Gauge theory on NC principal bundles

Branimir Ćaćić

$48^{\text {th }}$ Canadian Operator Symposium, Fields Institute
University of New Brunswick, Fredericton

Shameless self-promotion

References

B. Ć. and B. Mesland, Gauge theory on noncommutative Riemannian principal bundles, arXiv:1912.04179
B. Ć., Non-trivial gauge theory on cleft quantum principal bundles, (in preparation)

Shameless self-promotion

References

B. Ć. and B. Mesland, Gauge theory on noncommutative Riemannian principal bundles, arXiv:1912.04179
B. Ć., Non-trivial gauge theory on cleft quantum principal bundles, (in preparation)

Note

Today, we specialise to unital NC principal U(1)-bundles with totally geodesic orbits of unit length.

Basic setup

Let $G=U(1)$, so that:

- $\mathrm{d} \mu(z):=\frac{1}{2 \pi i} \frac{\mathrm{~d} z}{z}$ is the normalised Haar measure;
- $\mathfrak{g}^{*}=\mathbb{R} d t$ for $d t:=-i \frac{d z}{z}$ and $\mathfrak{g}=\mathbb{R} \frac{\partial}{\partial t}$ for $\left(d t, \frac{\partial}{\partial t}\right):=1$.

Thus, a unital G-C*-algebra (A, α) is principal iff
$\forall n \in \mathbb{Z}, \quad \overline{A_{n}^{*} \cdot A_{n}}=A^{G}, \quad A_{n}:=\left\{a \in A \mid \forall z \in G, \alpha_{z}(a)=z^{n} a\right\}$, in which case $A \hookleftarrow A^{G}$ is a Nc topological principal G-bundle.

Basic setup

Let $G=U(1)$, so that:

- $\mathrm{d} \mu(z):=\frac{1}{2 \pi i} \frac{\mathrm{~d} z}{z}$ is the normalised Haar measure;
- $\mathfrak{g}^{*}=\mathbb{R} d t$ for $d t:=-i \frac{d z}{z}$ and $\mathfrak{g}=\mathbb{R} \frac{\partial}{\partial t}$ for $\left(d t, \frac{\partial}{\partial t}\right):=1$.

Thus, a unital G-C*-algebra (A, α) is principal iff
$\forall n \in \mathbb{Z}, \quad \overline{A_{n}^{*} \cdot A_{n}}=A^{G}, \quad A_{n}:=\left\{a \in A \mid \forall z \in G, \alpha_{z}(a)=z^{n} a\right\}$,
in which case $A \hookleftarrow A^{G}$ is a Nc topological principal G-bundle.

Example

The trivial case $A=A^{G} \rtimes \mathbb{Z} \hookleftarrow A^{G}$, where $\mathbb{Z} \cong \widehat{G}$.
Example (Matsumoto, cf. Brzeziński-Sitarz)
The θ-deformed \mathbb{C}-Hopf fibration $C\left(S_{\theta}^{3}\right) \hookleftarrow C\left(S_{\theta}^{3}\right)^{G} \cong C\left(S^{2}\right)$.

Equivariant spectral triples

Let (A, α) be a unital sep'ble G-C*-algebra. Let $n \geqslant 1=\operatorname{dim} G$.
An n-multigraded G-spectral triple for (\mathcal{A}, α) is $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$:

1. (H, U) is a faithful \mathbb{Z}_{2}-graded covariant $*$-representation of $\left(\mathbb{C} l_{n} \widehat{\otimes} A\right.$, id $\left.\widehat{\otimes} \alpha\right)$;
2. D is an odd G -invariant self-adjoint operator on H s.t.

$$
(D+i)^{-1} \in K(H), \quad\left[D, C l_{n}\right]=\{0\}, \quad \operatorname{Dom}(D) \subset C^{1}(H, U) ;
$$

3. $\mathcal{A} \subset \mathcal{A}$ is a dense G-invariant $*$-subalgebra s.t.

