Principal bundles in NC Riemannian geometry

Glavni svežnjevi u nekomutativnoj Riemannovoj geometriji

Branimir Ćaćić Zagreb Workshop on Operator Theory 2020

University of New Brunswick, Fredericton

References

B. Ć. and B. Mesland, Gauge theory on noncommutative Riemannian principal bundles, arXiv:1912.04179

B. Ć., Non-trivial gauge theory on cleft quantum principal bundles, (in preparation)

References

B. Ć. and B. Mesland, Gauge theory on noncommutative Riemannian principal bundles, arXiv:1912.04179

B. Ć., Non-trivial gauge theory on cleft quantum principal bundles, (in preparation)

Note

Today, we specialise to unital NC principal U(1)-bundles with totally geodesic orbits of unit length.

Let G be a compact connected Lie group.

What is a NC (Yang–Mills) gauge theory with structure group G?

Thesis (Brzeziński-Majid et al.)

Connections on principal O(G)-comodule algebras.

Antithesis (Chamseddine-Connes et al.)

The spectral action principle on suitable spectral triples.

Synthesis? (cf. Brain–Mesland–Van Suijlekom) The very latest in unbounded KK-theory.

Basic setup

Let G = U(1), so that $\mathfrak{g} = \mathbb{R} \frac{\partial}{\partial t}$, where

$$\forall f \in \mathcal{O}(G), \forall z \in G, \quad (\frac{\partial}{\partial t}f)(z) := \lim_{s \to 0} \frac{f(ze^{is}) - f(z)}{s};$$

hence, $\mathfrak{g}^* = \mathbb{R}dt$ for $dt \coloneqq -i\frac{dz}{z}$ with $(dt, \frac{\partial}{\partial t}) = 1$.

Let G = U(1), so that $\mathfrak{g} = \mathbb{R} \frac{\partial}{\partial t}$, where

$$\forall f \in \mathcal{O}(G), \forall z \in G, \quad (\frac{\partial}{\partial t}f)(z) := \lim_{s \to 0} \frac{f(ze^{is}) - f(z)}{s};$$

hence, $\mathfrak{g}^* = \mathbb{R} dt$ for $dt \coloneqq -i\frac{dz}{z}$ with $(dt, \frac{\partial}{\partial t}) = 1$. Thus, a unital G-C*-algebra (A, α) is principal iff

$$\forall n \in \mathbb{Z}, \quad \overline{A_n^* \cdot A_n} = A^G, \quad A_n \coloneqq \{a \in A \mid \forall z \in G, \ \alpha_z(a) = z^n a\},$$

in which case $A \leftrightarrow A^G$ is a NC topological principal G-bundle.

Example (Matsumoto, cf. Brzeziński–Sitarz)

The θ -deformed \mathbb{C} -Hopf fibration $C(S^3_{\theta}) \hookrightarrow C(S^3_{\theta})^G \cong C(S^2)$.

Fix $\theta \in \mathbb{R}$, so \mathbb{Z} acts on C(G) by $(f \triangleleft_{\theta} \mathfrak{m})(z) \coloneqq f(z \cdot e^{2\pi \mathfrak{i}\mathfrak{m}\theta})$.

The rotation algebra $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z}$ admits:

Fix $\theta \in \mathbb{R}$, so \mathbb{Z} acts on C(G) by $(f \triangleleft_{\theta} m)(z) \coloneqq f(z \cdot e^{2\pi i m \theta})$. The rotation algebra $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z}$ admits:

1. an action α of $G\coloneqq U(1)=\widehat{\mathbb{Z}}$ defined by

 $\forall \zeta \in G, \, \forall m \in \mathbb{Z}, \, \forall f \in C(G), \quad \alpha_z(\lambda_m f) \coloneqq z^m \lambda_m f;$

Fix $\theta \in \mathbb{R}$, so \mathbb{Z} acts on C(G) by $(f \triangleleft_{\theta} m)(z) \coloneqq f(z \cdot e^{2\pi i m \theta})$. The rotation algebra $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z}$ admits:

1. an action α of $G\coloneqq U(1)=\widehat{\mathbb{Z}}$ defined by

 $\forall \zeta \in \mathsf{G}, \, \forall \mathfrak{m} \in \mathbb{Z}, \, \forall \mathfrak{f} \in \mathsf{C}(\mathsf{G}), \quad \alpha_z(\lambda_\mathfrak{m} \mathfrak{f}) \coloneqq z^\mathfrak{m} \lambda_\mathfrak{m} \mathfrak{f};$

2. a G-invariant faithful trace τ defined by

$$\forall \mathfrak{m} \in \mathbb{Z}, \, \forall \mathfrak{f} \in \mathcal{C}(\mathcal{G}), \quad \tau(\lambda_{\mathfrak{m}}\mathfrak{f}) \coloneqq \int_{\mathcal{G}} \delta_{\mathfrak{m},\mathfrak{o}}\mathfrak{f}(z) \, \frac{1}{2\pi \mathfrak{i}} \frac{dz}{z}.$$

Fix $\theta \in \mathbb{R}$, so \mathbb{Z} acts on C(G) by $(f \triangleleft_{\theta} m)(z) \coloneqq f(z \cdot e^{2\pi i m \theta})$. The rotation algebra $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z}$ admits:

