Classical gauge theory on quantum principal bundles

Branimir Ćaćić

October 20, 2021

University of New Brunswick, Fredericton

B. Ć., Classical gauge theory on quantum principal bundles, arXiv:2108.13789

B. Ć. and B. Mesland, Gauge theory on noncommutative Riemannian principal bundles, Commun. Math. Phys., arXiv:1912.04179

Remark

Today, restrict to quantum principal $U_{\kappa}(1)$ -bundles over 2-dimensional NC bases and reformulate definitions to favour transparency over economy out of pure expositional laziness.

We can do everything for structure group H any Hopf *-algebra with any bicovariant *-FODC and any base while truncating all *-DGA at degree 2. The case study

Let $\theta \in \mathbb{R} \setminus \mathbb{Q}$.

The smooth NC 2-torus A_{θ} is the unital *-algebra of rapidly decaying Laurent series in unitaries U_{θ} , V_{θ} , such that

$$V_{\theta}U_{\theta} = e^{2\pi i\theta}U_{\theta}V_{\theta}.$$

 \mathcal{A}_θ is dense and stable under the holomorphic functional calculus in its $C^*\text{-}completion\ A_\theta,$ so that

$$K_0(\mathcal{A}_{\theta}) \cong K_0(\mathcal{A}_{\theta}) \cong \mathbb{Z} + \mathbb{Z}\theta.$$

Define commuting *-derivations $\delta_1, \delta_2 : \mathcal{A}_{\theta} \to \mathcal{A}_{\theta}$ by

$$\delta_1(\mathbf{U}) \coloneqq 2\pi \mathbf{U}, \quad \delta_1(\mathbf{V}) \coloneqq \mathbf{0}, \quad \delta_2(\mathbf{U}) \coloneqq \mathbf{0}, \quad \delta_2(\mathbf{V}) \coloneqq 2\pi \mathbf{V}.$$

Heisenberg modules

Let
$$g \in SL(2, \mathbb{Z}) \setminus \{\pm 1\}$$
, let $\mathcal{E}(g, \theta) \coloneqq S(\mathbb{R}) \otimes \mathbb{C}_{g_{21}}$ with
 $(f \cdot U_{\theta})(x, k) = \exp\left(2\pi i \left(x - \frac{g_{22}k}{g_{21}}\right)\right) f(x, k),$
 $(f \cdot V_{\theta})(x, k) = f\left(x - \frac{g_{21}\theta + g_{22}}{g_{21}}, k - 1\right).$

Theorem (Connes '80)

- 1. $\mathcal{E}(g,\theta)$ is FGP, represents $|g_{21}\theta + g_{22}| \in \mathbb{Z} + \theta\mathbb{Z} \cong K_0(A_{\theta})$.
- 2. $\partial_{g,\theta;1}, \partial_{g,\theta;2} : \mathcal{E}(g,\theta) \to \mathcal{E}(g,\theta)$ defined by

 $\vartheta_{g,\theta;1}f(x,k) \coloneqq -\mathrm{i}f'(x,k), \quad \vartheta_{g,\theta;2}f(x,k) \coloneqq 2\pi \frac{g_{21}}{g_{21}\theta + g_{22}} \mathrm{x}f(x,k)$

satisfy $\partial_{g,\theta;i}(f \cdot b) = \partial_{g,\theta;i}(f) \cdot b + f \cdot \delta_i(b)$ for i = 1, 2 and

$$[\partial_{g,\theta;1},\partial_{g,\theta;2}] = -2\pi i \frac{g_{21}}{g_{21}\theta + g_{22}} \operatorname{id}_{\mathcal{E}(g,\theta)}.$$

Heisenberg bimodules

Let
$$g \triangleright \theta \coloneqq \frac{g_{11}\theta + g_{12}}{g_{21}\theta + g_{22}}$$
, endow $\mathcal{E}(g, \theta)$ with
 $(U_{g \triangleright \theta} \cdot f)(x, k) = \exp\left(2\pi i \left(\frac{x}{g_{21}\theta + g_{22}} - \frac{k}{g_{21}}\right)\right) f(x, k),$
 $(V_{g \triangleright \theta} \cdot f)(x, k) = f\left(x - \frac{1}{g_{21}}, k - g_{11}\right).$

Theorem (Connes '80; Rieffel '81, '83, '88) $\mathcal{E}(g,\theta)$ is an $(\mathcal{A}_{g \triangleright \theta}, \mathcal{A}_{\theta})$ -equivalence bimodule.