$$
\mathcal{A} \subset \mathrm{C}^{1}(\mathrm{~A}, \alpha), \quad \mathcal{O}(\mathrm{G}) * \mathcal{A} \subseteq \mathcal{A}, \quad[\mathrm{D}, \mathcal{A}] \subset \mathrm{B}(\mathrm{H})
$$

Equivariant spectral triples

Let (\mathcal{A}, α) be a unital sep'ble G-C*-algebra. Let $n \geqslant 1=\operatorname{dim} G$.
An n-multigraded G-spectral triple for (A, α) is $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$:

1. (H, U) is a faithful \mathbb{Z}_{2}-graded covariant *-representation of $\left(\mathbb{C} l_{n} \widehat{\otimes} \boldsymbol{A}\right.$, id $\left.\widehat{\otimes} \boldsymbol{\alpha}\right)$;
2. D is an odd G -invariant self-adjoint operator on H s.t.

$$
(\mathrm{D}+\mathfrak{i})^{-1} \in K(H), \quad\left[\mathrm{D}, \mathbb{C} l_{n}\right]=\{0\}, \quad \operatorname{Dom}(\mathrm{D}) \subset \mathrm{C}^{1}(\mathrm{H}, \mathrm{U}) ;
$$

3. $\mathcal{A} \subset A$ is a dense G-invariant $*$-subalgebra s.t.

$$
\mathcal{A} \subset \mathrm{C}^{1}(\mathrm{~A}, \alpha), \quad \mathcal{O}(\mathrm{G}) * \mathcal{A} \subseteq \mathcal{A}, \quad[\mathrm{D}, \mathcal{A}] \subset \mathrm{B}(\mathrm{H})
$$

Example

$\left(\mathcal{O}(G), L^{2}(G)\right)^{\oplus 2},\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \frac{\partial}{\partial \mathrm{t}}$, translation) for $(\mathrm{C}(\mathrm{G})$, translation).

What are they good for?

The G-spectral triple ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ encodes the following:

What are they good for?

The G-spectral triple ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ encodes the following:

1. first-order (de Rham) differential calculus via

$$
\mathcal{A} \ni a \mapsto[\mathrm{D}, \mathrm{a}]=\mathrm{c}(\mathrm{da}) ;
$$

What are they good for?

The G-spectral triple ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ encodes the following:

1. first-order (de Rham) differential calculus via

$$
\mathcal{A} \ni a \mapsto[D, a]=c(d a) ;
$$

2. spectral geometry (e.g., dimension, volume, measure) via

$$
(0,+\infty) \ni t \mapsto \exp \left(-t D^{2}\right) \in \mathcal{L}_{1}(H) \quad \text { (ideally); }
$$

What are they good for?

The G-spectral triple ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ encodes the following:

1. first-order (de Rham) differential calculus via

$$
\mathcal{A} \ni a \mapsto[D, a]=c(d a) ;
$$

2. spectral geometry (e.g., dimension, volume, measure) via

$$
(0,+\infty) \ni \mathrm{t} \mapsto \exp \left(-\mathrm{tD}^{2}\right) \in \mathcal{L}_{1}(\mathrm{H}) \quad \text { (ideally); }
$$

3. index theory (i.e., NC algebraic topology) via

$$
[\mathrm{D}] \in \mathrm{KK}_{n}^{\mathrm{G}}(\mathrm{~A}, \mathbb{C})
$$

What are they good for?

The G-spectral triple ($\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ encodes the following:

1. first-order (de Rham) differential calculus via

$$
\mathcal{A} \ni a \mapsto[D, a]=c(d a) ;
$$

2. spectral geometry (e.g., dimension, volume, measure) via

$$
(0,+\infty) \ni \mathrm{t} \mapsto \exp \left(-\mathrm{tD}^{2}\right) \in \mathcal{L}_{1}(\mathrm{H}) \quad \text { (ideally); }
$$

3. index theory (i.e., NC algebraic topology) via

$$
[\mathrm{D}] \in \mathrm{KK}_{n}^{\mathrm{G}}(\mathrm{~A}, \mathbb{C})
$$

Points 1 and 2 hint at possibilities for NC gauge theory.