1. an action α of $G\coloneqq U(1)=\widehat{\mathbb{Z}}$ defined by

 $\forall \zeta \in \mathsf{G}, \, \forall \mathfrak{m} \in \mathbb{Z}, \, \forall \mathfrak{f} \in \mathsf{C}(\mathsf{G}), \quad \alpha_z(\lambda_\mathfrak{m} \mathfrak{f}) \coloneqq z^\mathfrak{m} \lambda_\mathfrak{m} \mathfrak{f};$

2. a G-invariant faithful trace τ defined by

$$\forall \mathfrak{m} \in \mathbb{Z}, \forall \mathfrak{f} \in \mathcal{C}(\mathcal{G}), \quad \tau(\lambda_{\mathfrak{m}}\mathfrak{f}) \coloneqq \int_{\mathcal{G}} \delta_{\mathfrak{m},\mathfrak{o}}\mathfrak{f}(z) \frac{1}{2\pi \mathfrak{i}} \frac{dz}{z}.$$

Note that (A_{θ}, α) is principal since $A_{\theta}^{G} = C(G)$ and

$$\forall m \in \mathbb{Z}, \quad (A_{\theta})_m = \lambda_m \cdot C(G)$$

Let (A, α) be a unital sep'ble G-C*-algebra. Let $n \ge \dim G = 1$. An n-multigraded G-spectral triple for (A, α) is (\mathcal{A}, H, D, U) :

- 1. (H, U) is a faithful \mathbb{Z}_2 -graded covariant *-representation of $(\mathbb{Cl}_n \widehat{\otimes} A, id \widehat{\otimes} \alpha)$;
- 2. D is an odd G-invariant self-adjoint operator on H s.t.

 $(D+i)^{-1} \in K(H), \quad [D, \mathbb{Cl}_n] = \{0\}, \quad Dom(D) \subset C^1(H, U);$

3. $\mathcal{A} \subset A$ is a dense G-invariant *-subalgebra s.t.

 $\mathcal{A} \subset C^1(A, \alpha), \quad \mathfrak{O}(G) \ast \mathcal{A} \subseteq \mathcal{A}, \quad [D, \mathcal{A}] \subset B(H).$

The G-spectral triple (\mathcal{A}, H, D, U) encodes the following:

The G-spectral triple (\mathcal{A}, H, D, U) encodes the following:

1. first-order (de Rham) differential calculus via

 $\mathcal{A} \ni \mathfrak{a} \mapsto c(\mathfrak{d}\mathfrak{a}) \coloneqq [\mathsf{D},\mathfrak{a}];$

The G-spectral triple (\mathcal{A}, H, D, U) encodes the following:

1. first-order (de Rham) differential calculus via

 $\mathcal{A} \ni \mathfrak{a} \mapsto \mathfrak{c}(\mathfrak{d}\mathfrak{a}) \coloneqq [\mathsf{D},\mathfrak{a}];$

2. metric geometry on the state space S(A) of A via

$$S(A)^{2} \ni (\mu, \nu) \mapsto \rho_{D}(\mu, \nu) \coloneqq \sup_{\substack{a \in \mathcal{A} \\ \|[D,a]\| \leqslant 1}} |\mu(a) - \nu(a)|;$$

The G-spectral triple (\mathcal{A}, H, D, U) encodes the following:

1. first-order (de Rham) differential calculus via

 $\mathcal{A} \ni \mathfrak{a} \mapsto \mathfrak{c}(\mathfrak{d}\mathfrak{a}) \coloneqq [\mathsf{D},\mathfrak{a}];$

2. metric geometry on the state space S(A) of A via

$$S(A)^{2} \ni (\mu, \nu) \mapsto \rho_{D}(\mu, \nu) \coloneqq \sup_{\substack{\alpha \in \mathcal{A} \\ \|[D, \alpha]\| \leqslant 1}} |\mu(\alpha) - \nu(\alpha)|;$$

3. spectral geometry (e.g., dimension, volume, measure) via

 $(0, +\infty) \ni t \mapsto exp(-tD^2) \in \mathcal{L}_1(H)$ (ideally);

The G-spectral triple (\mathcal{A}, H, D, U) encodes the following:

1. first-order (de Rham) differential calculus via

 $\mathcal{A} \ni \mathfrak{a} \mapsto \mathfrak{c}(\mathfrak{d}\mathfrak{a}) \coloneqq [\mathsf{D},\mathfrak{a}];$

2. metric geometry on the state space S(A) of A via

$$S(A)^{2} \ni (\mu, \nu) \mapsto \rho_{D}(\mu, \nu) \coloneqq \sup_{\substack{a \in \mathcal{A} \\ \|[D,a]\| \leqslant 1}} |\mu(a) - \nu(a)|;$$

3. spectral geometry (e.g., dimension, volume, measure) via

 $(0, +\infty) \ni t \mapsto exp(-tD^2) \in \mathcal{L}_1(H)$ (ideally);

