Classical gauge theory on quantum principal bundles

Branimir Ćaćić

October 20, 2021
University of New Brunswick, Fredericton

Shameless self-promotion

B. Ć., Classical gauge theory on quantum principal bundles, arXiv:2108. 13789
B. Ć. and B. Mesland, Gauge theory on noncommutative Riemannian principal bundles, Commun. Math. Phys., arXiv:1912.04179

Remark

Today, restrict to quantum principal $U_{K}(1)$-bundles over 2-dimensional NC bases and reformulate definitions to favour transparency over economy out of pure expositional laziness.

We can do everything for structure group H any Hopf *-algebra with any bicovariant *-FODC and any base while truncating all *-DGA at degree 2.

The case study

Irrational noncommutative 2-tori

Let $\theta \in \mathbb{R} \backslash \mathbb{Q}$.

The smooth NC 2-torus \mathcal{A}_{θ} is the unital *-algebra of rapidly decaying Laurent series in unitaries $\mathrm{U}_{\theta}, \mathrm{V}_{\theta}$, such that

$$
v_{\theta} u_{\theta}=e^{2 \pi i \theta} u_{\theta} v_{\theta}
$$

\mathcal{A}_{θ} is dense and stable under the holomorphic functional calculus in its C^{*}-completion A_{θ}, so that

$$
K_{0}\left(\mathcal{A}_{\theta}\right) \cong K_{0}\left(A_{\theta}\right) \cong \mathbb{Z}+\mathbb{Z} \theta
$$

Define commuting $*$-derivations $\delta_{1}, \delta_{2}: \mathcal{A}_{\theta} \rightarrow \mathcal{A}_{\theta}$ by

$$
\delta_{1}(\mathrm{U}):=2 \pi \mathrm{U}, \quad \delta_{1}(\mathrm{~V}):=0, \quad \delta_{2}(\mathrm{U}):=0, \quad \delta_{2}(\mathrm{~V}):=2 \pi \mathrm{~V} .
$$

Heisenberg modules

Let $\mathrm{g} \in \mathrm{SL}(2, \mathbb{Z}) \backslash\{ \pm 1\}$, let $\mathcal{E}(\mathrm{g}, \theta):=\mathcal{S}(\mathbb{R}) \otimes \mathbb{C}_{\mathrm{g}_{21}}$ with

$$
\begin{aligned}
& \left(f \cdot U_{\theta}\right)(x, k)=\exp \left(2 \pi i\left(x-\frac{g_{22} k}{g_{21}}\right)\right) f(x, k) \\
& \left(f \cdot V_{\theta}\right)(x, k)=f\left(x-\frac{g_{21} \theta+g_{22}}{g_{21}}, k-1\right)
\end{aligned}
$$

Theorem (Connes '80)

1. $\mathcal{E}(\mathrm{g}, \theta)$ is FGP, represents $\left|g_{21} \theta+g_{22}\right| \in \mathbb{Z}+\theta \mathbb{Z} \cong K_{0}\left(A_{\theta}\right)$.
2. $\partial_{g, \theta ; 1}, \partial_{g, \theta ; 2}: \mathcal{E}(g, \theta) \rightarrow \mathcal{E}(g, \theta)$ defined by

$$
\begin{gathered}
\partial_{g, \theta ; 1} f(x, k):=-i f^{\prime}(x, k), \quad \partial_{g, \theta ; 2} f(x, k):=2 \pi \frac{g_{21}}{g_{21} \theta+g_{22}} x f(x, k) \\
\text { satisfy } \partial_{g, \theta ; i}(f \cdot b)=\partial_{g, \theta ; i}(f) \cdot b+f \cdot \delta_{i}(b) \text { for } i=1,2 \text { and } \\
{\left[\partial_{g, \theta ; 1}, \partial_{g, \theta ; 2}\right]=-2 \pi i \frac{g_{21}}{g_{21} \theta+g_{22}} \text { id } \varepsilon_{\mathcal{g}(g, \theta)} .}
\end{gathered}
$$

Heisenberg bimodules

Let $g \triangleright \theta:=\frac{g_{11} \theta+g_{12}}{g_{21} \theta+g_{22}}$, endow $\mathcal{E}(g, \theta)$ with

$$
\begin{aligned}
& \left(U_{g \triangleright \theta} \cdot f\right)(x, k)=\exp \left(2 \pi i\left(\frac{x}{g_{21} \theta+g_{22}}-\frac{k}{g_{21}}\right)\right) f(x, k), \\
& \left(V_{g \triangleright \theta} \cdot f\right)(x, k)=f\left(x-\frac{1}{g_{21}}, k-g_{11}\right) .
\end{aligned}
$$

Theorem (Connes '80; Rieffel '81, '83, '88)

$\mathcal{E}(\mathrm{g}, \theta)$ is an $\left(\mathcal{A}_{\mathrm{g} \triangleright \theta}, \mathcal{A}_{\theta}\right)$-equivalence bimodule.