Question

If $g \triangleright \theta = \theta$, so that θ is *quadratic*, then $\mathcal{E}(g, \theta)$ is a non-trivial NC line bundle on \mathcal{A}_{θ} .

What is the underlying NC U(1)-gauge theory?

Let $\theta \in \mathbb{R} \setminus \mathbb{Q}$ be quadratic with discriminant Δ , i.e.,

$$\theta = \frac{b + \sqrt{b^2 - 4ac}}{2a}, \quad \Delta \coloneqq b^2 - 4ac$$

for unique $(a, b, c) \in \mathbb{Z}_{\neq 0} \times \mathbb{Z}^2$ with $b^2 - 4ac$ non-square. Let $(u, v) \in \mathbb{N}^2$ be the *fundamental* solution of $x^2 - y^2 \Delta = 4$, i.e.,

$$\forall (s,t) \in \mathbb{N}^2, \quad (s^2 - t^2 \Delta = 4) \implies ((s \geqslant u) \land (t \geqslant v));$$

the norm-positive fundamental unit of $\mathbb{Q}[\theta] = \mathbb{Q}[\Delta]$ is

$$\mathbf{q} \coloneqq \frac{\mathbf{u} + \nu \sqrt{\Delta}}{2} \in (\mathbb{Q}[\mathbf{\theta}] \setminus \mathbb{Q}) \cap (\mathbf{1}, \infty).$$

Line bundles on real multiplication NC tori

Folklore around Pell's equation

Have $\phi : \{g \in \mathsf{SL}(2,\mathbb{Z}) : g \triangleright \theta = \theta\} \xrightarrow{\cong} \langle q \rangle \times \{\pm 1\} < \mathbb{Q}[\theta]^{\times}$, where

 $\phi(g) \coloneqq g_{21}\theta + g_{22}.$

Get a canonical family of NC line bundles $\{P_n\}_{n\in\mathbb{Z}}$ on $\mathcal{A}_\theta,$ where

$$P_n \coloneqq \begin{cases} \mathcal{A}_{\theta}, & \text{if } n = 0, \\ \mathcal{E}(\varphi^{-1}(q^n), \theta), & \text{else.} \end{cases}$$

Idea

Make $P \coloneqq \bigoplus_{n \in \mathbb{Z}} P_n$ into an NC principal U(1)-bundle.

The unital \mathbb{C} -algebra

Step 1 (Schwarz '98, Dieng–Schwarz '02, Polishchuk–Schwarz '03) Make P into a unital algebra, such that for all $m,n\in\mathbb{Z}$

multiplication : $P_m \otimes_{\mathcal{A}_{\theta}} P_n \xrightarrow{\cong} P_{m+n}$.

For
$$n \in \mathbb{Z}$$
, let $\begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \coloneqq \phi^{-1}(q^n)$.
Case 1: if $m = 0$ or $n = 0$, use the \mathcal{A}_{θ} -bimodule structure.
Case 2: if $m \neq 0$ and $n = -m$, for $f \in P_m$ and $g \in P_n$, set
 $f \cdot g \coloneqq \sum_{j,k \in \mathbb{Z}} U^j_{\theta} V^k_{\theta} \sum_{\ell \in \mathbb{Z}_{c_m}} \int_{\mathbb{R}} (V^{-k}_{\theta} U^{-j}_{\theta} \cdot f)(q^{-m}x,\ell)g(x,-a_m\ell)dx.$
Case 3: if $m \neq 0$, $n \neq 0$, $m + n \neq 0$, for $f \in P_m$ and $g \in P_n$, set
 $(f \cdot g)(x,k) \coloneqq \sum_{\ell \in \mathbb{Z}_{c_m}} f(\frac{x}{q^m} + q^n(\frac{d_{m+n}k}{c_{m+n}} - \frac{\ell}{c_m}), a_m d_{m+n}k - \ell)g(x - (\frac{d_{m+n}k}{c_{m+n}} - \frac{\ell}{c_n}), a_n\ell).$

Step 2 (Polishchuk '04, Vlasenko '06)

Make P into a unital *-algebra, such that for all $m\in\mathbb{Z},$

$$\ast(P_{\mathfrak{m}})=P_{-\mathfrak{m}}.$$

Case 1: if m = 0, use the *-structure on \mathcal{A}_{θ} .