4. index theory (i.e., NC algebraic topology) via

 $[D]\in KK^G_n(A,\mathbb{C}).$

Let $\mathcal{A}_{\theta} \coloneqq \text{Span}\{\lambda_{\mathfrak{m}} \cdot f \mid \mathfrak{m} \in \mathbb{Z}, f \in \mathcal{O}(G)\}.$ Since G acts smoothly on \mathcal{A}_{θ} , get $\partial_{1} : \mathcal{A}_{\theta} \to \mathcal{A}_{\theta}$ defined by $\forall \mathfrak{m} \in \mathbb{Z}, \forall f \in \mathcal{O}(G), \quad \partial_{1}(\lambda_{\mathfrak{m}}f) \coloneqq d\alpha(\frac{\partial}{\partial t})(\lambda_{\mathfrak{m}}f) = \mathfrak{i}\mathfrak{m} \cdot \lambda_{\mathfrak{m}}f;$ since $\mathcal{A}^{G} = \mathcal{O}(G)$, get $\partial_{2} : \mathcal{A}_{\theta} \to \mathcal{A}_{\theta}$ defined by $\forall \mathfrak{m} \in \mathbb{Z}, \forall f \in \mathcal{O}(G), \quad \partial_{2}(\lambda_{\mathfrak{m}}f) \coloneqq \lambda_{\mathfrak{m}}\frac{\partial}{\partial t}f.$

Let $\mathcal{A}_{\theta} \coloneqq \text{Span}\{\lambda_{\mathfrak{m}} \cdot f \mid \mathfrak{m} \in \mathbb{Z}, f \in \mathcal{O}(G)\}.$ Since G acts smoothly on \mathcal{A}_{θ} , get $\partial_1 : \mathcal{A}_{\theta} \to \mathcal{A}_{\theta}$ defined by $\forall \mathfrak{m} \in \mathbb{Z}, \forall \mathfrak{f} \in \mathcal{O}(\mathsf{G}), \quad \partial_1(\lambda_{\mathfrak{m}}\mathfrak{f}) \coloneqq \mathrm{d}\alpha(\frac{\partial}{\partial t})(\lambda_{\mathfrak{m}}\mathfrak{f}) = \mathrm{i}\mathfrak{m} \cdot \lambda_{\mathfrak{m}}\mathfrak{f};$ since $\mathcal{A}^{\mathsf{G}} = \mathcal{O}(\mathsf{G})$, get $\partial_2 : \mathcal{A}_{\theta} \to \mathcal{A}_{\theta}$ defined by $\forall \mathfrak{m} \in \mathbb{Z}, \forall f \in \mathcal{O}(G), \quad \partial_2(\lambda_{\mathfrak{m}} f) \coloneqq \lambda_{\mathfrak{m}} \frac{\partial}{\partial t} f.$ Let $\gamma_1 \coloneqq \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$ and $\gamma_2 \coloneqq \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, let $\Gamma_{\mathbb{C}^2} \coloneqq \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and let $H \coloneqq \mathbb{C}^2 \widehat{\otimes} \mathbb{C}^2 \otimes L^2(A_{\theta}, \tau), \quad U \coloneqq \mathsf{id} \widehat{\otimes} \mathsf{id} \otimes \alpha,$ $\mathsf{D} \coloneqq \mathsf{id} \,\widehat{\otimes} \, 2\pi \, (\gamma_1 \otimes \partial_1 + \gamma_2 \otimes \partial_2) \,.$

 $(\mathcal{A}_{\theta}, H, D, U)$ is a 2-multigraded G-spectral triple for $(\mathcal{A}_{\theta}, \alpha)$.

 $\label{eq:constraint} \begin{array}{l} \mbox{Definition (cf. Dąbrowski–Sitarz, Forsyth–Rennie)} \\ \mbox{A vertical geometry for } (\mathcal{A}, H, D, U) \mbox{ is odd } c(dt) \in B(H)^G, \mbox{ s.t.} \end{array}$

- 1. $c(dt)^* = -c(dt)$ and $c(dt)^2 = -4\pi^2$,
- 2. $[c(dt), \mathbb{Cl}_n] = [c(dt), \mathcal{A}] = \{0\},\$
- 3. $\mu(\frac{\partial}{\partial t}) \coloneqq -\frac{1}{2}[D, \frac{1}{4\pi^2}c(dt)] dU(\frac{\partial}{\partial t}) \in B(H).$

 $\label{eq:constraint} \begin{array}{l} \mbox{Definition (cf. Dąbrowski–Sitarz, Forsyth–Rennie)} \\ \mbox{A vertical geometry for } (\mathcal{A}, H, D, U) \mbox{ is odd } c(dt) \in B(H)^G, \mbox{ s.t.} \end{array}$

- 1. $c(dt)^* = -c(dt)$ and $c(dt)^2 = -4\pi^2$,
- 2. $[c(dt), \mathbb{Cl}_n] = [c(dt), A] = \{0\},\$
- 3. $\mu(\frac{\partial}{\partial t}) \coloneqq -\frac{1}{2}[D, \frac{1}{4\pi^2}c(dt)] dU(\frac{\partial}{\partial t}) \in B(H).$

Its vertical Dirac operator is

 $D_{\nu} \coloneqq c(dt) \, dU(\frac{\partial}{\partial t}).$

 $\label{eq:constraint} \begin{array}{l} \mbox{Definition (cf. Dąbrowski–Sitarz, Forsyth–Rennie)} \\ \mbox{A vertical geometry for } (\mathcal{A}, H, D, U) \mbox{ is odd } c(dt) \in B(H)^G, \mbox{ s.t.} \end{array}$

- 1. $c(dt)^* = -c(dt)$ and $c(dt)^2 = -4\pi^2$,
- 2. $[c(dt), \mathbb{Cl}_n] = [c(dt), \mathcal{A}] = \{0\},\$
- 3. $\mu(\frac{\partial}{\partial t}) \coloneqq -\frac{1}{2}[D, \frac{1}{4\pi^2}c(dt)] dU(\frac{\partial}{\partial t}) \in B(H).$

Its vertical Dirac operator is

 $\mathsf{D}_{\mathsf{v}} \coloneqq \mathsf{c}(\mathsf{d} \mathsf{t}) \, \mathsf{d} \mathsf{U}(\frac{\partial}{\partial \mathsf{t}}).$

We also define $V_1 \mathcal{A} \coloneqq \mathbb{C}l_1 \cdot \mathbb{C}[c(dt)] \cdot \mathcal{A}$ and $V_1 \mathcal{A} \coloneqq \overline{V_1 \mathcal{A}}^{B(H)}$.

