} f
$$

2. a G-invariant faithful trace τ defined by

$$
\forall \mathrm{m} \in \mathbb{Z}, \forall \mathrm{f} \in \mathrm{C}(\mathrm{G}), \quad \tau\left(\lambda_{\mathrm{m}} \mathrm{f}\right):=\int_{\mathrm{G}} \delta_{\mathfrak{m}, 0} \mathrm{f}(z) \frac{1}{2 \pi \mathrm{i}} \frac{\mathrm{~d} z}{z}
$$

Note that $\left(A_{\theta}, \alpha\right)$ is principal since $A_{\theta}^{G}=C(G)$ and

$$
\forall \mathrm{m} \in \mathbb{Z}, \quad\left(A_{\theta}\right)_{\mathrm{m}}=\lambda_{\mathrm{m}} \cdot \mathrm{C}(\mathrm{G})
$$

Equivariant spectral triples

Let (A, α) be a unital sep'ble $G-C^{*}$-algebra. Let $n \geqslant \operatorname{dim} G=1$. An n-multigraded G -spectral triple for (A, α) is $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$:

1. (H, U) is a faithful \mathbb{Z}_{2}-graded covariant $*$-representation of $\left(\mathbb{C} l_{n} \widehat{\otimes} A\right.$, id $\left.\widehat{\otimes} \alpha\right)$;
2. D is an odd G-invariant self-adjoint operator on H s.t.

$$
(D+i)^{-1} \in K(H), \quad\left[D, \mathbb{C} l_{n}\right]=\{0\}, \quad \operatorname{Dom}(D) \subset C^{1}(H, U) ;
$$

3. $\mathcal{A} \subset A$ is a dense G-invariant $*$-subalgebra s.t.

$$
\mathcal{A} \subset \mathrm{C}^{1}(\mathrm{~A}, \alpha), \quad \mathcal{O}(\mathrm{G}) * \mathcal{A} \subseteq \mathcal{A}, \quad[\mathrm{D}, \mathcal{A}] \subset \mathrm{B}(\mathrm{H})
$$

What are they good for? (d'après Connes)

The G-spectral triple ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ encodes the following:

What are they good for? (d'après Connes)

The G-spectral triple ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U}$) encodes the following:

1. first-order (de Rham) differential calculus via

$$
\mathcal{A} \ni a \mapsto c(d a):=[D, a] ;
$$

What are they good for? (d'après Connes)

The G-spectral triple ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ encodes the following:

1. first-order (de Rham) differential calculus via

$$
\mathcal{A} \ni a \mapsto c(d a):=[D, a] ;
$$

2. metric geometry on the state space $S(A)$ of A via

$$
S(A)^{2} \ni(\mu, v) \mapsto \rho_{D}(\mu, v):=\sup _{\substack{a \in \mathcal{A} \\\|[D, a]\| \leqslant 1}}|\mu(a)-v(a)| ;
$$

What are they good for? (d'après Connes)

The G-spectral triple ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ encodes the following:

1. first-order (de Rham) differential calculus via

$$
\mathcal{A} \ni a \mapsto c(d a):=[D, a] ;
$$

2. metric geometry on the state space $S(A)$ of A via

$$
S(A)^{2} \ni(\mu, v) \mapsto \rho_{D}(\mu, v):=\sup _{\substack{a \in \mathcal{A} \\\|[D, a]\| \leqslant 1}}|\mu(a)-v(a)| ;
$$

3. spectral geometry (e.g., dimension, volume, measure) via

$$
(0,+\infty) \ni t \mapsto \exp \left(-\mathrm{tD}^{2}\right) \in \mathcal{L}_{1}(\mathrm{H}) \quad \text { (ideally); }
$$

What are they good for? (d'après Connes)

The G-spectral triple ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ encodes the following:

1. first-order (de Rham) differential calculus via

$$
\mathcal{A} \ni \mathrm{a} \mapsto \mathrm{c}(\mathrm{da}):=[\mathrm{D}, \mathrm{a}] ;
$$

2. metric geometry on the state space $S(A)$ of A via

$$
S(A)^{2} \ni(\mu, v) \mapsto \rho_{D}(\mu, v):=\sup _{\substack{a \in \mathcal{A} \\\|[D, a]\| \leqslant 1}}|\mu(a)-v(a)| ;
$$

3. spectral geometry (e.g., dimension, volume, measure) via

$$
(0,+\infty) \ni t \mapsto \exp \left(-\mathrm{tD}^{2}\right) \in \mathcal{L}_{1}(\mathrm{H}) \quad \text { (ideally); }
$$

4. index theory (i.e., NC algebraic topology) via

$$
[\mathrm{D}] \in \mathrm{KK}_{n}^{\mathrm{G}}(\mathrm{~A}, \mathbb{C}) .
$$

Running example

$$
\text { Let } \mathcal{A}_{\theta}:=\operatorname{Span}\left\{\lambda_{\mathrm{m}} \cdot \mathrm{f} \mid \mathrm{m} \in \mathbb{Z}, \mathrm{f} \in \mathcal{O}(\mathrm{G})\right\} .
$$