Question

If $\mathrm{g} \triangleright \theta=\theta$, so that θ is quadratic, then $\mathcal{E}(\mathrm{g}, \theta)$ is a non-trivial nC line bundle on \mathcal{A}_{θ}.

What is the underlying NC $U(1)$-gauge theory?

Real quadratic irrationalities

Let $\theta \in \mathbb{R} \backslash \mathbb{Q}$ be quadratic with discriminant Δ, i.e.,

$$
\theta=\frac{b+\sqrt{b^{2}-4 a c}}{2 a}, \quad \Delta:=b^{2}-4 a c
$$

for unique $(a, b, c) \in \mathbb{Z}_{\neq 0} \times \mathbb{Z}^{2}$ with $b^{2}-4 a c$ non-square.
Let $(u, v) \in \mathbb{N}^{2}$ be the fundamental solution of $x^{2}-y^{2} \Delta=4$, i.e.,

$$
\forall(s, t) \in \mathbb{N}^{2}, \quad\left(s^{2}-t^{2} \Delta=4\right) \Longrightarrow((s \geqslant u) \wedge(t \geqslant v)) ;
$$

the norm-positive fundamental unit of $\mathbb{Q}[\theta]=\mathbb{Q}[\Delta]$ is

$$
\mathrm{q}:=\frac{u+v \sqrt{\Delta}}{2} \in(\mathbb{Q}[\theta] \backslash \mathbb{Q}) \cap(1, \infty) .
$$

Line bundles on real multiplication NC tori

Folklore around Pell's equation

$$
\text { Have } \phi:\{g \in \operatorname{SL}(2, \mathbb{Z}): g \triangleright \theta=\theta\} \stackrel{\cong}{\rightrightarrows}\langle\mathfrak{q}\rangle \times\{ \pm 1\}<\mathbb{Q}[\theta]^{\times} \text {, where }
$$

$$
\phi(\mathrm{g}):=\mathrm{g}_{21} \theta+\mathrm{g}_{22} .
$$

Get a canonical family of $n c$ line bundles $\left\{\mathrm{P}_{\mathrm{n}}\right\}_{\mathfrak{n} \in \mathbb{Z}}$ on $\mathcal{A}_{\boldsymbol{\theta}}$, where

$$
P_{n}:= \begin{cases}\mathcal{A}_{\theta}, & \text { if } n=0, \\ \mathcal{E}\left(\phi^{-1}\left(q^{n}\right), \theta\right), & \text { else. }\end{cases}
$$

Idea

Make $P:=\bigoplus_{n \in \mathbb{Z}} P_{n}$ into an NC principal U (1)-bundle.

The unital \mathbb{C}-algebra

Step 1 (Schwarz '98, Dieng-Schwarz '02, Polishchuk-Schwarz '03) Make P into a unital algebra, such that for all $m, n \in \mathbb{Z}$ multiplication : $\mathrm{P}_{\mathrm{m}} \otimes_{\mathcal{A}_{\theta}} \mathrm{P}_{\mathrm{n}} \xrightarrow{\cong} \mathrm{P}_{\mathrm{m}+\mathrm{n}}$.

For $n \in \mathbb{Z}$, let $\left(\begin{array}{ll}a_{n} & b_{n} \\ c_{n} & d_{n}\end{array}\right):=\phi^{-1}\left(q^{n}\right)$.
Case 1: if $m=0$ or $n=0$, use the \mathcal{A}_{θ}-bimodule structure.
Case 2: if $m \neq 0$ and $n=-m$, for $f \in P_{m}$ and $g \in P_{n}$, set $f \cdot g:=\sum_{j, k \in \mathbb{Z}} u_{\theta}^{j} V_{\theta}^{k} \sum_{\ell \in \mathbb{Z}_{c m}} \int_{\mathbb{R}}\left(V_{\theta}^{-k} u_{\theta}^{-j} \cdot f\right)\left(q^{-m} x, \ell\right) g\left(x,-a_{m} \ell\right) d x$.

Case 3: if $m \neq 0, n \neq 0, m+n \neq 0$, for $f \in P_{m}$ and $g \in P_{n}$, set $(f \cdot g)(x, k):=\sum_{l \in \mathbb{Z}_{c m}} f\left(\frac{x}{q^{m}}+q^{n}\left(\frac{d_{m+n k}}{c_{m}+n}-\frac{\ell}{c_{m}}\right), a_{m} d_{m+n} k-\ell\right) g\left(x-\left(\frac{d_{m+n} k}{c_{m}+n}-\frac{\ell}{c_{n}}\right), a_{n} \ell\right)$.