Remainders and horizontal Dirac operators

Definition

A remainder for $(\mathcal{A}, H, D, U; c(dt))$ is $Z \in B(H)^G$ odd, s.t.

 $\mathsf{Z}^* = \mathsf{Z}, \quad [\mathsf{Z}, \mathbb{Cl}_n] = \mathsf{O};$

its horizontal Dirac operator is

 $D_h[Z] \coloneqq D - D_v - Z.$

Remainders and horizontal Dirac operators

Definition

A remainder for $(\mathcal{A}, H, D, U; c(dt))$ is $Z \in B(H)^G$ odd, s.t.

 $\mathsf{Z}^* = \mathsf{Z}, \quad [\mathsf{Z}, \mathbb{C} \mathsf{l}_n] = \mathsf{O};$

its horizontal Dirac operator is

$$D_h[Z] \coloneqq D - D_v - Z.$$

Example

The canonical remainder for (A, H, D; U; c(dt)) is

 $Z_{can} \coloneqq c(dt)\mu(\frac{\partial}{\partial t}).$

Recall that $D := id \widehat{\otimes} 2\pi\gamma_1 \otimes \partial_1 + id \widehat{\otimes} 2\pi\gamma_2 \otimes \partial_2$.

Recall that $D \coloneqq \operatorname{id} \widehat{\otimes} 2\pi\gamma_1 \otimes \partial_1 + \operatorname{id} \widehat{\otimes} 2\pi\gamma_2 \otimes \partial_2$. Let $c(\mathrm{dt}) \coloneqq \operatorname{id} \widehat{\otimes} 2\pi\gamma_1 \otimes \mathrm{id}$.

Then c(dt) is a vertical geometry for $(\mathcal{A}_{\theta}, H, D, U)$ with:

- $\mu(\frac{\partial}{\partial t}) = 0;$
- $\cdot \ \mathsf{D}_{\nu} = \mathsf{id} \,\widehat{\otimes} \, 2\pi\gamma_1 \otimes \mathfrak{d}_1;$
- $\cdot \ V_1 \mathcal{A}_{\theta} = \mathbb{C}[\gamma_1] \,\widehat{\otimes} \, \mathbb{C}[\gamma_1] \,\widehat{\otimes} \mathcal{A}_{\theta} \text{ and } V_1 A_{\theta} = \mathbb{C}[\gamma_1] \,\widehat{\otimes} \, \mathbb{C}[\gamma_1] \,\widehat{\otimes} A_{\theta}.$

Recall that $D \coloneqq \operatorname{id} \widehat{\otimes} 2\pi\gamma_1 \otimes \partial_1 + \operatorname{id} \widehat{\otimes} 2\pi\gamma_2 \otimes \partial_2$.

Let $c(dt) \coloneqq id \widehat{\otimes} 2\pi \gamma_1 \otimes id$.

Then c(dt) is a vertical geometry for $(\mathcal{A}_{\theta}, H, D, U)$ with:

- $\mu(\frac{\partial}{\partial t}) = 0;$
- $\cdot \ \mathsf{D}_{\nu} = \mathsf{id} \,\widehat{\otimes} \, 2\pi\gamma_1 \otimes \mathfrak{d}_1;$
- $\cdot \ V_1 \mathcal{A}_{\theta} = \mathbb{C}[\gamma_1] \,\widehat{\otimes} \, \mathbb{C}[\gamma_1] \,\widehat{\otimes} \mathcal{A}_{\theta} \text{ and } V_1 A_{\theta} = \mathbb{C}[\gamma_1] \,\widehat{\otimes} \, \mathbb{C}[\gamma_1] \,\widehat{\otimes} A_{\theta}.$

Moreover:

- $Z_{can} = 0;$
- $D_h[Z_{can}] = \operatorname{id} \widehat{\otimes} 2\pi \gamma_2 \otimes \partial_2.$

Recall that $D \coloneqq \operatorname{id} \widehat{\otimes} 2\pi\gamma_1 \otimes \partial_1 + \operatorname{id} \widehat{\otimes} 2\pi\gamma_2 \otimes \partial_2$.

Let $c(dt) \coloneqq \mathsf{id} \widehat{\otimes} 2\pi \gamma_1 \otimes \mathsf{id}$.