Vertical geometries and vertical Dirac operators

Definition (cf. Dąbrowski-Sitarz, Forsyth-Rennie)
A vertical geometry for $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ is odd $\mathrm{c}(\mathrm{dt}) \in \mathrm{B}(\mathrm{H})^{\mathrm{G}}$, s.t.

1. $c(d t)^{*}=-c(d t)$ and $c(d t)^{2}=-4 \pi^{2}$,
2. $\left[c(d t), \mathbb{C} l_{n}\right]=[c(d t), \mathcal{A}]=\{0\}$,
3. $\mu\left(\frac{\partial}{\partial t}\right):=-\frac{1}{2}\left[D, \frac{1}{4 \pi^{2}} c(d t)\right]-d U\left(\frac{\partial}{\partial t}\right) \in B(H)$.

Vertical geometries and vertical Dirac operators

Definition (cf. Dąbrowski-Sitarz, Forsyth-Rennie)
A vertical geometry for $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ is odd $\mathrm{c}(\mathrm{dt}) \in \mathrm{B}(\mathrm{H})^{\mathrm{G}}$, s.t.

1. $c(d t)^{*}=-c(d t)$ and $c(d t)^{2}=-4 \pi^{2}$,
2. $\left[c(d t), \mathbb{C} l_{n}\right]=[c(d t), \mathcal{A}]=\{0\}$,
3. $\mu\left(\frac{\partial}{\partial t}\right):=-\frac{1}{2}\left[D, \frac{1}{4 \pi^{2}} c(d t)\right]-d U\left(\frac{\partial}{\partial t}\right) \in B(H)$.

Its vertical Dirac operator is

$$
D_{v}:=c(d t) d U\left(\frac{\partial}{\partial t}\right) .
$$

Vertical geometries and vertical Dirac operators

Definition (cf. Dąbrowski-Sitarz, Forsyth-Rennie)

A vertical geometry for $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U})$ is odd $\mathrm{c}(\mathrm{dt}) \in \mathrm{B}(\mathrm{H})^{\mathrm{G}}$, s.t.

1. $c(d t)^{*}=-c(d t)$ and $c(d t)^{2}=-4 \pi^{2}$,
2. $\left[\mathrm{c}(\mathrm{dt}), \mathbb{C} \mathrm{l}_{\mathrm{n}}\right]=[\mathrm{c}(\mathrm{dt}), \mathcal{A}]=\{0\}$,
3. $\mu\left(\frac{\partial}{\partial t}\right):=-\frac{1}{2}\left[D, \frac{1}{4 \pi^{2}} c(d t)\right]-d U\left(\frac{\partial}{\partial t}\right) \in B(H)$.

Its vertical Dirac operator is

$$
\mathrm{D}_{v}:=\mathrm{c}(\mathrm{dt}) \mathrm{dU}\left(\frac{\partial}{\partial \mathrm{t}}\right) .
$$

We also define $\mathrm{V}_{1} \mathcal{A}:=\mathbb{C} h_{1} \cdot \mathbb{C}[\mathrm{c}(\mathrm{dt})] \cdot \mathcal{A}$ and $\mathrm{V}_{1} \mathcal{A}:={\overline{\mathrm{V}_{1}} \mathcal{A}^{\mathrm{B}}}^{\mathrm{H})}$.

