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Note
Today, we specialise to unital NC principal U(1)-bundles with
totally geodesic orbits of unit length.
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Basic setup

Let G = U(1), so that:

• dµ(z) := 1
2πi

dz
z
is the normalised Haar measure;

• g∗ = Rdt for dt := −idz
z
and g = R ∂

∂t
for (dt, ∂

∂t
) := 1.

Thus, a unital G-C∗-algebra (A,α) is principal iff

∀n ∈ Z, A∗
n ·An = AG, An := {a ∈ A | ∀z ∈ G, αz(a) = zna},

in which case A←↩ AG is a NC topological principal G-bundle.

Example
The trivial case A = AG ⋊ Z←↩ AG, where Z ∼= Ĝ.

Example (Matsumoto, cf. Brzeziński–Sitarz)
The θ-deformed C-Hopf fibration C(S3θ)←↩ C(S

3
θ)

G ∼= C(S2).
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Equivariant spectral triples

Let (A,α) be a unital sep’ble G-C∗-algebra. Let n ⩾ 1 = dimG.

An n-multigraded G-spectral triple for (A,α) is (A,H,D,U):

1. (H,U) is a faithful Z2-graded covariant ∗-representation
of (Cln⊗̂A, id ⊗̂α);

2. D is an odd G-invariant self-adjoint operator on H s.t.

(D+ i)−1 ∈ K(H), [D,Cln] = {0}, Dom(D) ⊂ C1(H,U);

3. A ⊂ A is a dense G-invariant ∗-subalgebra s.t.

A ⊂ C1(A,α), O(G) ∗A ⊆ A, [D,A] ⊂ B(H).

Example
(O(G),L2(G)⊕2, ( 0 −1

1 0 ) ∂
∂t
, translation) for (C(G), translation).
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What are they good for?

The G-spectral triple (A,H,D,U) encodes the following:

1. first-order (de Rham) differential calculus via

A 3 a 7→ [D,a] =: c(da);

2. spectral geometry (e.g., dimension, volume, measure) via

(0,+∞) 3 t 7→ exp(−tD2) ∈ L1(H) (ideally);

3. index theory (i.e., NC algebraic topology) via

[D] ∈ KKG
n (A,C).

Points 1 and 2 hint at possibilities for NC gauge theory.
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Vertical geometries and vertical Dirac operators

Definition (cf. Dąbrowski–Sitarz, Forsyth–Rennie)
A vertical geometry for (A,H,D,U) is odd c(dt) ∈ B(H)G, s.t.

1. c(dt)∗ = −c(dt) and c(dt)2 = −4π2,
2. [c(dt),Cln] = [c(dt),A] = {0},
3. µ( ∂

∂t
) := − 1

2 [D,
1
4π2 c(dt)] − dU( ∂

∂t
) ∈ B(H).

Its vertical Dirac operator is

Dv := c(dt)dU( ∂
∂t

).

We also define V1A := Cl1·C[c(dt)] ·A and V1A := V1A
B(H).
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Remainders and horizontal Dirac operators

Definition
A remainder for (A,H,D,U; c(dt)) is Z ∈ B(H)G odd, s.t.

Z∗ = Z, [Z,Cln] = 0.

Its horizontal Dirac operator is

Dh[Z] := D−Dv − Z.

Example
The canonical remainder for (A,H,D;U; c(dt)) is

Zcan := c(dt)µ( ∂
∂t

).
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Principal spectral triples

Definition
If (A,α) is principal, then (A,H,D,U; c(dt);Z) defines a
principal G-spectral triple for (A,α) whenever

1. ∀n ∈ Z, (V1A)n ·HG = Hn,
2. {ω ∈ V1A | ω|HG = 0} = {0},

3. [Dh[Z],A] ⊂ A · [D− Z,AG]
B(H)

,
4. [Dh[Z], c(dt)] = 0.