Then c(dt) is a vertical geometry for $(\mathcal{A}_{\theta}, H, D, U)$ with:

- $\mu(\frac{\partial}{\partial t}) = 0;$
- $\cdot \ \mathsf{D}_{\nu} = \mathsf{id} \,\widehat{\otimes} \, 2\pi\gamma_1 \otimes \mathfrak{d}_1;$
- $\cdot \ V_1 \mathcal{A}_{\theta} = \mathbb{C}[\gamma_1] \,\widehat{\otimes} \, \mathbb{C}[\gamma_1] \,\widehat{\otimes} \mathcal{A}_{\theta} \text{ and } V_1 A_{\theta} = \mathbb{C}[\gamma_1] \,\widehat{\otimes} \, \mathbb{C}[\gamma_1] \,\widehat{\otimes} A_{\theta}.$

Moreover:

- $Z_{can} = 0;$
- $\cdot \ D_h[Z_{can}] = \mathsf{id} \,\widehat{\otimes} \, 2\pi\gamma_2 \otimes \mathfrak{d}_2.$

The vertical geometry c(dt) recovers

 $D = D_{\nu} + D_{h}[Z_{can}] + Z_{can} = id \widehat{\otimes} 2\pi\gamma_{1} \otimes \vartheta_{1} + id \widehat{\otimes} 2\pi\gamma_{2} \otimes \vartheta_{2} + 0.$

Principal spectral triples

Definition

If (A, α) is principal, then $(\mathcal{A}, H, D, U; c(dt); Z)$ defines a principal G-spectral triple for (A, α) whenever

 $\mathbf{D}(\mathbf{11})$

1.
$$V_1 A \cdot H^G = H;$$

2.
$$[D_h[Z], \mathcal{A}] \subset \overline{A \cdot [D - Z, \mathcal{A}^G]}^{D(H)};$$

3.
$$[D_h[Z], c(dt)] = 0.$$

Principal spectral triples

Definition

If (A, α) is principal, then $(\mathcal{A}, H, D, U; c(dt); Z)$ defines a principal G-spectral triple for (A, α) whenever

1.
$$V_1 A \cdot H^G = H;$$

2. $[D_h[Z], \mathcal{A}] \subset \overline{A \cdot [D - Z, \mathcal{A}^G]}^{B(H)};$
3. $[D_h[Z], c(dt)] = 0.$

Examples (cf. Brain-Mesland-Van Suijlekom)

1. $(\mathcal{A}_{\theta}, H, D, U; c(dt); 0)$ for $(\mathcal{A}_{\theta}, \alpha)$, where

$$c(dt) \coloneqq id \widehat{\otimes} 2\pi \gamma_1 \otimes id, \quad 0 = Z_{can};$$

2. the canonical spectral triple for $C(S^3_{\theta})$.

Given **n**-multigraded principal (A, H, D, U; c(dt); Z):

Given **n**-multigraded principal (A, H, D, U; c(dt); Z):

 c(dt) encodes orbitwise intrinsic geometry, index theory via the *wrong-way* cycle (cf. Wahl)

 $(\mathcal{A}, \mathsf{E}_1, \mathsf{S}_1, W_1) \coloneqq (\mathcal{A}, \mathsf{L}^2(\mathsf{V}_1 \mathsf{A}, \mathbb{E}_{\mathsf{V}_1 \mathsf{A}^\mathsf{G}}), c(\mathsf{d} t) \mathsf{d} \alpha(\frac{\partial}{\partial t}), \alpha) \in \Psi_1^\mathsf{G};$

Given n-multigraded principal (A, H, D, U; c(dt); Z):

 c(dt) encodes orbitwise intrinsic geometry, index theory via the *wrong-way* cycle (cf. Wahl)

 $(\mathcal{A}, \mathsf{E}_1, \mathsf{S}_1, W_1) \coloneqq (\mathcal{A}, \mathsf{L}^2(\mathsf{V}_1 \mathsf{A}, \mathbb{E}_{\mathsf{V}_1 \mathsf{A}^\mathsf{G}}), c(\mathsf{d} t) \mathsf{d} \alpha(\frac{\partial}{\partial t}), \alpha) \in \Psi_1^\mathsf{G};$

2. $D^{G}[Z] \coloneqq D_{h}[Z]|_{H^{G}}$ encodes basic geometry, index theory via the *basic* spectral triple $(V_{1}A^{G}, H^{G}, D^{G}[Z]) \in \Psi_{n-1}^{G}$;

Given n-multigraded principal (A, H, D, U; c(dt); Z):

 c(dt) encodes orbitwise intrinsic geometry, index theory via the *wrong-way* cycle (cf. Wahl)

 $(\mathcal{A}, \mathsf{E}_1, \mathsf{S}_1, W_1) \coloneqq (\mathcal{A}, \mathsf{L}^2(\mathsf{V}_1\mathsf{A}, \mathbb{E}_{\mathsf{V}_1\mathsf{A}^\mathsf{G}}), \mathsf{c}(\mathsf{d} \mathsf{t})\mathsf{d} \alpha(\frac{\partial}{\partial \mathsf{t}}), \alpha) \in \Psi_1^\mathsf{G};$

- 2. $D^{G}[Z] \coloneqq D_{h}[Z]|_{H^{G}}$ encodes basic geometry, index theory via the *basic* spectral triple $(V_{1}A^{G}, H^{G}, D^{G}[Z]) \in \Psi_{n-1}^{G}$;
- 3. $[D_h[Z], c(dt)] = 0$ encodes orbitwise extrinsic geometry;

Given n-multigraded principal (A, H, D, U; c(dt); Z):

 c(dt) encodes orbitwise intrinsic geometry, index theory via the *wrong-way* cycle (cf. Wahl)

 $(\mathcal{A}, \mathsf{E}_1, \mathsf{S}_1, W_1) \coloneqq (\mathcal{A}, \mathsf{L}^2(\mathsf{V}_1\mathsf{A}, \mathbb{E}_{\mathsf{V}_1\mathsf{A}^\mathsf{G}}), c(\mathrm{d} t)\mathrm{d} \alpha(\frac{\partial}{\partial t}), \alpha) \in \Psi_1^\mathsf{G};$

- 2. $D^{G}[Z] \coloneqq D_{h}[Z]|_{H^{G}}$ encodes basic geometry, index theory via the *basic* spectral triple $(V_{1}A^{G}, H^{G}, D^{G}[Z]) \in \Psi_{n-1}^{G}$;
- 3. $[D_h[Z], c(dt)] = 0$ encodes orbitwise extrinsic geometry;
- 4. $[D_h[Z], \cdot]$ on \mathcal{A} encodes the principal connection.