Remainders and horizontal Dirac operators

Definition
A remainder for $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}))$ is $\mathrm{Z} \in \mathrm{B}(\mathrm{H})^{\mathrm{G}}$ odd, s.t.

$$
Z^{*}=Z, \quad\left[Z, C l_{n}\right]=0 .
$$

Remainders and horizontal Dirac operators

Definition

A remainder for $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}))$ is $\mathrm{Z} \in \mathrm{B}(\mathrm{H})^{\mathrm{G}}$ odd, s.t.

$$
Z^{*}=\mathrm{Z}, \quad\left[\mathrm{Z}, \mathbb{C} l_{n}\right]=0
$$

Its horizontal Dirac operator is

$$
\mathrm{D}_{\mathrm{h}}[\mathrm{Z}]:=\mathrm{D}-\mathrm{D}_{v}-\mathrm{Z} .
$$

Remainders and horizontal Dirac operators

Definition

A remainder for $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}))$ is $\mathrm{Z} \in \mathrm{B}(\mathrm{H})^{\mathrm{G}}$ odd, s.t.

$$
\mathrm{Z}^{*}=\mathrm{Z}, \quad\left[\mathrm{Z}, \mathbb{C} l_{n}\right]=0 .
$$

Its horizontal Dirac operator is

$$
\mathrm{D}_{\mathrm{h}}[\mathrm{Z}]:=\mathrm{D}-\mathrm{D}_{v}-\mathrm{Z} .
$$

Example

The canonical remainder for $(\mathcal{A}, \mathrm{H}, \mathrm{D} ; \mathrm{U} ; \mathrm{c}(\mathrm{dt}))$ is

$$
Z_{\text {can }}:=c(d t) \mu\left(\frac{\partial}{\partial t}\right) .
$$

Principal spectral triples

Definition
If (A, α) is principal, then $(\mathcal{A}, H, D, U ; c(d t) ; Z)$ defines a principal G-spectral triple for (A, α) whenever

1. $\forall \mathrm{n} \in \mathbb{Z}, \quad \overline{\left(\mathrm{V}_{1} \mathcal{A}\right)_{\mathrm{n}} \cdot \mathrm{H}^{\mathrm{G}}}=\mathrm{H}_{\mathrm{n}}$,
2. $\left\{\omega \in V_{1} \mathcal{A}|\omega|_{\mathrm{H}^{\mathrm{G}}}=\mathrm{O}\right\}=\{0\}$,
3. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \mathcal{A}\right] \subset{\overline{\mathrm{A} \cdot\left[\mathrm{D}-\mathrm{Z}, \mathcal{A}^{\mathrm{G}}\right]}}^{\mathrm{B}(\mathrm{H})}$,
4. $\left[D_{h}[Z], c(d t)\right]=0$.

Principal spectral triples

Definition

If (\mathcal{A}, α) is principal, then $(\mathcal{A}, H, D, U ; c(d t) ; Z)$ defines a principal G-spectral triple for (A, α) whenever

1. $\forall \mathrm{n} \in \mathbb{Z}, \quad \overline{\left(\mathrm{V}_{1} \mathcal{A}\right)_{\mathrm{n}} \cdot \mathrm{H}^{\mathrm{G}}}=\mathrm{H}_{\mathrm{n}}$,
2. $\left\{\omega \in V_{1} \mathcal{A}|\omega|_{H^{G}}=0\right\}=\{0\}$,
3. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \mathcal{A}\right] \subset{\overline{\mathrm{A} \cdot\left[\mathrm{D}-\mathrm{Z}, \mathcal{A}^{\mathrm{G}}\right]}}^{\mathrm{B}(\mathrm{H})}$,
4. $\left[D_{h}[Z], c(d t)\right]=0$.

Examples (cf. Brain-Mesland-Van Suijlekom)

1. The canonical spectral triple for $C\left(\mathbb{T}_{\theta}^{2}\right) \cong C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$.
2. The canonical spectral triple for $C\left(S_{\theta}^{3}\right)$.

