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Cod-Hegelian dialectic

Let G be a compact connected Lie group.

What is a NC (Yang–Mills) gauge theory with structure group G?

Thesis (Brzeziński–Majid et al.)
Connections on principal O(G)-comodule algebras.

Antithesis (Chamseddine–Connes et al.)
The spectral action principle on suitable spectral triples.

Synthesis? (cf. Brain–Mesland–Van Suijlekom)
The very latest in unbounded KK-theory.
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Basic setup

Let G = U(1), so that g = R ∂
∂t
, where

∀f ∈ O(G), ∀z ∈ G, ( ∂
∂t

f)(z) := lim
s→0

f(zeis) − f(z)

s
;

hence, g∗ = Rdt for dt := −idz
z
with (dt, ∂

∂t
) = 1.

Thus, a unital G-C∗-algebra (A,α) is principal iff

∀n ∈ Z, A∗
n ·An = AG, An := {a ∈ A | ∀z ∈ G, αz(a) = zna},

in which case A←↩ AG is a NC topological principal G-bundle.

Example (Matsumoto, cf. Brzeziński–Sitarz)
The θ-deformed C-Hopf fibration C(S3θ)←↩ C(S

3
θ)

G ∼= C(S2).
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Running example

Fix θ ∈ R, so Z acts on C(G) by (f /θ m)(z) := f(z · e2πimθ).

The rotation algebra Aθ := C(G)⋊θ Z admits:

1. an action α of G := U(1) = Ẑ defined by

∀ζ ∈ G, ∀m ∈ Z, ∀f ∈ C(G), αz(λmf) := zmλmf;

2. a G-invariant faithful trace τ defined by

∀m ∈ Z, ∀f ∈ C(G), τ (λmf) :=

∫
G

δm,0f(z)
1
2πi

dz

z
.

Note that (Aθ,α) is principal since AG
θ = C(G) and

∀m ∈ Z, (Aθ)m = λm · C(G).
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Equivariant spectral triples

Let (A,α) be a unital sep’ble G-C∗-algebra. Let n ⩾ dimG = 1.

An n-multigraded G-spectral triple for (A,α) is (A,H,D,U):

1. (H,U) is a faithful Z2-graded covariant ∗-representation
of (Cln⊗̂A, id ⊗̂α);

2. D is an odd G-invariant self-adjoint operator on H s.t.

(D+ i)−1 ∈ K(H), [D,Cln] = {0}, Dom(D) ⊂ C1(H,U);

3. A ⊂ A is a dense G-invariant ∗-subalgebra s.t.

A ⊂ C1(A,α), O(G) ∗A ⊆ A, [D,A] ⊂ B(H).
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What are they good for? (d’après Connes)

The G-spectral triple (A,H,D,U) encodes the following:

1. first-order (de Rham) differential calculus via

A 3 a 7→ c(da) := [D,a];

2. metric geometry on the state space S(A) of A via

S(A)2 3 (µ,ν) 7→ ρD(µ,ν) := sup
a∈A

∥[D,a]∥⩽1

|µ(a) − ν(a)|;

3. spectral geometry (e.g., dimension, volume, measure) via

(0,+∞) 3 t 7→ exp(−tD2) ∈ L1(H) (ideally);

4. index theory (i.e., NC algebraic topology) via

[D] ∈ KKG
n (A,C).
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Running example

Let Aθ := Span{λm · f | m ∈ Z, f ∈ O(G)}.

Since G acts smoothly on Aθ, get ∂1 : Aθ → Aθ defined by

∀m ∈ Z, ∀f ∈ O(G), ∂1(λmf) := dα( ∂
∂t

)(λmf) = im · λmf;

since AG = O(G), get ∂2 : Aθ → Aθ defined by

∀m ∈ Z, ∀f ∈ O(G), ∂2(λmf) := λm
∂
∂t

f.