The U(1)-*-algebra

Step 2 (Polishchuk '04, Vlasenko '06)

Make P into a unital $*$-algebra, such that for all $m \in \mathbb{Z}$,

$$
*\left(\mathrm{P}_{\mathrm{m}}\right)=\mathrm{P}_{-\mathrm{m}} .
$$

Case 1: if $m=0$, use the $*$-structure on \mathcal{A}_{θ}.
Case 2: if $m \neq 0$, for $f \in P_{m}$, set $f^{*}(x, k):=\overline{f\left(q^{m} x,-a_{m} k\right)}$.

Step 3

Make PaU(1)-*-algebra with spectral subspaces $\left\{\mathrm{P}_{\mathrm{n}}\right\}_{\mathrm{n} \in \mathbb{Z}}$.

For $n \in \mathbb{Z}$, define the $U(1)$-action on P_{n} by $\alpha_{z}(p):=z^{n} p$.

The principal U(1)-*-algebra

Mathematical bricolage

P is a non-trivial principal $U(1)-*$-algebra.

Proof.

P is principal since $P_{m} \cdot P_{n}=P_{m+n}$ for all $m, n \in \mathbb{Z}$.
P is non-trivial (i.e., not a crossed product by \mathbb{Z}) since,

$$
\left[\left(\mathrm{P}_{1}\right)_{\mathcal{A}_{\theta}}\right]=\left[\mathcal{E}\left(\phi^{-1}(\mathrm{q}), \theta\right)_{\mathcal{A}_{\theta}}\right]=\mathrm{q} \neq 1=\left[\left(\mathcal{A}_{\theta}\right)_{\mathcal{A}_{\theta}}\right]
$$

in the ordered Abelian group $\mathrm{K}_{0}\left(\mathcal{A}_{\theta}\right) \cong \mathbb{Z}+\mathbb{Z} \theta$.

Question

Are Connes's constant curvature connections on the P_{n} induced by a single NC principal connection on P?

Horizontal calculi

The basic calculus

Let $\mathrm{B}:={ }^{\operatorname{co} \mathcal{O}(U(1))} \mathrm{P}=\mathrm{P}_{0}=\mathcal{A}_{\theta}$.
Let Ω_{B} be the graded $*$-algebra generated over $B=\Omega_{B}^{0}$ by super-central skew-adjoint $d \tau^{1}, d \tau^{2} \in \Omega_{B}^{1}$.
Define $\mathrm{d}_{\mathrm{B}}: \Omega_{\mathrm{B}} \rightarrow \Omega_{\mathrm{B}}$ by $\mathrm{d}_{\mathrm{B}}\left(\mathrm{d} \tau^{1}\right)=\mathrm{d}_{\mathrm{B}}\left(\mathrm{d} \tau^{2}\right)=0$ and

$$
d_{B}(b):=i \delta_{1}(b) d \tau^{1}+i \delta_{2}(b) d \tau^{2} .
$$

Then $\left(\Omega_{\mathrm{B}}, \mathrm{d}_{\mathrm{B}}\right)$ is a $*$-differential calculus on $\mathrm{B}=\mathcal{A}_{\theta}$.

Idea

Lift $\left(\Omega_{B}, d_{B}\right)$ to a $U(1)$-equivariant $*-D G A\left(\Omega_{P, \text { hor }}, d_{P, \text { hor }}\right)$ on P, such that, for $n \neq 0$,

$$
\left.d_{P, h o r}\right|_{P_{n}}=i \partial_{\phi^{-1}\left(q^{n}\right), \theta ; 1}(\cdot) d \tau^{1}+i \partial_{\phi^{-1}\left(q^{n}\right), \theta ; 2}(\cdot) d \tau^{2} .
$$

Horizontal calculi

Definition (cf. Đurđević '98)

A horizontal calculus on P consists of

1. a graded $U(1)-*$-algebra $\Omega_{P, \text { hor }}$ over $P=\Omega_{P}^{0}$,
2. an extension of $\mathrm{B} \hookrightarrow \mathrm{P}$ to $\iota: \Omega_{\mathrm{B}} \hookrightarrow \Omega_{\mathrm{P}, \text { hor }}$, such that $\Omega_{P, \text { hor }}=P \cdot \iota\left(\Omega_{B}\right) \cdot P$ and $\left(\Omega_{P, \text { hor }}\right)^{U(1)}=\iota\left(\Omega_{B}\right)$.