Analysis

Given a principal G-spectral triple $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$:

Analysis

Given a principal G-spectral triple $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$:

1. $c(d t)$ encodes orbitwise intrinsic geometry and index theory via the wrong-way cycle (cf. Wahl)

$$
\left(\mathcal{A}, \mathrm{E}_{1}, \mathrm{~S}_{1}, \mathrm{~V}_{1}\right):=\left(\mathcal{A}, \mathrm{L}^{2}\left(\mathrm{~V}_{1} \mathcal{A}, \mathbb{E}_{\mathrm{V}_{1} \mathcal{A}}\right), \mathrm{c}(\mathrm{dt}) \mathrm{d} \alpha\left(\frac{\partial}{\partial \mathrm{t}}\right), \alpha\right)
$$

Analysis

Given a principal G-spectral triple $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$:

1. $c(d t)$ encodes orbitwise intrinsic geometry and index theory via the wrong-way cycle (cf. Wahl)

$$
\left(\mathcal{A}, \mathrm{E}_{1}, \mathrm{~S}_{1}, \mathrm{~V}_{1}\right):=\left(\mathcal{A}, \mathrm{L}^{2}\left(\mathrm{~V}_{1} \mathcal{A}, \mathbb{E}_{\mathrm{V}_{1} \mathcal{A}}\right), \mathrm{c}(\mathrm{dt}) \mathrm{d} \alpha\left(\frac{\partial}{\partial \mathrm{t}}\right), \alpha\right) ;
$$

2. $\mathrm{D}^{\mathrm{G}}[\mathrm{Z}]:=\left.\mathrm{D}_{\mathrm{h}}[\mathrm{Z}]\right|_{\mathrm{H}^{\mathrm{G}}}$ encodes basic geometry and index theory via $\left(\mathrm{V}_{1} \mathcal{A}^{\mathrm{G}}, \mathrm{H}^{\mathrm{G}}, \mathrm{D}^{\mathrm{G}}[\mathrm{Z}]\right)$;

Analysis

Given a principal G-spectral triple $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$:

1. $c(d t)$ encodes orbitwise intrinsic geometry and index theory via the wrong-way cycle (cf. Wahl)

$$
\left(\mathcal{A}, \mathrm{E}_{1}, \mathrm{~S}_{1}, \mathrm{~V}_{1}\right):=\left(\mathcal{A}, \mathrm{L}^{2}\left(\mathrm{~V}_{1} \mathcal{A}, \mathbb{E}_{\mathrm{V}_{1} \mathcal{A}^{\mathrm{G}}}\right), \mathrm{c}(\mathrm{dt}) \mathrm{d} \alpha\left(\frac{\partial}{\partial \mathrm{t}}\right), \alpha\right) ;
$$

2. $\mathrm{D}^{\mathrm{G}}[\mathrm{Z}]:=\left.\mathrm{D}_{\mathrm{h}}[\mathrm{Z}]\right|_{\mathrm{H}^{\mathrm{G}}}$ encodes basic geometry and index theory via $\left(\mathrm{V}_{1} \mathcal{A}^{\mathrm{G}}, \mathrm{H}^{\mathrm{G}}, \mathrm{D}^{\mathrm{G}}[\mathrm{Z}]\right)$;
3. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \cdot\right]$ encodes orbitwise extrinsic geometry and the principal connection.

Analysis

Given a principal G-spectral triple $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$:

1. $c(d t)$ encodes orbitwise intrinsic geometry and index theory via the wrong-way cycle (cf. Wahl)

$$
\left(\mathcal{A}, \mathrm{E}_{1}, \mathrm{~S}_{1}, \mathrm{~V}_{1}\right):=\left(\mathcal{A}, \mathrm{L}^{2}\left(\mathrm{~V}_{1} \mathcal{A}, \mathbb{E}_{\mathrm{V}_{1} \mathcal{A}^{\mathrm{G}}}\right), \mathrm{c}(\mathrm{dt}) \mathrm{d} \alpha\left(\frac{\partial}{\partial \mathrm{t}}\right), \alpha\right) ;
$$

2. $\mathrm{D}^{\mathrm{G}}[\mathrm{Z}]:=\left.\mathrm{D}_{\mathrm{h}}[\mathrm{Z}]\right|_{\mathrm{H}^{\mathrm{G}}}$ encodes basic geometry and index theory via $\left(\mathrm{V}_{1} \mathcal{A}^{\mathrm{G}}, \mathrm{H}^{\mathrm{G}}, \mathrm{D}^{\mathrm{G}}[\mathrm{Z}]\right)$;
3. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \cdot\right]$ encodes orbitwise extrinsic geometry and the principal connection.