Let γ1 :=
( 0 −i
−i 0

)
and γ2 := ( 0 −1

1 0 ), let ΓC2 := ( 1 0
0 −1 ), and let

H := C2 ⊗̂C2 ⊗ L2(Aθ, τ), U := id ⊗̂ id⊗α,
D := id ⊗̂ 2π (γ1 ⊗ ∂1 + γ2 ⊗ ∂2) .

(Aθ,H,D,U) is a 2-multigraded G-spectral triple for (Aθ,α).

7



Running example

Let Aθ := Span{λm · f | m ∈ Z, f ∈ O(G)}.

Since G acts smoothly on Aθ, get ∂1 : Aθ → Aθ defined by

∀m ∈ Z, ∀f ∈ O(G), ∂1(λmf) := dα( ∂
∂t

)(λmf) = im · λmf;

since AG = O(G), get ∂2 : Aθ → Aθ defined by

∀m ∈ Z, ∀f ∈ O(G), ∂2(λmf) := λm
∂
∂t

f.

Let γ1 :=
( 0 −i
−i 0

)
and γ2 := ( 0 −1

1 0 ), let ΓC2 := ( 1 0
0 −1 ), and let

H := C2 ⊗̂C2 ⊗ L2(Aθ, τ), U := id ⊗̂ id⊗α,
D := id ⊗̂ 2π (γ1 ⊗ ∂1 + γ2 ⊗ ∂2) .

(Aθ,H,D,U) is a 2-multigraded G-spectral triple for (Aθ,α).

7



Vertical geometries and vertical Dirac operators

Definition (cf. Dąbrowski–Sitarz, Forsyth–Rennie)
A vertical geometry for (A,H,D,U) is odd c(dt) ∈ B(H)G, s.t.

1. c(dt)∗ = −c(dt) and c(dt)2 = −4π2,
2. [c(dt),Cln] = [c(dt),A] = {0},
3. µ( ∂

∂t
) := − 1

2 [D,
1
4π2 c(dt)] − dU( ∂

∂t
) ∈ B(H).

Its vertical Dirac operator is

Dv := c(dt)dU( ∂
∂t

).

We also define V1A := Cl1·C[c(dt)] ·A and V1A := V1A
B(H).
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Remainders and horizontal Dirac operators

Definition
A remainder for (A,H,D,U; c(dt)) is Z ∈ B(H)G odd, s.t.

Z∗ = Z, [Z,Cln] = 0;

its horizontal Dirac operator is

Dh[Z] := D−Dv − Z.

Example
The canonical remainder for (A,H,D;U; c(dt)) is

Zcan := c(dt)µ( ∂
∂t

).
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Running example

Recall that D := id ⊗̂ 2πγ1 ⊗ ∂1 + id ⊗̂ 2πγ2 ⊗ ∂2.

Let c(dt) := id ⊗̂ 2πγ1 ⊗ id.

Then c(dt) is a vertical geometry for (Aθ,H,D,U) with:

• µ( ∂
∂t

) = 0;
• Dv = id ⊗̂ 2πγ1 ⊗ ∂1;
• V1Aθ = C[γ1] ⊗̂C[γ1]⊗̂Aθ and V1Aθ = C[γ1] ⊗̂C[γ1]⊗̂Aθ.

Moreover:

• Zcan = 0;
• Dh[Zcan] = id ⊗̂ 2πγ2 ⊗ ∂2.

The vertical geometry c(dt) recovers

D = Dv +Dh[Zcan] +Zcan = id ⊗̂ 2πγ1⊗ ∂1 + id ⊗̂ 2πγ2⊗ ∂2 + 0.
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Principal spectral triples

Definition
If (A,α) is principal, then (A,H,D,U; c(dt);Z) defines a
principal G-spectral triple for (A,α) whenever

1. V1A ·HG = H;
2. [Dh[Z],A] ⊂ A · [D− Z,AG]

B(H)
;

3. [Dh[Z], c(dt)] = 0.