Lemma (Beggs-Majid '21)
Given that $\Omega_{P, \text { hor }}=P \cdot \imath\left(\Omega_{B}\right) \cdot P$,

$$
\left(\left(\Omega_{\mathrm{P}, \text { hor }}\right)^{U(1)}=\iota\left(\Omega_{\mathrm{B}}\right)\right) \Longleftrightarrow\left(\Omega_{\mathrm{P}, \text { hor }}^{1}=\mathrm{P} \cdot \iota\left(\Omega_{\mathrm{B}}^{1}\right)\right) .
$$

Gauge potentials

Let $\left(\Omega_{P, h o r}, \iota\right)$ be a horizontal calculus; identify Ω_{B} with $\mathfrak{l}\left(\Omega_{B}\right)$.

Definition (cf. Đurđević '98)

A prolongable gauge potential on P with respect to $\Omega_{\mathrm{P}, \mathrm{hor}}$ is a $U(1)$-equivariant $*$-derivation ∇ on $\Omega_{P, \text { hor }}$, such that

$$
\left.\nabla\right|_{\mathrm{B}}=\mathrm{d}_{\mathrm{B}} .
$$

We denote by $\mathfrak{A t}^{\mathrm{pr}}$ the set of all prolongable gauge potentials.
Since ${ }_{B}\left(\Omega_{B}^{1}\right)$ is free with basis $\left\{d \tau^{1}, d \tau^{2}\right\}$, so too is $p\left(\Omega_{p, \text { hor }}^{1}\right)$. Hence, each $\nabla \in \mathfrak{A} t^{\mathfrak{p r}}$ is determined by the unique $\mathrm{U}(1)$-equivariant maps $\mathrm{D}_{1}, \mathrm{D}_{2}: \mathrm{P} \rightarrow \mathrm{P}$, such that

$$
\forall p \in P, \quad \nabla(p)=i D_{1}(p) d \tau^{1}+i D_{2}(p) d \tau^{2}
$$

Horizontal partial derivatives

For $i=1,2$, define $\partial_{i}: P \rightarrow P$ by $\left.\partial_{i}\right|_{B}:=\delta_{i}$ and, for $n \neq 0$,

$$
\left.\partial_{i}\right|_{P_{n}}:=\partial_{\phi^{-1}\left(q^{n}\right), \theta ; i} .
$$

Given $\epsilon \in \mathbb{R}^{\times}$, define $\sigma_{\epsilon}: P \rightarrow P$ by $\left.\sigma_{\epsilon}\right|_{P_{n}}:=\epsilon^{-n}$ id $_{P_{n}}$, so that σ_{ϵ} is a $U(1)$-equivariant automorphism with
$\left.\sigma_{\epsilon}\right|_{\mathrm{B}}=\mathrm{id} \mathrm{B}_{\mathrm{B}}, \quad\left(\sigma_{\epsilon} \circ *\right)^{2}=\mathrm{id}, \quad \sigma_{\epsilon} \circ \partial_{1}=\partial_{1} \circ \sigma_{\epsilon}, \quad \sigma_{\epsilon} \circ \partial_{2}=\partial_{2} \circ \sigma_{\epsilon}$.

Proposition (Polishchuk-Schwarz '03)

The $U(1)$-equivariant maps $\partial_{1}, \partial_{2}: P \rightarrow P$ satisfy, for $\mathfrak{i}=1,2$,

$$
\begin{gathered}
\partial_{i}\left(p_{1} \cdot p_{2}\right)=\partial_{i}\left(p_{1}\right) \cdot \sigma_{q}\left(p_{2}\right)+p_{1} \cdot \partial_{i}\left(p_{2}\right) \\
\partial_{i}\left(p^{*}\right)=-\sigma_{q}\left(\partial_{i}(p)^{*}\right) .
\end{gathered}
$$

The horizontal calculus and horizontal covariant derivative

Let $\Omega_{\text {P,hor }}$ be the graded $U(1)-*$-algebra generated over
$\mathrm{P}=\Omega_{\mathrm{P}, \text { hor }}^{0}$ by skew-adjoint $\mathrm{d} \tau^{1}, \mathrm{~d} \tau^{2} \in\left(\Omega_{\mathrm{P}, \text { hor }}^{1}\right)^{U(1)}$ with:

$$
\begin{gathered}
\forall p \in P, \quad d \tau^{1} \cdot p=\sigma_{q}(p) \cdot d \tau^{1}, \quad d \tau^{2} \cdot p=\sigma_{q}(p) \cdot d \tau^{2} ; \\
\left(d \tau^{1}\right)^{2}=\left(d \tau^{2}\right)^{2}=\left[d \tau^{1}, d \tau^{2}\right]=0 .
\end{gathered}
$$

Then $\Omega_{P, \text { hor }}$ is a horizontal calculus for P with respect to Ω_{B}.