Since G acts smoothly on \mathcal{A}_{θ}, get $\partial_{1}: \mathcal{A}_{\theta} \rightarrow \mathcal{A}_{\theta}$ defined by

$$
\forall \mathrm{m} \in \mathbb{Z}, \forall f \in \mathcal{O}(G), \quad \partial_{1}\left(\lambda_{\mathrm{m}} \mathrm{f}\right):=\mathrm{d} \alpha\left(\frac{\partial}{\partial \mathrm{t}}\right)\left(\lambda_{\mathrm{m}} \mathrm{f}\right)=\mathrm{im} \cdot \lambda_{\mathrm{m}} \mathrm{f} ;
$$

since $\mathcal{A}^{\mathrm{G}}=\mathcal{O}(\mathrm{G})$, get $\partial_{2}: \mathcal{A}_{\theta} \rightarrow \mathcal{A}_{\theta}$ defined by

$$
\forall \mathfrak{m} \in \mathbb{Z}, \forall f \in \mathcal{O}(G), \quad \partial_{2}\left(\lambda_{\mathrm{m}} f\right):=\lambda_{\mathrm{m}} \frac{\partial}{\partial \mathrm{t}} \mathrm{f}
$$

Running example

Let $\mathcal{A}_{\theta}:=\operatorname{Span}\left\{\lambda_{\mathrm{m}} \cdot \mathrm{f} \mid \mathrm{m} \in \mathbb{Z}, \mathrm{f} \in \mathcal{O}(\mathrm{G})\right\}$.
Since G acts smoothly on \mathcal{A}_{θ}, get $\partial_{1}: \mathcal{A}_{\theta} \rightarrow \mathcal{A}_{\theta}$ defined by

$$
\forall m \in \mathbb{Z}, \forall f \in \mathcal{O}(G), \quad \partial_{1}\left(\lambda_{m} f\right):=d \alpha\left(\frac{\partial}{\partial t}\right)\left(\lambda_{m} f\right)=i m \cdot \lambda_{m} f
$$

since $\mathcal{A}^{\mathrm{G}}=\mathcal{O}(\mathrm{G})$, get $\partial_{2}: \mathcal{A}_{\theta} \rightarrow \mathcal{A}_{\theta}$ defined by

$$
\forall \mathfrak{m} \in \mathbb{Z}, \forall f \in \mathcal{O}(G), \quad \partial_{2}\left(\lambda_{\mathrm{m}} f\right):=\lambda_{\mathfrak{m}} \frac{\partial}{\partial \mathrm{t}} \mathrm{f}
$$

Let $\gamma_{1}:=\left(\begin{array}{cc}0 & -\mathfrak{i} \\ -i & 0\end{array}\right)$ and $\gamma_{2}:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, let $\Gamma_{\mathbb{C}^{2}}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, and let

$$
\begin{aligned}
H:= & \mathbb{C}^{2} \widehat{\otimes} \mathbb{C}^{2} \otimes L^{2}\left(A_{\theta}, \tau\right), \quad \mathrm{U}:=\mathrm{id} \widehat{\otimes} \mathrm{id} \otimes \alpha \\
& \mathrm{D}:=\mathrm{id} \widehat{\otimes} 2 \pi\left(\gamma_{1} \otimes \partial_{1}+\gamma_{2} \otimes \partial_{2}\right) .
\end{aligned}
$$

$\left(\mathcal{A}_{\theta}, \mathrm{H}, \mathrm{D}, \mathrm{U}\right)$ is a 2-multigraded G -spectral triple for $\left(A_{\theta}, \alpha\right)$.

Vertical geometries and vertical Dirac operators

Definition (cf. Dąbrowski-Sitarz, Forsyth-Rennie)
A vertical geometry for $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ is odd $\mathrm{c}(\mathrm{dt}) \in \mathrm{B}(\mathrm{H})^{\mathrm{G}}$, s.t.

1. $c(d t)^{*}=-c(d t)$ and $c(d t)^{2}=-4 \pi^{2}$,
2. $\left[c(d t), \mathbb{C} l_{n}\right]=[c(d t), \mathcal{A}]=\{0\}$,
3. $\mu\left(\frac{\partial}{\partial t}\right):=-\frac{1}{2}\left[D, \frac{1}{4 \pi^{2}} c(d t)\right]-d U\left(\frac{\partial}{\partial t}\right) \in B(H)$.

Vertical geometries and vertical Dirac operators

Definition (cf. Dąbrowski-Sitarz, Forsyth-Rennie)
A vertical geometry for $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ is odd $\mathrm{c}(\mathrm{dt}) \in \mathrm{B}(\mathrm{H})^{\mathrm{G}}$, s.t.

1. $c(d t)^{*}=-c(d t)$ and $c(d t)^{2}=-4 \pi^{2}$,
2. $\left[c(d t), \mathbb{C} l_{n}\right]=[c(d t), \mathcal{A}]=\{0\}$,
3. $\mu\left(\frac{\partial}{\partial t}\right):=-\frac{1}{2}\left[D, \frac{1}{4 \pi^{2}} c(d t)\right]-d U\left(\frac{\partial}{\partial t}\right) \in B(H)$.