Given n-multigraded principal (A, H, D, U; c(dt); Z):

 c(dt) encodes orbitwise intrinsic geometry, index theory via the *wrong-way* cycle (cf. Wahl)

 $(\mathcal{A}, \mathsf{E}_1, \mathsf{S}_1, W_1) \coloneqq (\mathcal{A}, \mathsf{L}^2(\mathsf{V}_1 \mathsf{A}, \mathbb{E}_{\mathsf{V}_1 \mathsf{A}^\mathsf{G}}), c(\mathsf{d} t) \mathsf{d} \alpha(\frac{\partial}{\partial t}), \alpha) \in \Psi_1^\mathsf{G};$

- 2. $D^{G}[Z] \coloneqq D_{h}[Z]|_{H^{G}}$ encodes basic geometry, index theory via the *basic* spectral triple $(V_{1}A^{G}, H^{G}, D^{G}[Z]) \in \Psi_{n-1}^{G}$;
- 3. $[D_h[Z], c(dt)] = 0$ encodes orbitwise extrinsic geometry;
- 4. $[D_h[Z], \cdot]$ on \mathcal{A} encodes the principal connection.

Note (cf. Carey–Neshveyev–Nest–Rennie, Arici–Kaad–Landi...) Since G = U(1), the cycle (A, E_1 , S_1) represents the extension class [∂] \in KK₁(A, A^G) of A as a Pimsner algebra.

Synthesis

Theorem

Let (A, H, D, U; c(dt); Z) be a principal G-spectral triple:

1.
$$H\cong E_1\widehat{\otimes}_{V_1A^G}H^G$$
 and $D_\nu=S_1\widehat{\otimes}\,id;$

- [D_h[Z], ·] canonically induces a Hermitian connection ∇[Z] on E₁ s.t. D_h[Z] = id ⊗_{∇[Z]}D^G[Z];
- 3. $[D] = [S_1] \otimes_{V_1A^G} [D^G[Z]]$ in G-equivariant KK-theory.

Synthesis

Theorem

Let (A, H, D, U; c(dt); Z) be a principal G-spectral triple:

1.
$$H\cong E_1\widehat{\otimes}_{V_1A^G}H^G$$
 and $D_\nu=S_1\widehat{\otimes}\,id;$

- [D_h[Z], ·] canonically induces a Hermitian connection ∇[Z] on E₁ s.t. D_h[Z] = id ⊗_{∇[Z]}D^G[Z];
- 3. $[D] = [S_1] \otimes_{V_1 A^G} [D^G[Z]]$ in G-equivariant KK-theory.

Thus, in G-equivariant unbounded KK-theory,

$$\begin{split} (\mathcal{A}, H, D - Z, U) \\ &\cong (\mathcal{A}, E_1, S_1, W_1; \nabla[Z]) \widehat{\otimes}_{V_1 \mathcal{A}^G} (V_1 \mathcal{A}^G, H^G, D^G[Z], id). \end{split}$$

Recall that $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z}$; note that $V_1 A_{\theta}^G \cong M_2(\mathbb{C}) \otimes C(G)$.

Recall that $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z}$; note that $V_1 A_{\theta}^G \cong M_2(\mathbb{C}) \otimes C(G)$.

1. The wrong-way cycle

 $(\mathcal{A}_{\theta}, \mathbb{C}[\gamma_1] \otimes \mathbb{C}[\gamma_1] \otimes L^2(\mathcal{A}_{\theta}, \mathbb{E}_{C(G)}), \text{id} \otimes 2\pi\gamma_1 \otimes \partial_1, \text{id} \otimes \text{id} \otimes \alpha)$ represents the connecting map $K_i(\mathcal{A}_{\theta}) \to K_{i+1}(C(G)).$

14

Recall that $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z}$; note that $V_1 A_{\theta}^G \cong M_2(\mathbb{C}) \otimes C(G)$.

1. The wrong-way cycle

 $(\mathcal{A}_{\theta}, \mathbb{C}[\gamma_1] \widehat{\otimes} \mathbb{C}[\gamma_1] \otimes L^2(A_{\theta}, \mathbb{E}_{C(G)}), \text{id} \widehat{\otimes} 2\pi\gamma_1 \otimes \vartheta_1, \text{id} \widehat{\otimes} \text{id} \otimes \alpha)$

represents the connecting map $K_i(A_\theta) \to K_{i+1}(C(G))$.