Proposition

There exists unique $\nabla_{0} \in \mathfrak{A t}^{\mathrm{pr}}$, such that

$$
\forall p \in P, \quad \nabla_{0}(p)=i \partial_{1}(p) \cdot d \tau^{1}+i \partial_{2}(p) \cdot d \tau^{2} .
$$

Relative gauge potentials

Definition (cf. Đurđević '98)
A prolongable relative gauge potential on P with respect to
$\Omega_{\mathrm{P}, \text { hor }}$ is a $\mathrm{U}(1)$-equivariant $*$-derivation \mathbb{A} on $\Omega_{\mathrm{P}, \text { hor, }}$ s.t.

$$
\left.\mathbb{A}\right|_{\Omega_{\mathrm{B}}}=0 .
$$

We denote by $\mathfrak{a t}^{\text {pr }}$ the set of all prolongable gauge potentials.
Thus, $\mathfrak{A t}$ is an \mathbb{R}-affine space with space of translations $\mathfrak{a t}$.

Proposition

We have an isomorphism $\psi_{\mathfrak{a f t r}}: \mathbb{R}^{2} \xrightarrow{\cong} \mathfrak{a t}{ }^{\mathrm{pr}}$ given by

$$
\psi_{\mathfrak{a t}}\left(s_{1}, s_{2}\right):=\left[\mathrm{i} s_{1} \mathrm{~d} \tau^{1}+\mathrm{i} \mathrm{~s}_{2} \mathrm{~d} \tau^{2}, \cdot\right] .
$$

Gauge transformations

Definition

A prolongable gauge transformation of P with respect to
$\Omega_{\mathrm{P}, \text { hor }}$ is a $U(1)$-equivariant $*$-automorphism f of $\Omega_{\mathrm{P}, \text { hor, }}$ s.t.

$$
\left.\mathrm{f}\right|_{\Omega_{\mathrm{B}}}=\mathrm{id}_{\Omega_{\mathrm{B}}} .
$$

$\mathfrak{G}^{\text {pr }}$ is the group of all prolongable gauge transformations.

Proposition

We have an isomorphism $\psi_{\mathfrak{G} p r}: U(1) \xrightarrow{\approx} \mathfrak{G}^{\text {pr }}$ given by

$$
\psi_{\mathfrak{a t}}(z):=\bigoplus_{n \in \mathbb{Z}} z^{\mathfrak{n}} \text { id }_{\left(\Omega_{\mathrm{P}, \mathrm{horo}^{\prime}}\right)_{n}}
$$

The gauge action

Proposition

The group $\mathfrak{G}^{\text {pr }}$ acts \mathbb{R}-affinely on $\mathfrak{A t}^{\text {pr }}$ by

$$
f \triangleright \nabla:=f \circ \nabla \circ f^{-1} .
$$

Corollary

In this case, $\mathfrak{G}^{\text {pr }}$ acts trivially on $\mathfrak{A t} t^{\text {pr }}$.

Remark

Typically (e.g., $P=C^{\infty}(M) \rtimes_{\sigma} \mathbb{Z}$ or $P=C^{\infty}\left(S_{\theta}^{3}\right)$), the group $\mathfrak{G}^{p r}$ acts on $\mathfrak{A t}^{\mathrm{pr}}$ via a non-trivial homomorphism $\mathfrak{G}^{\text {pr }} \rightarrow \mathfrak{a t}^{\mathrm{pr}}$.

Total calculi

Preliminaries

Let $\kappa \in(0, \infty)$.
For $n \in \mathbb{Z}$, let $[n]_{\kappa}:=n$ if $\kappa=1$, otherwise $[n]_{\kappa}:=\frac{\kappa^{n}-1}{\kappa-1}$.
Let $\Lambda_{\kappa}:=\mathbb{C}\left[d_{\kappa} t\right] /\left\langle\left(d_{k} t\right)^{2}\right\rangle$ with $d_{\kappa} t$ skew-adjoint.
Given a graded $U(1)-*$-algebra Ω, let

$$
\Lambda_{\kappa} \rtimes \Omega:=\Lambda_{\kappa} \widehat{\otimes} \Omega /\left\langle d_{\kappa} t \widehat{\otimes} \omega-(-1)^{|\omega|} \sigma_{\kappa}(\omega) \widehat{\otimes} d_{\kappa} t: \omega \in \Omega\right\rangle
$$

with $d_{k} t$ defined to be $U(1)$-invariant.