Its vertical Dirac operator is

$$
D_{v}:=c(d t) d U\left(\frac{\partial}{\partial t}\right) .
$$

Vertical geometries and vertical Dirac operators

Definition (cf. Dąbrowski-Sitarz, Forsyth-Rennie)

A vertical geometry for $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ is odd $\mathrm{c}(\mathrm{dt}) \in \mathrm{B}(\mathrm{H})^{\mathrm{G}}$, s.t.

1. $c(d t)^{*}=-c(d t)$ and $c(d t)^{2}=-4 \pi^{2}$,
2. $\left[\mathrm{c}(\mathrm{dt}), \mathbb{C} \mathrm{l}_{\mathrm{n}}\right]=[\mathrm{c}(\mathrm{dt}), \mathcal{A}]=\{0\}$,
3. $\mu\left(\frac{\partial}{\partial t}\right):=-\frac{1}{2}\left[D, \frac{1}{4 \pi^{2}} c(d t)\right]-d U\left(\frac{\partial}{\partial t}\right) \in B(H)$.

Its vertical Dirac operator is

$$
\mathrm{D}_{v}:=\mathrm{c}(\mathrm{dt}) \mathrm{dU}\left(\frac{\partial}{\partial \mathrm{t}}\right) .
$$

We also define $\mathrm{V}_{1} \mathcal{A}:=\mathbb{C} h_{1} \cdot \mathbb{C}[\mathrm{c}(\mathrm{dt})] \cdot \mathcal{A}$ and $\mathrm{V}_{1} \mathcal{A}:={\overline{\mathrm{V}_{1}} \mathcal{A}^{\mathrm{B}}}^{\mathrm{H})}$.

Remainders and horizontal Dirac operators

Definition

A remainder for $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}))$ is $\mathrm{Z} \in \mathrm{B}(\mathrm{H})^{\mathrm{G}}$ odd, s.t.

$$
Z^{*}=Z, \quad\left[Z, \mathbb{C} l_{n}\right]=0 ;
$$

its horizontal Dirac operator is

$$
\mathrm{D}_{\mathrm{h}}[\mathrm{Z}]:=\mathrm{D}-\mathrm{D}_{v}-\mathrm{Z} .
$$

Remainders and horizontal Dirac operators

Definition

A remainder for $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}))$ is $\mathrm{Z} \in \mathrm{B}(\mathrm{H})^{\mathrm{G}}$ odd, s.t.

$$
Z^{*}=Z, \quad\left[Z, C l_{n}\right]=0 ;
$$

its horizontal Dirac operator is

$$
\mathrm{D}_{\mathrm{h}}[\mathrm{Z}]:=\mathrm{D}-\mathrm{D}_{v}-\mathrm{Z} .
$$

Example

The canonical remainder for $(\mathcal{A}, \mathrm{H}, \mathrm{D} ; \mathrm{U} ; \mathrm{c}(\mathrm{dt})$) is

$$
Z_{\text {can }}:=c(d t) \mu\left(\frac{\partial}{\partial t}\right) .
$$

Running example

Recall that $\mathrm{D}:=\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}+i d \widehat{\otimes} 2 \pi \gamma_{2} \otimes \partial_{2}$.

Running example

Recall that D $:=i d \widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}+i d \widehat{\otimes} 2 \pi \gamma_{2} \otimes \partial_{2}$.
Let $c(d t):=i d \widehat{\otimes} 2 \pi \gamma_{1} \otimes i d$.
Then $c(d t)$ is a vertical geometry for $\left(\mathcal{A}_{\theta}, H, D, U\right)$ with:

- $\mu\left(\frac{\partial}{\partial \mathrm{t}}\right)=0 ;$
- $\mathrm{D}_{v}=\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}$;
- $V_{1} \mathcal{A}_{\theta}=\mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathcal{A}_{\theta}$ and $V_{1} A_{\theta}=\mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} A_{\theta}$.

Running example

Recall that D $:=\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}+i d \widehat{\otimes} 2 \pi \gamma_{2} \otimes \partial_{2}$.
Let $c(d t):=i d \widehat{\otimes} 2 \pi \gamma_{1} \otimes i d$.
Then $\mathrm{c}(\mathrm{dt})$ is a vertical geometry for $\left(\mathcal{A}_{\theta}, \mathrm{H}, \mathrm{D}, \mathrm{U}\right)$ with:

- $\mu\left(\frac{\partial}{\partial t}\right)=0 ;$
- $\mathrm{D}_{v}=\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}$;
- $V_{1} \mathcal{A}_{\theta}=\mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathcal{A}_{\theta}$ and $V_{1} A_{\theta}=\mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} A_{\theta}$.

Moreover:

- $Z_{\text {can }}=0$;
- $\mathrm{D}_{\mathrm{h}}\left[\mathrm{Z}_{\mathrm{can}}\right]=\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{2} \otimes \partial_{2}$.