2. Up to explicit Morita equivalence, the basic spectral triple

 $(\mathbb{C}[\gamma_1] \widehat{\otimes} \mathbb{C}[\gamma_1] \otimes \mathbb{O}(G), \mathbb{C}^2 \widehat{\otimes} \mathbb{C}^2 \otimes L^2(G), \text{id} \widehat{\otimes} 2\pi\gamma_2 \otimes \frac{\partial}{\partial t})$

recovers the commutative spectral triple for $G = \widehat{A_{\theta}^{G}}$.

Recall that $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z}$; note that $V_1 A_{\theta}^G \cong M_2(\mathbb{C}) \otimes C(G)$.

1. The wrong-way cycle

 $(\mathcal{A}_{\theta}, \mathbb{C}[\gamma_1] \widehat{\otimes} \mathbb{C}[\gamma_1] \otimes L^2(A_{\theta}, \mathbb{E}_{C(G)}), \text{id} \widehat{\otimes} 2\pi\gamma_1 \otimes \vartheta_1, \text{id} \widehat{\otimes} \text{id} \otimes \alpha)$

represents the connecting map $K_i(A_\theta) \to K_{i+1}(C(G))$.

2. Up to explicit Morita equivalence, the basic spectral triple

 $(\mathbb{C}[\gamma_1] \widehat{\otimes} \mathbb{C}[\gamma_1] \otimes \mathbb{O}(G), \mathbb{C}^2 \widehat{\otimes} \mathbb{C}^2 \otimes L^2(G), \mathsf{id} \widehat{\otimes} 2\pi\gamma_2 \otimes \frac{\partial}{\partial t})$

recovers the commutative spectral triple for $G = \widehat{A}_{\theta}^{\widehat{G}}$.

3. $[D_h[0], c(dt)] = 0$ encodes totally geodesic orbits.

Recall that $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z}$; note that $V_1 A_{\theta}^G \cong M_2(\mathbb{C}) \otimes C(G)$.

1. The wrong-way cycle

 $(\mathcal{A}_{\theta}, \mathbb{C}[\gamma_1] \widehat{\otimes} \mathbb{C}[\gamma_1] \otimes L^2(\mathcal{A}_{\theta}, \mathbb{E}_{C(G)}), \text{id} \widehat{\otimes} 2\pi\gamma_1 \otimes \vartheta_1, \text{id} \widehat{\otimes} \text{id} \otimes \alpha)$

represents the connecting map $K_i(A_\theta) \to K_{i+1}(C(G))$.

2. Up to explicit Morita equivalence, the basic spectral triple

 $(\mathbb{C}[\gamma_1] \widehat{\otimes} \mathbb{C}[\gamma_1] \otimes \mathbb{O}(G), \mathbb{C}^2 \widehat{\otimes} \mathbb{C}^2 \otimes L^2(G), \text{id} \widehat{\otimes} 2\pi\gamma_2 \otimes \frac{\partial}{\partial t})$

recovers the commutative spectral triple for $G = \widehat{A_{\theta}^{G}}$.

- 3. $[D_h[0], c(dt)] = 0$ encodes totally geodesic orbits.
- 4. $[D_h[0], \cdot]$ on \mathcal{A}_{θ} gives a horizontal lift of the de Rham calculus on $\mathcal{O}(G) = \mathcal{A}_{\theta}^G$.

But wait, there's more!

Get the space $\mathfrak{A}\mathfrak{t}$ of NC principal connections by varying $D_h[Z]$ while fixing:

- basic geometry and index theory;
- orbitwise extrinsic geometry.

But wait, there's more!

Get the space $\mathfrak{A}\mathfrak{t}$ of NC principal connections by varying $D_h[Z]$ while fixing:

- basic geometry and index theory;
- orbitwise extrinsic geometry.

Get a group $\mathfrak{G}\subset U(H)^G$ of NC gauge transformations acting by conjugation on $\mathfrak{At}.$

But wait, there's more!

Get the space $\mathfrak{A}\mathfrak{t}$ of NC principal connections by varying $D_h[Z]$ while fixing:

- · basic geometry and index theory;
- orbitwise extrinsic geometry.

Get a group $\mathfrak{G} \subset U(H)^G$ of NC gauge transformations acting by conjugation on \mathfrak{At} .

Theorem

- 1. \mathfrak{At} is an affine space;
- 2. \mathfrak{G} acts on \mathfrak{At} by affine transformations;
- 3. $[D_{\nu} + D_{h}[Z]] \in KK_{n}^{G}(A, \mathbb{C})$ is constant in $D_{h}[Z] \in \mathfrak{A}\mathfrak{t}$.

This generalises the commutative case (up to a cocycle).

$A_{\theta}\coloneqq C(G)\rtimes_{\theta}\mathbb{Z} \hookleftarrow C(G)=A_{\theta}^{G} \text{ is a trivial } \mathsf{NC} \text{ principal bundle}.$

 $(\mathcal{A}_{\theta},H,D,U;c(dt);0)$ admits non-trivial NC gauge theory:

 $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z} \leftrightarrow C(G) = A_{\theta}^{G}$ is a trivial NC principal bundle. ($\mathcal{A}_{\theta}, H, D, U; c(dt); 0$) admits non-trivial NC gauge theory:

$$\boldsymbol{\cdot} \; \{ \mathbb{A} \in \overrightarrow{\mathfrak{A}\mathfrak{t}} \mid \mathbb{A}|_{H^G} = 0 \} \cong Z^1 \left(\mathbb{Z}, C(G, \mathbb{R}) \right) \text{ via }$$