Case 2: if $m \neq 0$, for $f \in P_m$, set $f^*(x, k) \coloneqq \overline{f(q^m x, -a_m k)}$.

Step 3

Make P a U(1)-*-algebra with spectral subspaces $\{P_n\}_{n\in\mathbb{Z}}$.

For $n \in \mathbb{Z}$, define the U(1)-action on P_n by $\alpha_z(p) \coloneqq z^n p$.

The principal U(1)-*-algebra

Mathematical bricolage

P is a non-trivial principal U(1)-*-algebra.

Proof.

P is principal since $P_m \cdot P_n = P_{m+n}$ for all $m, n \in \mathbb{Z}$.

P is non-trivial (i.e., not a crossed product by $\mathbb{Z})$ since,

$$[(P_1)_{\mathcal{A}_{\theta}}] = [\mathcal{E}(\varphi^{-1}(q), \theta)_{\mathcal{A}_{\theta}}] = q \neq 1 = [(\mathcal{A}_{\theta})_{\mathcal{A}_{\theta}}]$$

in the ordered Abelian group $K_0(\mathcal{A}_{\theta}) \cong \mathbb{Z} + \mathbb{Z}\theta$.

Question

Are Connes's constant curvature connections on the P_n induced by a single NC principal connection on P?

Horizontal calculi

Let $B \coloneqq {}^{\operatorname{co} \mathcal{O}(\cup(1))}P = P_0 = \mathcal{A}_{\theta}.$

Let Ω_B be the graded *-algebra generated over $B = \Omega_B^0$ by super-central skew-adjoint $d\tau^1, d\tau^2 \in \Omega_B^1$.

Define
$$d_B: \Omega_B \to \Omega_B$$
 by $d_B(d\tau^1) = d_B(d\tau^2) = 0$ and
 $d_B(b) \coloneqq i\delta_1(b) d\tau^1 + i\delta_2(b) d\tau^2$.

Then (Ω_B, d_B) is a *-differential calculus on $B = \mathcal{A}_{\theta}$.

Idea

Lift (Ω_B,d_B) to a U(1)-equivariant *-DGA $(\Omega_{P,hor},d_{P,hor})$ on P, such that, for $n\neq 0,$

$$d_{P,hor}\big|_{P_n} = i\partial_{\varphi^{-1}(q^n),\theta;1}(\cdot) d\tau^1 + i\partial_{\varphi^{-1}(q^n),\theta;2}(\cdot) d\tau^2.$$

Horizontal calculi

Definition (cf. Đurđević '98)

A horizontal calculus on P consists of

- 1. a graded U(1)-*-algebra $\Omega_{P,hor}$ over $P = \Omega_P^0$,
- 2. an extension of $B \hookrightarrow P$ to $\iota : \Omega_B \hookrightarrow \Omega_{P,hor}$,

such that $\Omega_{P,hor} = P \cdot \iota(\Omega_B) \cdot P$ and $(\Omega_{P,hor})^{\cup(1)} = \iota(\Omega_B)$.

Lemma (Beggs–Majid '21) Given that $\Omega_{P,hor} = P \cdot \iota(\Omega_B) \cdot P,$ $\left((\Omega_{P,hor})^{U(1)} = \iota(\Omega_B) \right) \iff \left(\Omega_{P,hor}^1 = P \cdot \iota(\Omega_B^1) \right).$

Gauge potentials

Let $(\Omega_{P,\text{hor}},\iota)$ be a horizontal calculus; identify Ω_B with $\iota(\Omega_B).$

Definition (cf. Đurđević '98)

A prolongable gauge potential on P with respect to $\Omega_{P,hor}$ is a U(1)-equivariant *-derivation ∇ on $\Omega_{P,hor}$, such that

 $\left. \nabla \right|_{B}=d_{B}.$

We denote by $\mathfrak{A}\mathfrak{t}^{pr}$ the set of all prolongable gauge potentials.

Since $_B(\Omega^1_B)$ is free with basis { $d\tau^1, d\tau^2$ }, so too is $_P(\Omega^1_{P,hor})$.

Hence, each $\nabla \in \mathfrak{At}^{pr}$ is determined by the unique U(1)-equivariant maps $D_1, D_2 : P \to P$, such that

$$\forall p \in P, \quad \nabla(p) = iD_1(p)d\tau^1 + iD_2(p)d\tau^2.$$

For i = 1, 2, define $\partial_i : P \to P$ by $\partial_i|_B \coloneqq \delta_i$ and, for $n \neq 0$, $\partial_i|_{P_n} \coloneqq \partial_{\varphi^{-1}(q^n),\theta;i}$.