Running example

Recall that $\mathrm{D}:=\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}+\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{2} \otimes \partial_{2}$.
Let $c(d t):=i d \widehat{\otimes} 2 \pi \gamma_{1} \otimes i d$.
Then $\mathrm{c}(\mathrm{dt})$ is a vertical geometry for $\left(\mathcal{A}_{\theta}, \mathrm{H}, \mathrm{D}, \mathrm{U}\right)$ with:

- $\mu\left(\frac{\partial}{\partial t}\right)=0 ;$
- $\mathrm{D}_{v}=\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}$;
- $\mathrm{V}_{1} \mathcal{A}_{\theta}=\mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathcal{A}_{\theta}$ and $\mathrm{V}_{1} \mathcal{A}_{\theta}=\mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} A_{\theta}$.

Moreover:

- $Z_{\text {can }}=0$;
- $\mathrm{D}_{\mathrm{h}}\left[\mathrm{Z}_{\mathrm{can}}\right]=\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{2} \otimes \partial_{2}$.

The vertical geometry $c(d t)$ recovers
$\mathrm{D}=\mathrm{D}_{v}+\mathrm{D}_{\mathrm{h}}\left[\mathrm{Z}_{\text {can }}\right]+\mathrm{Z}_{\text {can }}=\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}+\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{2} \otimes \partial_{2}+0$.

Principal spectral triples

Definition

If (A, α) is principal, then $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$ defines a principal G-spectral triple for (A, α) whenever

1. $\overline{V_{1} A \cdot H^{G}}=H$;
2. $[\mathrm{D}, \mathrm{Z}], \mathcal{A}] \subset{\overline{\mathrm{A} \cdot\left[\mathrm{D}-\mathrm{Z}, \mathcal{A}^{\mathrm{G}}\right.}}^{\mathrm{B}}{ }^{(\mathrm{H})}$;
3. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \mathrm{c}(\mathrm{dt})\right]=0$.

Principal spectral triples

Definition
If (A, α) is principal, then $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$ defines a principal G-spectral triple for (A, α) whenever

1. $\overline{V_{1} A \cdot H^{G}}=H$;
2. $[\mathrm{D}, \mathrm{Z}], \mathcal{A}] \subset{\overline{\mathrm{A} \cdot\left[\mathrm{D}-\mathrm{Z}, \mathcal{A}^{\mathrm{G}}\right.}}^{\mathrm{B}}{ }^{(\mathrm{H})}$;
3. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \mathrm{c}(\mathrm{dt})\right]=\mathrm{o}$.

Examples (cf. Brain-Mesland-Van Suijlekom)

1. $\left(\mathcal{A}_{\theta}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; 0\right)$ for $\left(\mathcal{A}_{\theta}, \alpha\right)$, where

$$
\mathrm{c}(\mathrm{dt}):=\mathrm{id} \widehat{\otimes} 2 \pi \gamma_{1} \otimes \mathrm{id}, \quad \mathrm{O}=\mathrm{Z}_{\mathrm{can}}
$$

2. the canonical spectral triple for $\mathrm{C}\left(\mathrm{S}_{\theta}^{3}\right)$.

Analysis

Given n-multigraded principal ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$:

Analysis

Given n-multigraded principal ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$:

1. $c(d t)$ encodes orbitwise intrinsic geometry, index theory via the wrong-way cycle (cf. Wahl)

$$
\left(\mathcal{A}, \mathrm{E}_{1}, \mathrm{~S}_{1}, \mathrm{~W}_{1}\right):=\left(\mathcal{A}, \mathrm{L}^{2}\left(\mathrm{~V}_{1} \mathcal{A}, \mathbb{E}_{\mathrm{V}_{1} \mathcal{A}}\right), \mathrm{c}(\mathrm{dt}) \mathrm{d} \alpha\left(\frac{\partial}{\partial \mathrm{t}}\right), \alpha\right) \in \Psi_{1}^{\mathrm{G}}
$$

Analysis

Given n-multigraded principal ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$:

1. $c(d t)$ encodes orbitwise intrinsic geometry, index theory via the wrong-way cycle (cf. Wahl)

$$
\left(\mathcal{A}, \mathrm{E}_{1}, \mathrm{~S}_{1}, \mathrm{~W}_{1}\right):=\left(\mathcal{A}, \mathrm{L}^{2}\left(\mathrm{~V}_{1} \mathcal{A}, \mathbb{E}_{\mathrm{V}_{1} \mathcal{A}}\right), \mathrm{c}(\mathrm{dt}) \mathrm{d} \alpha\left(\frac{\partial}{\partial \mathrm{t}}\right), \alpha\right) \in \Psi_{1}^{\mathrm{G}}
$$

2. $\mathrm{D}^{\mathrm{G}}[\mathbf{Z}]:=\left.\mathrm{D}_{\mathrm{h}}[\mathbf{Z}]\right|_{\mathrm{H}^{\mathrm{G}}}$ encodes basic geometry, index theory via the basic spectral triple $\left(\mathrm{V}_{1} \mathcal{A}^{\mathrm{G}}, \mathrm{H}^{\mathrm{G}}, \mathrm{D}^{\mathrm{G}}[\mathrm{Z}]\right) \in \Psi_{\mathrm{n}-1}^{\mathrm{G}}$;

Analysis

Given n-multigraded principal ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$:

1. $c(d t)$ encodes orbitwise intrinsic geometry, index theory via the wrong-way cycle (cf. Wahl)

$$
\left(\mathcal{A}, \mathrm{E}_{1}, \mathrm{~S}_{1}, \mathrm{~W}_{1}\right):=\left(\mathcal{A}, \mathrm{L}^{2}\left(\mathrm{~V}_{1} \mathcal{A}, \mathbb{E}_{\mathrm{V}_{1} \mathcal{A}}\right), \mathrm{c}(\mathrm{dt}) \mathrm{d} \alpha\left(\frac{\partial}{\partial \mathrm{t}}\right), \alpha\right) \in \Psi_{1}^{\mathrm{G}}
$$

2. $\mathrm{D}^{\mathrm{G}}[\mathbf{Z}]:=\left.\mathrm{D}_{\mathrm{h}}[\mathbf{Z}]\right|_{\mathrm{H}^{\mathrm{G}}}$ encodes basic geometry, index theory via the basic spectral triple $\left(V_{1} \mathcal{A}^{\mathrm{G}}, \mathrm{H}^{\mathrm{G}}, \mathrm{D}^{\mathrm{G}}[\mathrm{Z}]\right) \in \Psi_{n-1}^{\mathrm{G}}$;
3. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \mathrm{c}(\mathrm{dt})\right]=0$ encodes orbitwise extrinsic geometry;

Analysis

Given n-multigraded principal ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$:

1. $c(d t)$ encodes orbitwise intrinsic geometry, index theory via the wrong-way cycle (cf. Wahl)

$$
\left(\mathcal{A}, \mathrm{E}_{1}, \mathrm{~S}_{1}, \mathrm{~W}_{1}\right):=\left(\mathcal{A}, \mathrm{L}^{2}\left(\mathrm{~V}_{1} \mathcal{A}, \mathbb{E}_{\mathrm{V}_{1} \mathcal{A}}\right), \mathrm{c}(\mathrm{dt}) \mathrm{d} \alpha\left(\frac{\partial}{\partial \mathrm{t}}\right), \alpha\right) \in \Psi_{1}^{\mathrm{G}}
$$

2. $\mathrm{D}^{\mathrm{G}}[\mathbf{Z}]:=\left.\mathrm{D}_{\mathrm{h}}[\mathbf{Z}]\right|_{\mathrm{H}^{\mathrm{G}}}$ encodes basic geometry, index theory via the basic spectral triple $\left(\mathrm{V}_{1} \mathcal{A}^{\mathrm{G}}, \mathrm{H}^{\mathrm{G}}, \mathrm{D}^{\mathrm{G}}[\mathrm{Z}]\right) \in \Psi_{\mathrm{n}-1}^{\mathrm{G}}$;
3. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \mathrm{c}(\mathrm{dt})\right]=0$ encodes orbitwise extrinsic geometry;
4. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \cdot\right]$ on \mathcal{A} encodes the principal connection.

Analysis

Given n-multigraded principal ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$:

1. $c(d t)$ encodes orbitwise intrinsic geometry, index theory via the wrong-way cycle (cf. Wahl)

$$
\left(\mathcal{A}, \mathrm{E}_{1}, \mathrm{~S}_{1}, \mathrm{~W}_{1}\right):=\left(\mathcal{A}, \mathrm{L}^{2}\left(\mathrm{~V}_{1} \mathcal{A}, \mathbb{E}_{\mathrm{V}_{1} \mathcal{A}}\right), \mathrm{c}(\mathrm{dt}) \mathrm{d} \alpha\left(\frac{\partial}{\partial \mathrm{t}}\right), \alpha\right) \in \Psi_{1}^{\mathrm{G}}
$$

2. $\mathrm{D}^{\mathrm{G}}[\mathbf{Z}]:=\left.\mathrm{D}_{\mathrm{h}}[\mathbf{Z}]\right|_{\mathrm{H}^{\mathrm{G}}}$ encodes basic geometry, index theory via the basic spectral triple $\left(V_{1} \mathcal{A}^{\mathrm{G}}, \mathrm{H}^{\mathrm{G}}, \mathrm{D}^{\mathrm{G}}[\mathrm{Z}]\right) \in \Psi_{\mathrm{n}-1 \text {; }}^{\mathrm{G}}$
3. $\left[D_{h}[Z], c(d t)\right]=0$ encodes orbitwise extrinsic geometry;
4. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \cdot\right]$ on \mathcal{A} encodes the principal connection.

Note (cf. Carey-Neshveyev-Nest-Rennie, Arici-Kaad-Landi...) Since $G=U(1)$, the cycle $\left(\mathcal{A}, E_{1}, S_{1}\right)$ represents the extension class $[\partial] \in K_{1}\left(A, A^{G}\right)$ of A as a Pimsner algebra.