Definition (cf. Đurđević '97)

The vertical calculus of P w.r.t. $U_{K}(1)$ is the $U(1)$-equivariant *-DGA $\left(\Omega_{P, v e r ; \kappa}, d_{P, v e r ; \kappa}\right)$, where $\Omega_{P, v e r ; \kappa}:=\Lambda_{\kappa} \rtimes P$ and

$$
\forall n \in \mathbb{Z}, \forall p \in P_{n}, \quad d_{P_{,}, v e r ; \kappa}(p):=d_{k} t \cdot 2 \pi i[n]_{\kappa} p .
$$

Quantum principal $U_{\kappa}(1)$-bundles

Definition (cf. Brzeziński-Majid '93, Đurđević '97, Beggs-Majid '21) A $\cup(1)$-equivariant $*-D G A\left(\Omega_{P}, d_{P}\right)$ on P is k-principal over $\left(\Omega_{B}, d_{B}\right)$ iff $\Omega_{B} \hookrightarrow\left(\Omega_{P}\right)^{U(1)}$ and $\left.d_{P}\right|_{\Omega_{B}}=d_{B}$, and

1. we can define surjective ver $_{k}\left[d_{p}\right]: \Omega_{P} \rightarrow \Omega_{P, v e r ; k}$ by

$$
\left.\operatorname{ver}_{k}\left[d_{P}\right]\right|_{P}=i d_{P},\left.\quad \operatorname{ver}_{k}\left[d_{p}\right] \circ d P\right|_{P}=d_{P, v e r ; k}
$$

and kerver ${ }_{k}\left[\mathrm{~d}_{\mathrm{P}}\right]=\Omega_{\mathrm{P}} \cdot \Omega_{\mathrm{B}}^{1}$;
2. we can define int ${ }_{k}\left[d_{p}\right]: \Omega_{p} \rightarrow \Lambda_{\kappa} \rtimes \Omega_{P}$ by

$$
\left.\operatorname{int}_{k}\left[d_{p}\right]\right|_{P}=\operatorname{id}_{p},\left.\quad \operatorname{int}_{k}\left[d_{p}\right]\right|_{\Omega_{p}^{1}}=\operatorname{id}_{\Omega_{p}^{1}}+\left.\operatorname{ver}_{k}\left[d_{p}\right]\right|_{\Omega_{p}^{1}}
$$

and $\operatorname{ker}\left(\operatorname{id}-\operatorname{int}_{\kappa}\left[d_{P}\right]\right)=P \cdot \Omega_{B}$ is a horizontal calculus.

Synthesis of total calculi

We have 2-dim'l (Ω_{B}, d_{B}) on B and compatible $\Omega_{P, \text { hor }}$ on P.

Definition

We say that $\nabla \in \mathfrak{A} \mathfrak{t}^{\mathrm{pr}}$ is κ-adapted whenever there exists $F[\nabla]: \Omega_{P, \text { ver; }}^{1} \rightarrow \Omega_{\mathrm{P}, \text { hor }}^{2}$, the curvature 2-form of ∇, such that

$$
\left.\nabla^{2}\right|_{\mathrm{P}}=\left.\mathrm{iF}[\nabla] \circ \mathrm{d}_{\mathrm{P}, \mathrm{ver} ; \mathrm{K}}\right|_{\mathrm{P}} .
$$

Let $\mathfrak{A t}{ }_{k}^{\mathrm{pr}}$ denote the quadric subset of all κ-adapted $\nabla \in \mathfrak{A t}^{\mathrm{pr}}$.

Theorem

We have $\mathfrak{A t}{ }_{k}^{\mathrm{pr}} \neq \emptyset$ iff $\kappa=\mathrm{q}^{2}$, in which case $\mathfrak{A t} \mathrm{q}^{\mathrm{pr}}=\mathfrak{A} \mathfrak{t}^{\mathrm{pr}}$ and

$$
\forall \nabla \in \mathfrak{A t}^{\mathrm{pr}}=\mathfrak{A t}_{\mathrm{q}^{2}}^{\mathrm{pr}}, \quad \mathrm{~F}[\nabla]\left(\mathrm{d}_{\mathrm{q}^{2}} \mathrm{t}\right)=-\mathrm{iqc}_{1} \mathrm{~d} \tau^{1} \wedge \mathrm{~d} \tau^{2} .
$$

Synthesis of total calculi

Proposition (cf. Đurđević '10)

Let $\nabla \in \mathfrak{A t}^{\mathrm{pr}}$. Then ∇ is κ-adapted iff the map

$$
\mathrm{P} \rightarrow \Omega_{\mathrm{P}, \text { ver; } ;}^{1} \oplus \Omega_{\mathrm{P}, \text { hor },}^{1} \quad \mathrm{p} \mapsto \mathrm{~d}_{\mathrm{P}, \text { ver; } ;}(\mathrm{p})+\nabla(\mathrm{p})
$$

extends to a $\mathrm{U}(1)$-equvariant $*$-derivation $\mathrm{d}_{\mathrm{P}, \nabla ; \kappa}$ on

$$
\Omega_{\mathrm{P}, \oplus ; \mathrm{K}}:=\Lambda_{\kappa} \rtimes \Omega_{\mathrm{P}, \text { hor },}
$$

such that $\left(\Omega_{P, \oplus ; \kappa}, d_{P, \nabla ; \kappa}\right)$ is an κ-principal $*-D G A$ on P with

$$
\operatorname{ver}\left[d_{P, \nabla ; k}\right]_{\Omega_{P, \oplus ; k}^{1}}=\operatorname{Proj}_{\Omega_{P, v e r ; k}^{1}} .
$$

Consequence

We must view P as a quantum principal $\mathrm{U}_{\mathrm{q}^{2}}(1)$-bundle!