Given $\varepsilon \in \mathbb{R}^{\times}$, define $\sigma_{\varepsilon} : P \to P$ by $\sigma_{\varepsilon}|_{P_n} \coloneqq \varepsilon^{-n} \operatorname{id}_{P_n}$, so that σ_{ε} is a U(1)-equivariant automorphism with

$$\sigma_{\varepsilon}|_{B} = id_{B}, \quad (\sigma_{\varepsilon} \circ *)^{2} = id, \quad \sigma_{\varepsilon} \circ \vartheta_{1} = \vartheta_{1} \circ \sigma_{\varepsilon}, \quad \sigma_{\varepsilon} \circ \vartheta_{2} = \vartheta_{2} \circ \sigma_{\varepsilon}.$$

Proposition (Polishchuk-Schwarz '03)

The U(1)-equivariant maps $\partial_1, \partial_2 : P \to P$ satisfy, for i = 1, 2,

$$\begin{split} \vartheta_i(p_1\cdot p_2) &= \vartheta_i(p_1)\cdot \sigma_q(p_2) + p_1\cdot \vartheta_i(p_2),\\ & \vartheta_i(p^*) = -\sigma_q(\vartheta_i(p)^*). \end{split}$$

Let $\Omega_{P,hor}$ be the graded U(1)-*-algebra generated over $P = \Omega^0_{P,hor}$ by skew-adjoint $d\tau^1, d\tau^2 \in (\Omega^1_{P,hor})^{U(1)}$ with:

$$\begin{split} \forall p \in P, \quad d\tau^1 \cdot p = \sigma_q(p) \cdot d\tau^1, \quad d\tau^2 \cdot p = \sigma_q(p) \cdot d\tau^2; \\ (d\tau^1)^2 = (d\tau^2)^2 = [d\tau^1, d\tau^2] = 0. \end{split}$$

Then $\Omega_{P,hor}$ is a horizontal calculus for P with respect to Ω_B .

Proposition

There exists unique $abla_0 \in \mathfrak{At}^{pr}$, such that

$$\forall p \in P, \quad \nabla_0(p) = i\partial_1(p) \cdot d\tau^1 + i\partial_2(p) \cdot d\tau^2.$$

Relative gauge potentials

Definition (cf. Đurđević '98)

A prolongable relative gauge potential on P with respect to $\Omega_{P,hor}$ is a U(1)-equivariant *-derivation A on $\Omega_{P,hor}$, s.t.

$$\mathbb{A}|_{\Omega_{B}}=0.$$

We denote by \mathfrak{at}^{pr} the set of all prolongable gauge potentials.

Thus, \mathfrak{At} is an \mathbb{R} -affine space with space of translations \mathfrak{at} . **Proposition**

We have an isomorphism $\psi_{\mathfrak{at}^{pr}}: \mathbb{R}^2 \xrightarrow{\cong} \mathfrak{at}^{pr}$ given by

$$\psi_{\mathfrak{at}}(s_1, s_2) \coloneqq \left[i s_1 d \tau^1 + i s_2 d \tau^2, \cdot \right].$$

Gauge transformations

Definition

A prolongable gauge transformation of P with respect to $\Omega_{P,hor}$ is a U(1)-equivariant *-automorphism f of $\Omega_{P,hor}$, s.t.

$$f|_{\Omega_B} = id_{\Omega_B}.$$

 $\mathfrak{G}^{\mathsf{pr}}$ is the group of all prolongable gauge transformations.

Proposition

We have an isomorphism $\psi_{\mathfrak{G}^{pr}} : U(1) \xrightarrow{\cong} \mathfrak{G}^{pr}$ given by

$$\psi_{\mathfrak{a}\mathfrak{t}}(z)\coloneqq \bigoplus_{n\in\mathbb{Z}} z^n \operatorname{id}_{(\Omega_{P,hor})_n}.$$

Proposition

The group \mathfrak{G}^{pr} acts $\mathbb{R}\text{-affinely}$ on \mathfrak{At}^{pr} by

$$\mathsf{f} \triangleright \nabla \coloneqq \mathsf{f} \circ \nabla \circ \mathsf{f}^{-1}.$$

Corollary

In this case, \mathfrak{G}^{pr} acts trivially on \mathfrak{At}^{pr} .