Synthesis

Theorem
Let $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$ be a principal G -spectral triple:

1. $\mathrm{H} \cong \mathrm{E}_{1} \widehat{\otimes}_{\mathrm{V}_{1} \mathrm{~A}^{\mathrm{G}}} H^{\mathrm{G}}$ and $\mathrm{D}_{v}=\mathrm{S}_{1} \widehat{\otimes} \mathrm{id}$;
2. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \cdot\right]$ canonically induces a Hermitian connection $\nabla[\mathrm{Z}]$ on E_{1} s.t. $\mathrm{D}_{\mathrm{h}}[\mathrm{Z}]=\mathrm{id} \widehat{\otimes}_{\nabla[\mathrm{Z}]} \mathrm{D}^{\mathrm{G}}[\mathrm{Z}]$;
3. $[\mathrm{D}]=\left[\mathrm{S}_{1}\right] \otimes_{\mathrm{V}_{1} \mathrm{~A}^{\mathrm{G}}}\left[\mathrm{D}^{\mathrm{G}}[\mathrm{Z}]\right]$ in G-equivariant KK-theory.

Synthesis

Theorem
Let $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$ be a principal G -spectral triple:

1. $\mathrm{H} \cong \mathrm{E}_{1} \widehat{\otimes}_{\mathrm{V}_{1} \mathrm{~A}^{\mathrm{G}}} \mathrm{H}^{\mathrm{G}}$ and $\mathrm{D}_{v}=\mathrm{S}_{1} \widehat{\otimes} \mathrm{id}$;
2. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \cdot\right]$ canonically induces a Hermitian connection $\nabla[\mathrm{Z}]$ on E_{1} s.t. $\mathrm{D}_{\mathrm{h}}[\mathrm{Z}]=\mathrm{id} \widehat{\otimes}_{\nabla[\mathrm{Z}]} \mathrm{D}^{\mathrm{G}}[\mathrm{Z}]$;
3. $[D]=\left[S_{1}\right] \otimes_{V_{1} A^{G}}\left[D^{G}[Z]\right]$ in G-equivariant KK-theory.

Thus, in G-equivariant unbounded KK-theory,

$$
\begin{aligned}
(\mathcal{A}, \mathrm{H}, \mathrm{D}- & \mathrm{Z}, \mathrm{U}) \\
& \cong\left(\mathcal{A}, \mathrm{E}_{1}, \mathrm{~S}_{1}, \mathrm{~W}_{1} ; \nabla[\mathrm{Z}]\right) \widehat{\otimes}_{\mathrm{V}_{1} \mathcal{A}}\left(\mathrm{~V}_{1} \mathcal{A}^{\mathrm{G}}, \mathrm{H}^{\mathrm{G}}, \mathrm{D}^{\mathrm{G}}[\mathrm{Z}], \mathrm{id}\right) .
\end{aligned}
$$

Running example

Recall that $A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z}$; note that $V_{1} A_{\theta}^{G} \cong M_{2}(\mathbb{C}) \otimes C(G)$.

Running example

Recall that $A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z}$; note that $V_{1} A_{\theta}^{G} \cong M_{2}(\mathbb{C}) \otimes C(G)$.

1. The wrong-way cycle
$\left(\mathcal{A}_{\theta}, \mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \otimes \mathrm{L}^{2}\left(\mathcal{A}_{\theta}, \mathbb{E}_{\mathrm{C}(\mathrm{G})}\right)\right.$, id $\widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}$, id $\left.\widehat{\otimes} \mathrm{id} \otimes \alpha\right)$ represents the connecting map $K_{i}\left(A_{\theta}\right) \rightarrow K_{i+1}(C(G))$.

Running example

Recall that $A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z}$; note that $V_{1} A_{\theta}^{G} \cong M_{2}(\mathbb{C}) \otimes C(G)$.

1. The wrong-way cycle
$\left(\mathcal{A}_{\theta}, \mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \otimes \mathrm{L}^{2}\left(A_{\theta}, \mathbb{E}_{\mathrm{C}(\mathrm{G})}\right)\right.$, id $\widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}$, id $\left.\widehat{\otimes} \mathrm{id} \otimes \alpha\right)$ represents the connecting map $K_{i}\left(A_{\theta}\right) \rightarrow K_{i+1}(C(G))$.
2. Up to explicit Morita equivalence, the basic spectral triple

$$
\left(\mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \otimes \mathcal{O}(\mathrm{G}), \mathbb{C}^{2} \widehat{\otimes} \mathbb{C}^{2} \otimes \mathrm{~L}^{2}(\mathrm{G}), \mathrm{id} \widehat{\otimes} 2 \pi \gamma_{2} \otimes \frac{\partial}{\partial \mathrm{t}}\right)
$$

recovers the commutative spectral triple for $G=\widehat{A_{\theta}^{G}}$.

Running example

Recall that $A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z}$; note that $V_{1} A_{\theta}^{G} \cong M_{2}(\mathbb{C}) \otimes C(G)$.