Note (cf. Carey-Neshveyev-Nest-Rennie, Arici-Kaad-Landi...) Since $G=U(1)$, the cycle $\left(\mathcal{A}, \mathrm{E}_{\rho}, \mathrm{S}_{\rho}\right)$ represents the extension class $[\partial] \in K_{1}\left(A, A^{G}\right)$ of A as a Pimsner algebra.

Synthesis

Theorem
Let $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$ be a principal G -spectral triple:

1. $\mathrm{H} \cong \mathrm{E}_{1} \widehat{\otimes}_{\mathrm{V}_{1} \mathrm{~A}^{\mathrm{G}}} H^{\mathrm{G}}$ and $\mathrm{D}_{v}=\mathrm{S}_{1} \widehat{\otimes} \mathrm{id}$;
2. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \cdot\right]$ canonically induces a Hermitian connection $\nabla[\mathrm{Z}]$ on E_{1} s.t. $\mathrm{D}_{\mathrm{h}}[\mathrm{Z}]=\mathrm{id} \widehat{\otimes}_{\nabla[\mathrm{Z}]} \mathrm{D}^{\mathrm{G}}[\mathrm{Z}]$;
3. $[\mathrm{D}]=\left[\mathrm{S}_{1}\right] \otimes_{\mathrm{V}_{1} \mathrm{~A}^{\mathrm{G}}}\left[\mathrm{D}^{\mathrm{G}}[\mathrm{Z}]\right]$ in G-equivariant KK-theory.

Synthesis

Theorem
Let $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{Z})$ be a principal G -spectral triple:

1. $\mathrm{H} \cong \mathrm{E}_{1} \widehat{\otimes}_{\mathrm{V}_{1} \mathrm{~A}^{\mathrm{G}}} \mathrm{H}^{\mathrm{G}}$ and $\mathrm{D}_{v}=\mathrm{S}_{1} \widehat{\otimes} \mathrm{id}$;
2. $\left[\mathrm{D}_{\mathrm{h}}[\mathrm{Z}], \cdot\right]$ canonically induces a Hermitian connection $\nabla[\mathrm{Z}]$ on E_{1} s.t. $\mathrm{D}_{\mathrm{h}}[\mathrm{Z}]=\mathrm{id} \widehat{\otimes}_{\nabla[\mathrm{Z}]} \mathrm{D}^{\mathrm{G}}[\mathrm{Z}]$;
3. $[D]=\left[S_{1}\right] \otimes_{V_{1} A^{G}}\left[D^{G}[Z]\right]$ in G-equivariant KK-theory.

Thus, in G-equivariant unbounded KK-theory,
$(\mathcal{A}, \mathrm{H}, \mathrm{D}-\mathrm{Z}, \mathrm{U})$

$$
\cong\left(\mathcal{A}, \mathrm{E}_{1}, \mathrm{~S}_{1}, \mathrm{~V}_{1} ; \nabla[\mathrm{Z}]\right) \widehat{\otimes}_{\mathrm{V}_{1} \mathcal{A}}\left(\mathrm{~V}_{1} \mathcal{A}^{\mathrm{G}}, \mathrm{H}^{\mathrm{G}}, \mathrm{D}^{\mathrm{G}}[\mathrm{Z}], \mathrm{id}\right)
$$

Gauge potentials

Fix a principal G-sp. tr. $\left(\mathcal{A}, \mathrm{H}, \mathrm{D}_{\mathrm{o}}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{o}\right)$ for (\mathcal{A}, α).