Remark

Typically (e.g., $P = C^{\infty}(M) \rtimes_{\sigma} \mathbb{Z}$ or $P = C^{\infty}(S^3_{\theta})$), the group \mathfrak{G}^{pr} acts on \mathfrak{At}^{pr} via a non-trivial homomorphism $\mathfrak{G}^{pr} \to \mathfrak{at}^{pr}$.

Total calculi

Preliminaries

Let $\kappa \in (0, \infty)$. For $n \in \mathbb{Z}$, let $[n]_{\kappa} \coloneqq n$ if $\kappa = 1$, otherwise $[n]_{\kappa} \coloneqq \frac{\kappa^n - 1}{\kappa - 1}$. Let $\Lambda_{\kappa} \coloneqq \mathbb{C}[d_{\kappa}t]/\langle (d_{\kappa}t)^2 \rangle$ with $d_{\kappa}t$ skew-adjoint. Given a graded U(1)-*-algebra Ω , let

 $\Lambda_{\kappa} \rtimes \Omega \coloneqq \Lambda_{\kappa} \mathbin{\widehat{\otimes}} \Omega / \langle \mathsf{d}_{\kappa} t \mathbin{\widehat{\otimes}} \omega - (-1)^{|\omega|} \sigma_{\kappa}(\omega) \mathbin{\widehat{\otimes}} \mathsf{d}_{\kappa} t : \omega \in \Omega \rangle$

with $d_{\kappa}t$ defined to be U(1)-invariant.

Definition (cf. Đurđević '97)

The vertical calculus of P w.r.t. $U_{\kappa}(1)$ is the U(1)-equivariant *-DGA ($\Omega_{P,\text{ver};\kappa}, d_{P,\text{ver};\kappa}$), where $\Omega_{P,\text{ver};\kappa} := \Lambda_{\kappa} \rtimes P$ and

 $\forall n \in \mathbb{Z}, \, \forall p \in P_n, \quad d_{P, \text{ver}; \kappa}(p) \coloneqq d_{\kappa} t \cdot 2\pi i [n]_{\kappa} p.$

Quantum principal $\bigcup_{\kappa}(1)$ -bundles

Definition (cf. Brzeziński–Majid '93, Đurđević '97, Beggs–Majid '21) A U(1)-equivariant *-DGA (Ω_P , d_P) on P is κ -principal over (Ω_B , d_B) iff $\Omega_B \hookrightarrow (\Omega_P)^{U(1)}$ and $d_P|_{\Omega_B} = d_B$, and

1. we can define surjective $\text{ver}_{\kappa}[d_P]:\Omega_P\to\Omega_{P,\text{ver};\kappa}$ by

 $\operatorname{ver}_{\kappa}[d_{P}]|_{P} = \operatorname{id}_{P}, \quad \operatorname{ver}_{\kappa}[d_{P}] \circ dP|_{P} = d_{P,\operatorname{ver};\kappa},$

and kerver_{κ}[d_P] = $\Omega_P \cdot \Omega_B^1$;

2. we can define $int_{\kappa}[d_P]: \Omega_p \to \Lambda_{\kappa} \rtimes \Omega_P$ by

 $\operatorname{int}_{\kappa}[d_{P}]|_{P} = \operatorname{id}_{P}, \quad \operatorname{int}_{\kappa}[d_{P}]|_{\Omega_{P}^{1}} = \operatorname{id}_{\Omega_{P}^{1}} + \operatorname{ver}_{\kappa}[d_{P}]|_{\Omega_{P}^{1}},$

and ker(id – int_{κ}[d_P]) = P · Ω _B is a horizontal calculus.

Synthesis of total calculi

We have 2-dim'l (Ω_B, d_B) on B and compatible $\Omega_{P,hor}$ on P.

Definition

We say that $\nabla \in \mathfrak{At}^{pr}$ is κ -adapted whenever there exists $F[\nabla] : \Omega^1_{P, ver; \kappa} \to \Omega^2_{P, hor}$, the curvature 2-form of ∇ , such that

 $\nabla^2 \big|_{\mathbf{P}} = \mathsf{i} \mathsf{F}[\nabla] \circ \mathsf{d}_{\mathsf{P},\mathsf{ver};\kappa} \big|_{\mathbf{P}} \,.$

Let $\mathfrak{At}^{pr}_{\kappa}$ denote the quadric subset of all κ -adapted $\nabla \in \mathfrak{At}^{pr}$.