1. The wrong-way cycle
$\left(\mathcal{A}_{\theta}, \mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \otimes \mathrm{L}^{2}\left(\mathcal{A}_{\theta}, \mathbb{E}_{\mathrm{C}(\mathrm{G})}\right)\right.$, id $\widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}$, id $\left.\widehat{\otimes} \mathrm{id} \otimes \alpha\right)$
represents the connecting map $K_{i}\left(A_{\theta}\right) \rightarrow K_{i+1}(C(G))$.
2. Up to explicit Morita equivalence, the basic spectral triple

$$
\left(\mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \otimes \mathcal{O}(\mathrm{G}), \mathbb{C}^{2} \widehat{\otimes} \mathbb{C}^{2} \otimes \mathrm{~L}^{2}(\mathrm{G}), \mathrm{id} \widehat{\otimes} 2 \pi \gamma_{2} \otimes \frac{\partial}{\partial \mathrm{t}}\right)
$$

recovers the commutative spectral triple for $G=\widehat{A_{\theta}^{G}}$.
3. $\left[D_{h}[0], c(d t)\right]=0$ encodes totally geodesic orbits.

Running example

Recall that $A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z}$; note that $V_{1} A_{\theta}^{G} \cong M_{2}(\mathbb{C}) \otimes C(G)$.

1. The wrong-way cycle
$\left(\mathcal{A}_{\theta}, \mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \otimes \mathrm{L}^{2}\left(A_{\theta}, \mathbb{E}_{\mathrm{C}(\mathrm{G})}\right)\right.$, id $\widehat{\otimes} 2 \pi \gamma_{1} \otimes \partial_{1}$, id $\left.\widehat{\otimes} \mathrm{id} \otimes \alpha\right)$
represents the connecting map $K_{i}\left(A_{\theta}\right) \rightarrow K_{i+1}(C(G))$.
2. Up to explicit Morita equivalence, the basic spectral triple

$$
\left(\mathbb{C}\left[\gamma_{1}\right] \widehat{\otimes} \mathbb{C}\left[\gamma_{1}\right] \otimes \mathcal{O}(\mathrm{G}), \mathbb{C}^{2} \widehat{\otimes} \mathbb{C}^{2} \otimes \mathrm{~L}^{2}(\mathrm{G}), \mathrm{id} \widehat{\otimes} 2 \pi \gamma_{2} \otimes \frac{\partial}{\partial \mathrm{t}}\right)
$$

recovers the commutative spectral triple for $G=\widehat{A_{\theta}^{G}}$.
3. $\left[D_{h}[o], c(d t)\right]=0$ encodes totally geodesic orbits.
4. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{O}], \cdot\right]$ on \mathcal{A}_{θ} gives a horizontal lift of the de Rham calculus on $\mathcal{O}(\mathrm{G})=\mathcal{A}_{\theta}^{\mathrm{G}}$.

But wait, there's more!

Get the space $\mathfrak{A t}$ of Nc principal connections by varying $D_{h}[Z]$ while fixing:

- basic geometry and index theory;
- orbitwise extrinsic geometry.

But wait, there's more!

Get the space $\mathfrak{A t}$ of nc principal connections by varying $D_{h}[Z]$ while fixing:

- basic geometry and index theory;
- orbitwise extrinsic geometry.

Get a group $\mathfrak{G} \subset \mathrm{U}(\mathrm{H})^{\mathrm{G}}$ of NC gauge transformations acting by conjugation on $\mathfrak{A t}$.

But wait, there's more!

Get the space $\mathfrak{A} t$ of Nc principal connections by varying $D_{h}[Z]$ while fixing:

- basic geometry and index theory;
- orbitwise extrinsic geometry.

Get a group $\mathfrak{G} \subset \mathrm{U}(\mathrm{H})^{\mathrm{G}}$ of NC gauge transformations acting by conjugation on $\mathfrak{A t}$.

Theorem

1. $\mathfrak{A t}$ is an affine space;
2. \mathfrak{G} acts on $\mathfrak{A t}$ by affine transformations;
3. $\left[D_{v}+D_{h}[Z]\right] \in K_{n}^{G}(A, \mathbb{C})$ is constant in $D_{h}[Z] \in \mathfrak{A t}$.

This generalises the commutative case (up to a cocycle).

Running example

$A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z} \hookleftarrow C(G)=A_{\theta}^{G}$ is a trivial nc principal bundle.
($\left.\mathcal{A}_{\theta}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{o}\right)$ admits non-trivial nc gauge theory:

Running example

$A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z} \hookleftarrow C(G)=A_{\theta}^{G}$ is a trivial nC principal bundle.
($\left.\mathcal{A}_{\theta}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{o}\right)$ admits non-trivial nc gauge theory:

- $\left\{\mathbb{A} \in \overrightarrow{\mathfrak{A} t} \mid \mathbb{A}_{\boldsymbol{H}^{G}}=0\right\} \cong Z^{1}(\mathbb{Z}, C(G, \mathbb{R}))$ via

$$
\mathbb{A} \mapsto \mathfrak{a}, \quad i d \widehat{\otimes} 2 \pi i \gamma_{2} \otimes \mathfrak{a}:=\left(\mathfrak{m} \mapsto \lambda_{\mathfrak{m}}\left[\mathbb{A}, \lambda_{\mathrm{m}}^{*}\right]\right) ;
$$

Running example

$A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z} \hookleftarrow C(G)=A_{\theta}^{G}$ is a trivial nC principal bundle.
($\left.\mathcal{A}_{\theta}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{o}\right)$ admits non-trivial nc gauge theory:

- $\left\{\mathbb{A} \in \overrightarrow{\mathfrak{A} t} \mid \mathbb{A}_{H^{G}}=0\right\} \cong Z^{1}(\mathbb{Z}, C(G, \mathbb{R}))$ via

$$
\mathbb{A} \mapsto \mathfrak{a}, \quad i d \widehat{\otimes} 2 \pi i \gamma_{2} \otimes \mathfrak{a}:=\left(\mathfrak{m} \mapsto \lambda_{\mathrm{m}}\left[\mathbb{A}, \lambda_{\mathrm{m}}^{*}\right]\right) ;
$$

$\cdot\left\{\mathbb{A} \in \overrightarrow{\mathfrak{A} t} \mid \mathbb{A}_{\mathrm{H}^{G}}=0,[\mathbb{A}, \cdot]\right.$ inner $\} \cong \mathrm{B}^{1}(\mathbb{Z}, \mathrm{C}(\mathrm{G}, \mathbb{R})) ;$

Running example

$A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z} \hookleftarrow C(G)=A_{\theta}^{G}$ is a trivial nC principal bundle.
($\left.\mathcal{A}_{\theta}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{o}\right)$ admits non-trivial nc gauge theory:

- $\left\{\mathbb{A} \in \overrightarrow{\mathfrak{A} t} \mid \mathbb{A}_{\mathbb{H}^{G}}=0\right\} \cong Z^{1}(\mathbb{Z}, C(G, \mathbb{R}))$ via

$$
\mathbb{A} \mapsto \mathfrak{a}, \quad i d \widehat{\otimes} 2 \pi i \gamma_{2} \otimes \mathfrak{a}:=\left(\mathfrak{m} \mapsto \lambda_{\mathrm{m}}\left[\mathbb{A}, \lambda_{\mathrm{m}}^{*}\right]\right) ;
$$

$\cdot\left\{\mathbb{A} \in \overrightarrow{\mathfrak{A} t} \mid \mathbb{A}_{\mathrm{H}^{\mathrm{G}}}=0,[\mathbb{A}, \cdot]\right.$ inner $\} \cong \mathrm{B}^{1}(\mathbb{Z}, C(G, \mathbb{R})) ;$

- $\left\{\mathbb{S} \in \mathfrak{G} \mid \mathbb{S}_{\mathbb{H}^{\mathrm{G}}}=\mathrm{id}\right\} \cong \mathrm{Z}^{1}\left(\mathbb{Z}, \mathrm{C}^{1}(\mathrm{G}, \mathrm{U}(1))\right)$ via

$$
\mathbb{S} \mapsto \mathfrak{s}:=\left(\mathfrak{m} \mapsto \lambda_{\mathrm{m}} \mathbb{S} \lambda_{\mathfrak{m}}^{*} \mathbb{S}^{*}\right),
$$

with $\mathfrak{s} \triangleright($ basepoint $+\mathfrak{a})=$ basepoint $+\left(\mathfrak{a}+\mathfrak{s d} \mathfrak{s}^{*}\right)$.

Running example

$A_{\theta}:=C(G) \rtimes_{\theta} \mathbb{Z} \hookleftarrow C(G)=A_{\theta}^{G}$ is a trivial nC principal bundle.
($\left.\mathcal{A}_{\theta}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{o}\right)$ admits non-trivial nc gauge theory:

- $\left\{\mathbb{A} \in \overrightarrow{\mathfrak{A} t} \mid \mathbb{A}_{H^{G}}=0\right\} \cong Z^{1}(\mathbb{Z}, C(G, \mathbb{R}))$ via

$$
\mathbb{A} \mapsto \mathfrak{a}, \quad \text { id } \widehat{\otimes} 2 \pi i \gamma_{2} \otimes \mathfrak{a}:=\left(\mathfrak{m} \mapsto \lambda_{\mathfrak{m}}\left[\mathbb{A}, \lambda_{\mathrm{m}}^{*}\right]\right) ;
$$

- $\left\{\mathbb{A} \in \overrightarrow{\mathfrak{A} t} \mid \mathbb{A}_{\boldsymbol{H}^{G}}=0,[\mathbb{A}, \cdot]\right.$ inner $\} \cong \mathrm{B}^{1}(\mathbb{Z}, C(G, \mathbb{R})) ;$
$\cdot\left\{\mathbb{S} \in \mathfrak{G} \mid \mathbb{S}_{\mathrm{H}^{\mathrm{G}}}=\mathrm{id}\right\} \cong \mathrm{Z}^{1}\left(\mathbb{Z}, \mathrm{C}^{1}(\mathrm{G}, \mathrm{U}(1))\right)$ via

$$
\mathbb{S} \mapsto \mathfrak{s}:=\left(\mathfrak{m} \mapsto \lambda_{\mathrm{m}} \mathbb{S} \lambda_{\mathfrak{m}}^{*} \mathbb{S}^{*}\right),
$$

with $\mathfrak{s} \triangleright$ (basepoint $+\mathfrak{a})=$ basepoint $+\left(\mathfrak{a}+\mathfrak{s d} \mathfrak{s}^{*}\right)$.
This nC gauge theory is highly sensitive to the value of θ.