 $\mathbb{A} \mapsto \mathfrak{a}, \quad \text{id} \,\widehat{\otimes} \, 2\pi i \gamma_2 \otimes \mathfrak{a} \coloneqq (\mathfrak{m} \mapsto \lambda_{\mathfrak{m}}[\mathbb{A}, \lambda_{\mathfrak{m}}^*]) \,;$

 $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z} \leftrightarrow C(G) = A_{\theta}^{G}$ is a trivial NC principal bundle. ($\mathcal{A}_{\theta}, H, D, U; c(dt); 0$) admits non-trivial NC gauge theory:

•
$$\{ \mathbb{A} \in \overrightarrow{\mathfrak{At}} \mid \mathbb{A}|_{H^G} = 0 \} \cong Z^1(\mathbb{Z}, C(G, \mathbb{R}))$$
 via

 $\mathbb{A} \mapsto \mathfrak{a}, \quad \text{id} \,\widehat{\otimes} \, 2\pi i \gamma_2 \otimes \mathfrak{a} \coloneqq (\mathfrak{m} \mapsto \lambda_\mathfrak{m}[\mathbb{A}, \lambda_\mathfrak{m}^*])\,;$

 $\cdot \ \{ \mathbb{A} \in \overrightarrow{\mathfrak{A} \mathfrak{t}} \mid \mathbb{A}|_{H^{G}} = 0, \ [\mathbb{A}, \cdot] \ inner \} \cong B^{1}(\mathbb{Z}, C(G, \mathbb{R}));$

 $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z} \leftrightarrow C(G) = A_{\theta}^{G}$ is a trivial NC principal bundle. ($\mathcal{A}_{\theta}, H, D, U; c(dt); 0$) admits non-trivial NC gauge theory:

•
$$\{ \mathbb{A} \in \overrightarrow{\mathfrak{At}} \mid \mathbb{A}|_{H^G} = 0 \} \cong Z^1(\mathbb{Z}, C(G, \mathbb{R}))$$
 via

 $\mathbb{A} \mapsto \mathfrak{a}, \quad \text{id} \,\widehat{\otimes} \, 2\pi i \gamma_2 \otimes \mathfrak{a} \coloneqq (\mathfrak{m} \mapsto \lambda_{\mathfrak{m}}[\mathbb{A}, \lambda_{\mathfrak{m}}^*]) \,;$

$$\cdot \ \left\{ \mathbb{A} \in \overrightarrow{\mathfrak{A}t} \mid \left. \mathbb{A} \right|_{H^G} = \mathsf{O}, \ \left[\mathbb{A}, \cdot \right] \ \mathsf{inner} \right\} \cong \mathsf{B}^1 \left(\mathbb{Z}, \mathsf{C}(\mathsf{G}, \mathbb{R}) \right);$$

•
$$\{\mathbb{S} \in \mathfrak{G} \mid \mathbb{S}|_{H^G} = id\} \cong Z^1(\mathbb{Z}, C^1(G, U(1)))$$
 via

$$\mathbb{S}\mapsto\mathfrak{s}\coloneqq(\mathfrak{m}\mapsto\lambda_{\mathfrak{m}}\mathbb{S}\lambda_{\mathfrak{m}}^{*}\mathbb{S}^{*})$$
 ,

with $\mathfrak{s} \triangleright (basepoint + \mathfrak{a}) = basepoint + (\mathfrak{a} + \mathfrak{s}d\mathfrak{s}^*).$

 $A_{\theta} \coloneqq C(G) \rtimes_{\theta} \mathbb{Z} \leftrightarrow C(G) = A_{\theta}^{G}$ is a trivial NC principal bundle. ($\mathcal{A}_{\theta}, H, D, U; c(dt); 0$) admits non-trivial NC gauge theory:

•
$$\{ \mathbb{A} \in \overrightarrow{\mathfrak{At}} \mid \mathbb{A}|_{H^G} = 0 \} \cong Z^1(\mathbb{Z}, C(G, \mathbb{R}))$$
 via

 $\mathbb{A} \mapsto \mathfrak{a}, \quad \text{id} \,\widehat{\otimes} \, 2\pi i \gamma_2 \otimes \mathfrak{a} \coloneqq (\mathfrak{m} \mapsto \lambda_{\mathfrak{m}}[\mathbb{A}, \lambda_{\mathfrak{m}}^*]) \,;$

$$\cdot \ \{\mathbb{A} \in \overrightarrow{\mathfrak{A}t} \mid \mathbb{A}|_{H^{G}} = \mathsf{O}, \ [\mathbb{A}, \cdot] \ \mathsf{inner}\} \cong \mathsf{B}^{1}(\mathbb{Z}, C(\mathsf{G}, \mathbb{R}));$$

:
$$\{\mathbb{S} \in \mathfrak{G} \mid \mathbb{S}|_{H^G} = id\} \cong Z^1(\mathbb{Z}, C^1(G, U(1)))$$
 via

$$\mathbb{S}\mapsto\mathfrak{s}\coloneqq(\mathfrak{m}\mapsto\lambda_{\mathfrak{m}}\mathbb{S}\lambda_{\mathfrak{m}}^{*}\mathbb{S}^{*})$$
 ,

with $\mathfrak{s} \triangleright (basepoint + \mathfrak{a}) = basepoint + (\mathfrak{a} + \mathfrak{s}d\mathfrak{s}^*).$

This NC gauge theory is highly sensitive to the value of θ .