Prolongable connections

Definition (cf. Brzeziński-Majid '93, Hajac '96, Đurđević '97) Let (Ω_{P}, d_{p}) be an к-principal $*$-DGA for P over $\left(\Omega_{B}, d_{B}\right)$. A prolongable connection on ($\Omega_{\mathrm{P}}, \mathrm{d}_{\mathrm{P}}$) is a $\mathrm{U}(1)$-equivariant endomorphism Π of $p\left(\Omega_{p}^{1}\right)_{p}$, such that:

1. id ${ }_{p}$ extends via Π to ver ${ }_{\Pi}: \Omega_{p} \rightarrow \Omega_{p}$, such that

$$
\left(\operatorname{ver}_{\Pi}\right)^{2}=\text { ver }_{\Pi}, \quad \text { kerver }_{\Pi}=\operatorname{kerver}_{\kappa}\left[d_{p}\right] ;
$$

2. id $_{p}$ extends via id $\Omega_{p}^{1}-\Pi$ to hor $r_{\Pi}: \Omega_{p} \rightarrow \Omega_{p}$, such that

$$
\left(\text { hor }_{\Pi}\right)^{2}=\text { hor }_{\Pi}, \quad \operatorname{ranhor}{ }_{\Pi}=\operatorname{kerint}_{\kappa}\left[d_{p}\right] .
$$

Example

Given $\nabla \in \mathfrak{A} t^{\mathrm{pr}}$, we have $\Pi_{\oplus}:=\operatorname{Proj}_{\Omega_{\mathrm{p}, \text { ver; }}^{1}}$ on $\left(\Omega_{\mathrm{P}, \oplus ; \mathrm{K}}, \mathrm{d}_{\mathrm{P}, \nabla ; \mathrm{K}}\right)$.

The abstract gauge groupoid

Definition

The prolongable abstract gauge groupoid of P with respect to $U_{K}(1)$ and $\Omega_{P, h o r}$ is the groupoid \mathcal{G}_{K} defined as follows:

1. an object is a $U_{K}(1)$-principal $*-D G A\left(\Omega_{P}, d_{P}\right)$ for P over $\left(\Omega_{B}, d_{B}\right)$ admitting a prolongable connection, such that

$$
\operatorname{kerint}_{\mathrm{k}}\left[\mathrm{~d}_{\mathrm{P}}\right]=\Omega_{\mathrm{P}, \text { hor; }}
$$

2. an arrow from $\left(\Omega_{1}, d_{1}\right)$ to $\left(\Omega_{2}, d_{2}\right)$ is $U(1)$-equivariant $\mathrm{f}: \Omega_{1} \xlongequal{\rightrightarrows} \Omega_{2}$, such that $\left.\mathrm{f}\right|_{\Omega_{\mathrm{B}}}=\mathrm{id} \Omega_{\mathrm{B}}$ and

$$
f \circ \mathrm{~d}_{1}=\mathrm{d}_{2} \circ \mathrm{f}, \quad\left(\mathrm{id}_{\Lambda_{\mathrm{H}}^{1}} \otimes \mathrm{f}\right) \circ \operatorname{int}_{\kappa}\left[\mathrm{d}_{1}\right]=\operatorname{int}_{\kappa}\left[\mathrm{d}_{2}\right] \circ \mathrm{f} ;
$$

3. the groupoid law is composition of maps.

A reconstruction theorem

Theorem

Let \mathcal{A}_{k} be the set of all triples ($\Omega_{p}, d_{p} ; \Pi$), where $\left(\Omega_{p}, d_{p}\right)$ is an object in \mathcal{G}_{κ} and Π is a prolongable connection on $\left(\Omega_{\mathrm{p}}, \mathrm{d}_{\mathrm{p}}\right)$. Then $\Sigma_{\mathrm{k}}: \mathfrak{G}^{\mathrm{pr}} \ltimes \mathfrak{A l}_{\mathrm{k}}^{\mathrm{pr}} \rightarrow \mathcal{G}_{\mathrm{k}} \ltimes \mathcal{A}_{\mathrm{k}}$ given by

$$
(\mathrm{f}, \nabla) \mapsto\left(\mathrm{f}:\left(\Omega_{\mathrm{P}, \oplus ; \mathrm{K}}, \mathrm{~d}_{\mathrm{P}, \nabla ; \kappa} ; \Pi_{\oplus}\right) \mapsto\left(\Omega_{\mathrm{P}, \oplus ; \mathrm{k}}, \mathrm{~d}_{\mathrm{p}, f \triangleright \nabla ; \kappa} ; \Pi_{\oplus}\right)\right)
$$

is an equivalence of groupoids with explicit homotopy inverse.