Examples (cf. Brain–Mesland–Van Suijlekom)
1. (Aθ,H,D,U; c(dt); 0) for (Aθ,α), where

c(dt) := id ⊗̂ 2πγ1 ⊗ id, 0 = Zcan;

2. the canonical spectral triple for C(S3θ).
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Analysis

Given n-multigraded principal (A,H,D,U; c(dt);Z):

1. c(dt) encodes orbitwise intrinsic geometry, index theory
via the wrong-way cycle (cf. Wahl)

(A,E1,S1,W1) := (A,L2(V1A,EV1AG), c(dt)dα( ∂
∂t

),α)∈ ΨG
1 ;

2. DG[Z] := Dh[Z]|HG encodes basic geometry, index theory
via the basic spectral triple (V1AG,HG,DG[Z])∈ ΨG

n−1;
3. [Dh[Z], c(dt)] = 0 encodes orbitwise extrinsic geometry;
4. [Dh[Z], ·] on A encodes the principal connection.

Note (cf. Carey–Neshveyev–Nest–Rennie, Arici–Kaad–Landi…)
Since G = U(1), the cycle (A,E1,S1) represents the extension
class [∂] ∈ KK1(A,AG) of A as a Pimsner algebra.
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Synthesis

Theorem
Let (A,H,D,U; c(dt);Z) be a principal G-spectral triple:

1. H ∼= E1⊗̂V1AGHG and Dv = S1⊗̂ id;
2. [Dh[Z], ·] canonically induces a Hermitian connection ∇[Z]
on E1 s.t. Dh[Z] = id ⊗̂∇[Z]D

G[Z];
3. [D] = [S1]⊗V1AG [DG[Z]] in G-equivariant KK-theory.

Thus, in G-equivariant unbounded KK-theory,

(A,H,D− Z,U)

∼= (A,E1,S1,W1;∇[Z])⊗̂V1AG(V1A
G,HG,DG[Z], id).
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Running example

Recall that Aθ := C(G)⋊θ Z; note that V1AG
θ

∼= M2(C)⊗ C(G).

1. The wrong-way cycle

(Aθ,C[γ1] ⊗̂C[γ1]⊗L2(Aθ,EC(G)), id ⊗̂ 2πγ1⊗∂1, id ⊗̂ id⊗α)

represents the connecting map Ki(Aθ)→ Ki+1(C(G)).
2. Up to explicit Morita equivalence, the basic spectral triple

(C[γ1] ⊗̂C[γ1]⊗ O(G),C2 ⊗̂C2 ⊗ L2(G), id ⊗̂ 2πγ2 ⊗ ∂
∂t

)

recovers the commutative spectral triple for G = ÂG
θ .

3. [Dh[0], c(dt)] = 0 encodes totally geodesic orbits.
4. [Dh[0], ·] on Aθ gives a horizontal lift of the de Rham
calculus on O(G) = AG

θ .
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But wait, there’s more!

Get the space At of NC principal connections by varying Dh[Z]

while fixing:

• basic geometry and index theory;
• orbitwise extrinsic geometry.

Get a group G ⊂ U(H)G of NC gauge transformations acting by
conjugation on At.
Theorem
1. At is an affine space;
2. G acts on At by affine transformations;
3. [Dv +Dh[Z]] ∈ KKG

n (A,C) is constant in Dh[Z] ∈ At.

This generalises the commutative case (up to a cocycle).
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Running example

Aθ := C(G)⋊θ Z←↩ C(G) = AG
θ is a trivial NC principal bundle.

(Aθ,H,D,U; c(dt); 0) admits non-trivial NC gauge theory:

• {A ∈ −→At | A|HG = 0} ∼= Z1 (Z,C(G,R)) via

A 7→ a, id ⊗̂ 2πiγ2 ⊗ a := (m 7→ λm[A, λ∗m]) ;

• {A ∈ −→At | A|HG = 0, [A, ·] inner} ∼= B1 (Z,C(G,R));
• {S ∈ G | S|HG = id} ∼= Z1 (Z,C1(G,U(1))) via

S 7→ s := (m 7→ λmSλ∗mS∗) ,

with s . (basepoint+ a) = basepoint+ (a + sds∗).

This NC gauge theory is highly sensitive to the value of θ.
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