Theorem

We have $\mathfrak{At}_{\kappa}^{pr} \neq \emptyset$ iff $\kappa = q^2$, in which case $\mathfrak{At}_{q^2}^{pr} = \mathfrak{At}^{pr}$ and

$$\forall \nabla \in \mathfrak{A}\mathfrak{t}^{pr} = \mathfrak{A}\mathfrak{t}^{pr}_{a^2}, \quad F[\nabla](d_{q^2}t) = -iqc_1d\tau^1 \wedge d\tau^2.$$

Synthesis of total calculi

Proposition (cf. Đurđević '10) Let $\nabla \in \mathfrak{At}^{pr}$. Then ∇ is κ -adapted iff the map $P \to \Omega^1_{P \text{ ver};\kappa} \oplus \Omega^1_{P \text{ hor}}, \quad p \mapsto d_{P,\text{ver};\kappa}(p) + \nabla(p)$ extends to a U(1)-equvariant *-derivation $d_{P \nabla \kappa}$ on $\Omega_{P,\oplus;\kappa} \coloneqq \Lambda_{\kappa} \rtimes \Omega_{P \text{ hor}}$ such that $(\Omega_{P,\oplus;\kappa}, d_{P,\nabla;\kappa})$ is an κ -principal *-DGA on P with $\text{ver}[d_{P,\nabla;\kappa}]|_{\Omega^1_{P,\oplus;\kappa}}=\text{Proj}_{\Omega^1_{P,\text{ver};\kappa}}.$

Consequence

We must view P as a quantum principal $U_{q^2}(1)$ -bundle!

Prolongable connections

Definition (cf. Brzeziński–Majid '93, Hajac '96, Đurđević '97) Let (Ω_P, d_P) be an κ -principal *-DGA for P over (Ω_B, d_B) . A *prolongable connection* on (Ω_P, d_P) is a U(1)-equivariant endomorphism Π of $_P(\Omega_P^1)_P$, such that:

1. id_P extends via Π to $\text{ver}_\Pi:\Omega_P\to\Omega_P,$ such that

$$(\operatorname{ver}_{\Pi})^2 = \operatorname{ver}_{\Pi}, \quad \operatorname{ker} \operatorname{ver}_{\Pi} = \operatorname{ker} \operatorname{ver}_{\kappa}[\operatorname{d}_{P}];$$

2. id_P extends via id_ Ω_P^1 – Π to hor $_{\Pi}: \Omega_P \to \Omega_P$, such that

$$(hor_{\Pi})^2 = hor_{\Pi}$$
, ran $hor_{\Pi} = ker int_{\kappa}[d_P]$.

Example

Given $\nabla \in \mathfrak{At}^{pr}$, we have $\Pi_{\oplus} \coloneqq \mathsf{Proj}_{\Omega^1_{P, \mathsf{ver}; \kappa}}$ on $(\Omega_{P, \oplus; \kappa}, \mathsf{d}_{P, \nabla; \kappa})$.

Definition

The prolongable abstract gauge groupoid of P with respect to $U_{\kappa}(1)$ and $\Omega_{P,hor}$ is the groupoid \mathcal{G}_{κ} defined as follows:

1. an object is a U_{κ}(1)-principal *-DGA (Ω_P , d_P) for P over (Ω_B , d_B) admitting a prolongable connection, such that

 $\operatorname{ker}\operatorname{int}_{\kappa}[d_P] = \Omega_{P,\operatorname{hor}};$

2. an arrow from (Ω_1, d_1) to (Ω_2, d_2) is U(1)-equivariant $f: \Omega_1 \xrightarrow{\cong} \Omega_2$, such that $f|_{\Omega_B} = id_{\Omega_B}$ and

 $f\circ d_1=d_2\circ f, \quad (id_{\Lambda^1_H}\otimes f)\circ int_\kappa[d_1]=int_\kappa[d_2]\circ f;$

3. the groupoid law is composition of maps.