Gauge potentials

Fix a principal G-sp. tr. $\left(\mathcal{A}, \mathrm{H}, \mathrm{D}_{\mathrm{o}}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{O}\right)$ for (\mathcal{A}, α).

Definition

A gauge potential is an operator D on H s.t.

1. $(\mathcal{A}, \mathrm{H}, \mathrm{D}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; 0)$ is a principal $\mathrm{G}-\mathrm{sp}$. tr. for (A, α),
2. $\left(D-D_{0}\right)\left(D_{v}+i\right)^{-1} \in B(H)$,
3. $\left[\mathrm{D}-\mathrm{D}_{\mathrm{o}}, \mathcal{A}^{\mathrm{G}}\right]=\{\mathrm{O}\}$ and $\left[\mathrm{D}-\mathrm{D}_{\mathrm{o}}, \mathrm{c}(\mathrm{dt})\right]=0$.

Let $\mathfrak{A t}$ be the set of all gauge potentials.

Gauge potentials

Fix a principal G-sp. tr. $\left(\mathcal{A}, \mathrm{H}, \mathrm{D}_{\mathrm{o}}, \mathrm{U} ; \mathrm{c}(\mathrm{dt}) ; \mathrm{O}\right)$ for (\mathcal{A}, α).

Definition

A gauge potential is an operator D on H s.t.

1. $(\mathcal{A}, H, D, U ; c(d t) ; O)$ is a principal $G-s p . \operatorname{tr}$. for (A, α),
2. $\left(D-D_{o}\right)\left(D_{v}+i\right)^{-1} \in B(H)$,
3. $\left[\mathrm{D}-\mathrm{D}_{\mathrm{o}}, \mathcal{A}^{\mathrm{G}}\right]=\{\mathrm{o}\}$ and $\left[\mathrm{D}-\mathrm{D}_{\mathrm{o}}, \mathrm{c}(\mathrm{dt})\right]=0$.

Let $\mathfrak{A l t}$ be the set of all gauge potentials.
It follows that for all $D, D^{\prime} \in \mathfrak{A t}$,

$$
[D]=\left[S_{1}\right] \widehat{\otimes}_{V_{1} A}\left[D^{G}[0]\right]=\left[S_{1}\right] \widehat{\otimes}_{V_{1} A}\left[\left(\mathrm{D}^{\prime}\right)^{G}[\mathrm{O}]\right]=\left[\mathrm{D}^{\prime}\right] .
$$

Relative gauge potentials

Definition

A relative gauge potential is an odd operator \mathbb{A} on H , s.t.

1. for some (and hence every) $\mathrm{D} \in \mathfrak{A t}$, we have

$$
[\mathbb{A}, \mathcal{A}] \subset \overline{\mathrm{A} \cdot\left[\mathrm{D}, \mathcal{A}^{\mathrm{G}}\right]^{\mathrm{B}(\mathrm{H})},}
$$

2. $\mathbb{A}\left(\mathrm{D}_{v}+\mathfrak{i}\right)^{-1} \in \mathrm{~B}(\mathrm{H})$,
3. $\left[\mathbb{A}, \mathbb{C l}_{n}\right]=\left[\mathbb{A}, \mathcal{A}^{\mathfrak{G}}\right]=\{0\}$ and $[\mathbb{A}, c(d t)]=0$;
let $\mathfrak{a t}$ be the \mathbb{R}-vector space of all relative gauge potentials.
Thus, for all $\mathrm{D}_{1}, \mathrm{D}_{2} \in \mathfrak{A t}$, we have $\mathrm{D}_{1}-\mathrm{D}_{2} \in \mathfrak{a t}$.

Gauge transformations

Definition
A gauge transformation is $\mathbb{S} \in \mathrm{U}(\mathrm{H})^{\mathrm{G}}$ even, s.t.