Corollary

In our case,

$$
\mathcal{G}_{\kappa} \ltimes \mathcal{A}_{\kappa} \simeq \mathfrak{G}^{\text {pr }} \ltimes \mathfrak{A}_{\mathrm{k}}^{\text {pr }} \simeq \begin{cases}U(1) \ltimes_{\text {trivial }} \mathbb{R}^{2}, & \text { if } \mathrm{k}=\mathrm{q}^{2}, \\ \emptyset, & \text { else. } .\end{cases}
$$

Isomorphism of total calculi

Definition

We say that $\mathbb{A} \in \mathfrak{a t}^{\mathrm{pr}}$ is canonically k -adapted whenever there exists $\omega[\mathbb{A}]: \Omega_{\mathrm{P}, \text { ver; } ;}^{1} \rightarrow \Omega_{\mathrm{P}, \text { hor }}^{1}$, the relative connection 1-form of \mathbb{A}, such that

$$
\left.\mathbb{A}\right|_{P}=\left.\omega[\nabla] \circ d_{P, v e r ; k}\right|_{P}, \quad \omega[\nabla]\left(d_{k} t\right)^{2}=0
$$

Let $\mathfrak{a t}{ }_{c}^{\mathrm{pr}}{ }^{\mathrm{pr}, \kappa}$, be the subset of all canonically κ-adapted $\mathbb{A} \in \mathfrak{a t}^{\mathrm{pr}}$.

Theorem

We have $\mathfrak{a t}_{c a n, \kappa}^{p r} \neq 0$ iff $\kappa=q$, in which case $\mathfrak{a t}_{c a n, q}^{p r}=\mathfrak{a t}^{p r}$ and

$$
\forall\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}, \quad \omega\left[\psi_{\mathfrak{a} t} \operatorname{tpr}^{\mathrm{r}}\left(\mathrm{~s}_{1}, s_{2}\right)\right]\left(\mathrm{d}_{\mathrm{q}} \mathrm{t}\right)=-\frac{\mathrm{q}-1}{2 \pi}\left(\mathrm{~s}_{1} \mathrm{~d} \tau^{1}+\mathrm{s}_{2} \mathrm{~d} \tau^{2}\right)
$$

Isomorphism of total calculi

Let $\mu_{\kappa}: \mathcal{G}_{\kappa} \rightarrow \operatorname{Aut}(P)$ be the forgetful map, so that $\left(\Omega_{1}, d_{1}\right)$, $\left(\Omega_{2}, d_{2}\right) \in \operatorname{Obj}\left(\mathcal{G}_{K}\right)$ are isomorphic over id ${ }_{p}$ as $U(1)$-equivariant *-DGA over P iff $\left[\left(\Omega_{1}, d_{1}\right)\right]=\left[\left(\Omega_{2}, d_{2}\right)\right]$ in $\mathcal{G}_{\kappa} / \operatorname{ker} \mu_{\kappa}$.

Theorem

The subset $\mathfrak{a t}_{c a n, \kappa}^{\mathrm{pr}}$ is a $\mathfrak{G}^{\mathrm{pr}}$-invariant subspace of $\mathfrak{a t}^{\mathrm{pr}}$ that leaves $\mathfrak{A} t_{\kappa}^{p r}$ invariant under translation, and Σ_{κ} descends to

$$
\mathfrak{G}^{\mathrm{pr}} \ltimes \mathfrak{A t}_{\mathrm{k}}^{\mathrm{pr}} / \mathfrak{a t}_{\mathrm{can}, \mathrm{~K}}^{\mathrm{pr}} \stackrel{\cong}{\Longrightarrow} \mathcal{G}_{\mathrm{K}} / \operatorname{ker} \mu_{\mathrm{\kappa}} .
$$

Corollary

In our case, since $\mathfrak{A t}_{\mathrm{q}^{2}}^{\mathrm{pr}}=\mathfrak{A} \mathfrak{t}^{\mathrm{pr}}$ and $\mathfrak{a t}_{\mathrm{can}, \mathfrak{q}^{2}}^{\mathrm{pr}}=0$,

$$
\mathcal{G}_{\mathrm{q}^{2}} / \operatorname{ker} \mu_{\mathrm{q}^{2}} \cong \mathfrak{G}^{\mathrm{pr}} \ltimes \mathfrak{A t}^{\mathrm{pr}} \cong \mathrm{U}(1) \ltimes_{\text {trivial }} \mathbb{R}^{2} .
$$