A reconstruction theorem

Theorem

Let \mathcal{A}_{κ} be the set of all triples $(\Omega_{P}, d_{P}; \Pi)$, where (Ω_{P}, d_{P}) is an object in \mathcal{G}_{κ} and Π is a prolongable connection on (Ω_{P}, d_{P}) . Then $\Sigma_{\kappa} : \mathfrak{G}^{pr} \ltimes \mathfrak{A}_{\kappa}^{pr} \to \mathcal{G}_{\kappa} \ltimes \mathcal{A}_{\kappa}$ given by

$$(f, \nabla) \mapsto (f : (\Omega_{P, \oplus; \kappa}, \mathsf{d}_{P, \nabla; \kappa}; \Pi_{\oplus}) \mapsto (\Omega_{P, \oplus; \kappa}, \mathsf{d}_{P, f \triangleright \nabla; \kappa}; \Pi_{\oplus}))$$

is an equivalence of groupoids with explicit homotopy inverse.

Corollary

In our case,

$$\mathcal{G}_{\kappa} \ltimes \mathcal{A}_{\kappa} \simeq \mathfrak{G}^{pr} \ltimes \mathfrak{At}_{\kappa}^{pr} \cong \begin{cases} \mathsf{U}(1) \ltimes_{\mathsf{trivial}} \mathbb{R}^2, & \text{if } \kappa = q^2, \\ \emptyset, & \text{else.} \end{cases}$$

Isomorphism of total calculi

Definition

We say that $\mathbb{A} \in \mathfrak{at}^{pr}$ is canonically κ -adapted whenever there exists $\omega[\mathbb{A}] : \Omega^1_{P,\text{ver};\kappa} \to \Omega^1_{P,\text{hor}}$, the relative connection 1-form of \mathbb{A} , such that

$$\mathbb{A}|_{P} = \omega[\nabla] \circ d_{P,\text{ver};\kappa}|_{P} \,, \quad \omega[\nabla] (d_{\kappa}t)^{2} = 0.$$

Let $\mathfrak{al}_{can,\kappa}^{pr}$ be the subset of all canonically κ -adapted $\mathbb{A} \in \mathfrak{al}^{pr}$.

Theorem

We have $\mathfrak{at}_{can,\kappa}^{pr} \neq 0$ iff $\kappa = q$, in which case $\mathfrak{at}_{can,q}^{pr} = \mathfrak{at}^{pr}$ and

$$\forall (s_1,s_2) \in \mathbb{R}^2, \quad \omega \left[\psi_{\mathfrak{a}\mathfrak{t}^{pr}}(s_1,s_2) \right] (\mathsf{d}_q \mathfrak{t}) = - \frac{q-1}{2\pi} (s_1 \mathsf{d} \tau^1 + s_2 \mathsf{d} \tau^2).$$

Let $\mu_{\kappa} : \mathcal{G}_{\kappa} \to \operatorname{Aut}(P)$ be the forgetful map, so that (Ω_1, d_1) , $(\Omega_2, d_2) \in \operatorname{Obj}(\mathcal{G}_{\kappa})$ are isomorphic over id_P as U(1)-equivariant *-DGA over P iff $[(\Omega_1, d_1)] = [(\Omega_2, d_2)]$ in $\mathcal{G}_{\kappa} / \ker \mu_{\kappa}$.

Theorem

The subset $\mathfrak{at}_{can,\kappa}^{pr}$ is a \mathfrak{G}^{pr} -invariant subspace of \mathfrak{at}^{pr} that leaves $\mathfrak{At}_{\kappa}^{pr}$ invariant under translation, and Σ_{κ} descends to

$$\mathfrak{G}^{\mathrm{pr}} \ltimes \mathfrak{A}\mathfrak{t}^{\mathrm{pr}}_{\kappa} / \mathfrak{a}\mathfrak{t}^{\mathrm{pr}}_{\mathsf{can},\kappa} \xrightarrow{\cong} \mathfrak{G}_{\kappa} / \ker \mu_{\kappa}.$$

Corollary

In our case, since
$$\mathfrak{A}\mathfrak{t}_{q^2}^{pr} = \mathfrak{A}\mathfrak{t}^{pr}$$
 and $\mathfrak{a}\mathfrak{t}_{can q^2}^{pr} = 0$,

$$\mathfrak{G}_{q^2}/\ker\mu_{q^2}\cong\mathfrak{G}^{\mathsf{pr}}\ltimes\mathfrak{A}\mathfrak{t}^{\mathsf{pr}}\cong\mathsf{U}(1)\ltimes_{\mathsf{trivial}}\mathbb{R}^2.$$