1. $\mathbb{S} \mathcal{A} \mathbb{S}^{*} \subseteq \mathcal{A}$,
2. $\left[\mathbb{S}, \mathbb{C l}_{n}\right]=\left[\mathbb{S}, \mathcal{A}^{\mathrm{G}}\right]=\{0\}$ and $[\mathbb{S}, \mathrm{c}(\mathrm{dt})]=0$,
3. for some (and hence every) $\mathrm{D} \in \mathfrak{A} \mathrm{t}$, we have $\mathbb{S}\left[\mathrm{D}, \mathbb{S}^{*}\right] \in \mathfrak{a t}$; let \mathfrak{G} be the group of all gauge transformations.

Gauge transformations

Definition

A gauge transformation is $\mathbb{S} \in \mathrm{U}(\mathrm{H})^{\mathrm{G}}$ even, s.t.

1. $\mathbb{S A S}^{*} \subseteq \mathcal{A}$,
2. $\left[\mathbb{S}, \mathbb{C l}_{n}\right]=\left[\mathbb{S}, \mathcal{A}^{\mathrm{G}}\right]=\{0\}$ and $[\mathbb{S}, \mathrm{c}(\mathrm{dt})]=0$,
3. for some (and hence every) $\mathrm{D} \in \mathfrak{A} \mathrm{t}$, we have $\mathbb{S}\left[\mathrm{D}, \mathbb{S}^{*}\right] \in \mathfrak{a t}$; let \mathfrak{G} be the group of all gauge transformations.

We can now define the gauge action of \mathfrak{G} on $\mathfrak{A t}$ by

$$
\forall \mathbb{S} \in \mathfrak{G}, \forall \mathrm{D} \in \mathfrak{A} \mathfrak{t}, \quad \mathbb{S} \triangleright \mathrm{D}:=\mathbb{S D} \mathbb{S}^{*} \in \mathfrak{A} \mathfrak{t}
$$

and the gauge action of \mathfrak{G} on $\mathfrak{a t}$ by

$$
\forall \mathbb{S} \in \mathfrak{G}, \forall \mathbb{A} \in \mathfrak{a t}, \quad \mathbb{S} \triangleright \mathbb{A}:=\mathbb{S} \mathbb{S} \mathbb{S}^{*} \in \mathfrak{a t} .
$$

A punchline of sorts

Theorem

1. $\mathfrak{A t}$ is a \mathbb{R}-affine space with space of translations $\mathfrak{a t}$.
2. The gauge action of \mathfrak{G} on $\mathfrak{A t}$ is affine with linear part the gauge action of \mathfrak{G} on $\mathfrak{a t}$.

A punchline of sorts

Theorem

1. $\mathfrak{A t}$ is a \mathbb{R}-affine space with space of translations $\mathfrak{a t}$.
2. The gauge action of \mathfrak{G} on $\mathfrak{A t}$ is affine with linear part the gauge action of \mathfrak{G} on $\mathfrak{a t}$.

Example

The commutative case (up to an explicit groupoid cocycle).

Example

For the canonical spectral triple on $C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z} \cong C\left(\mathbb{T}_{\theta}^{2}\right)$,

$$
\begin{gathered}
\left\{\mathbb{A} \in \mathfrak{a t} \mid \mathbb{A}_{\mathrm{H}^{\mathrm{G}}}=0\right\} \cong \mathrm{Z}^{1}(\mathbb{Z}, \mathrm{C}(\mathbb{T}, \mathbb{R})) \\
\left\{\mathbb{S} \in \mathfrak{G} \mid \mathbb{S}_{\mathrm{H}^{\mathrm{G}}}=\mathrm{id}\right\} \cong \mathrm{Z}^{1}\left(\mathbb{Z}, \mathrm{C}^{1}(\mathbb{T}, \mathrm{U}(1))\right)
\end{gathered}
$$

with $\mathfrak{s} \triangleright($ basepoint $+\mathfrak{a})=$ basepoint $+\left(\mathfrak{a}+\mathfrak{s d} \mathfrak{s}^{*}\right)$.