Examples (cf. Brain–Mesland–Van Suijlekom)

1. The canonical spectral triple for C(T2θ) ∼= C(T)⋊θ Z.
2. The canonical spectral triple for C(S3θ).
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Analysis

Given a principal G-spectral triple (A,H,D,U; c(dt);Z):

1. c(dt) encodes orbitwise intrinsic geometry and index
theory via the wrong-way cycle (cf. Wahl)

(A,E1,S1,V1) := (A,L2(V1A,EV1AG), c(dt)dα( ∂
∂t

),α);

2. DG[Z] := Dh[Z]|HG encodes basic geometry and index
theory via (V1AG,HG,DG[Z]);

3. [Dh[Z], ·] encodes orbitwise extrinsic geometry and the
principal connection.

Note (cf. Carey–Neshveyev–Nest–Rennie, Arici–Kaad–Landi…)
Since G = U(1), the cycle (A,Eρ,Sρ) represents the extension
class [∂] ∈ KK1(A,AG) of A as a Pimsner algebra.
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Synthesis

Theorem
Let (A,H,D,U; c(dt);Z) be a principal G-spectral triple:

1. H ∼= E1⊗̂V1AGHG and Dv = S1⊗̂ id;
2. [Dh[Z], ·] canonically induces a Hermitian connection ∇[Z]
on E1 s.t. Dh[Z] = id ⊗̂∇[Z]D

G[Z];
3. [D] = [S1]⊗V1AG [DG[Z]] in G-equivariant KK-theory.

Thus, in G-equivariant unbounded KK-theory,

(A,H,D− Z,U)

∼= (A,E1,S1,V1;∇[Z])⊗̂V1AG(V1A
G,HG,DG[Z], id).
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Gauge potentials

Fix a principal G-sp. tr. (A,H,D0,U; c(dt); 0) for (A,α).

Definition
A gauge potential is an operator D on H s.t.

1. (A,H,D,U; c(dt); 0) is a principal G-sp. tr. for (A,α),
2. (D−D0)(Dv + i)−1 ∈ B(H),
3. [D−D0,AG] = {0} and [D−D0, c(dt)] = 0.

Let At be the set of all gauge potentials.

It follows that for all D,D′ ∈ At,

[D] = [S1]⊗̂V1AG [DG[0]] = [S1]⊗̂V1AG [(D′)G[0]] = [D′].
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Relative gauge potentials

Definition
A relative gauge potential is an odd operator A on H, s.t.

1. for some (and hence every) D ∈ At, we have

[A,A] ⊂ A · [D,AG]
B(H)

,

2. A(Dv + i)−1 ∈ B(H),
3. [A,Cln] = [A,AG] = {0} and [A, c(dt)] = 0;

let at be the R-vector space of all relative gauge potentials.

Thus, for all D1,D2 ∈ At, we have D1 −D2 ∈ at.
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Gauge transformations

Definition
A gauge transformation is S ∈ U(H)G even, s.t.

1. SAS∗ ⊆ A,
2. [S,Cln] = [S,AG] = {0} and [S, c(dt)] = 0,
3. for some (and hence every) D ∈ At, we have S[D, S∗] ∈ at;

let G be the group of all gauge transformations.

We can now define the gauge action of G on At by

∀S ∈ G, ∀D ∈ At, S .D := SDS∗ ∈ At

and the gauge action of G on at by

∀S ∈ G, ∀A ∈ at, S . A := SAS∗ ∈ at.
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A punchline of sorts

Theorem
1. At is a R-affine space with space of translations at.
2. The gauge action of G on At is affine with linear part the
gauge action of G on at.

Example
The commutative case (up to an explicit groupoid cocycle).

Example
For the canonical spectral triple on C(T)⋊θ Z ∼= C(T2θ),

{A ∈ at | A|HG = 0} ∼= Z1 (Z,C(T,R)) ,
{S ∈ G | S|HG = id} ∼= Z1

(
Z,C1(T,U(1))

)
,

with s . (basepoint+ a) = basepoint+ (a + sds∗).
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