Gauge theory on NC principal bundles

Branimir Ćaćić 48th Canadian Operator Symposium, Fields Institute

University of New Brunswick, Fredericton

References

B. Ć. and B. Mesland, Gauge theory on noncommutative Riemannian principal bundles, arXiv:1912.04179

B. Ć., Non-trivial gauge theory on cleft quantum principal bundles, (in preparation)

References

B. Ć. and B. Mesland, Gauge theory on noncommutative Riemannian principal bundles, arXiv:1912.04179

B. Ć., Non-trivial gauge theory on cleft quantum principal bundles, (in preparation)

Note

Today, we specialise to unital NC principal U(1)-bundles with totally geodesic orbits of unit length.

Basic setup

Let G = U(1), so that:

• $d\mu(z) \coloneqq \frac{1}{2\pi i} \frac{dz}{z}$ is the normalised Haar measure;

•
$$\mathfrak{g}^* = \mathbb{R} dt$$
 for $dt \coloneqq -i\frac{dz}{z}$ and $\mathfrak{g} = \mathbb{R} \frac{\partial}{\partial t}$ for $(dt, \frac{\partial}{\partial t}) \coloneqq 1$.

Thus, a unital G-C*-algebra (A, α) is principal iff

 $\forall n \in \mathbb{Z}, \quad \overline{A_n^* \cdot A_n} = A^G, \quad A_n \coloneqq \{a \in A \mid \forall z \in G, \ \alpha_z(a) = z^n a\},$ in which case $A \longleftrightarrow A^G$ is a NC topological principal G-bundle.

Basic setup

Let G = U(1), so that:

• $d\mu(z) \coloneqq \frac{1}{2\pi i} \frac{dz}{z}$ is the normalised Haar measure;

•
$$\mathfrak{g}^* = \mathbb{R}dt$$
 for $dt \coloneqq -i\frac{dz}{z}$ and $\mathfrak{g} = \mathbb{R}\frac{\partial}{\partial t}$ for $(dt, \frac{\partial}{\partial t}) \coloneqq 1$.

Thus, a unital $G-C^*$ -algebra (A, α) is principal iff

$$\forall n \in \mathbb{Z}, \quad \overline{A_n^* \cdot A_n} = A^G, \quad A_n \coloneqq \{a \in A \mid \forall z \in G, \ \alpha_z(a) = z^n a\},$$

in which case $A \leftrightarrow A^G$ is a NC topological principal G-bundle.

Example

The trivial case $A = A^G \rtimes \mathbb{Z} \hookrightarrow A^G$, where $\mathbb{Z} \cong \widehat{G}$.

Example (Matsumoto, cf. Brzeziński-Sitarz)

The θ -deformed \mathbb{C} -Hopf fibration $C(S^3_{\theta}) \hookrightarrow C(S^3_{\theta})^G \cong C(S^2)$.

Let (A, α) be a unital sep'ble G-C*-algebra. Let $n \ge 1 = \dim G$. An n-multigraded G-spectral triple for (A, α) is (A, H, D, U):

- 1. (H, U) is a faithful \mathbb{Z}_2 -graded covariant *-representation of $(\mathbb{Cl}_n \widehat{\otimes} A, id \widehat{\otimes} \alpha)$;
- 2. D is an odd G-invariant self-adjoint operator on H s.t.

 $(D+\mathfrak{i})^{-1}\in K(H), \quad [D,\mathbb{Cl}_n]=\{0\}, \quad \text{Dom}(D)\subset C^1(H,U);$

3. $\mathcal{A} \subset A$ is a dense G-invariant *-subalgebra s.t.

 $\mathcal{A} \subset C^1(A, \alpha), \quad \mathfrak{O}(G) \ast \mathcal{A} \subseteq \mathcal{A}, \quad [D, \mathcal{A}] \subset B(H).$

Let (A, α) be a unital sep'ble G-C*-algebra. Let $n \ge 1 = \dim G$. An n-multigraded G-spectral triple for (A, α) is (A, H, D, U):

- 1. (H, U) is a faithful \mathbb{Z}_2 -graded covariant *-representation of $(\mathbb{Cl}_n \widehat{\otimes} A, id \widehat{\otimes} \alpha)$;
- 2. D is an odd G-invariant self-adjoint operator on H s.t.

 $(D+\mathfrak{i})^{-1}\in K(H),\quad [D,\mathbb{Cl}_n]=\{0\},\quad \text{Dom}(D)\subset C^1(H,U);$

3. $\mathcal{A} \subset A$ is a dense G-invariant *-subalgebra s.t.

 $\mathcal{A} \subset C^1(A, \alpha), \quad \mathfrak{O}(G) \ast \mathcal{A} \subseteq \mathcal{A}, \quad [D, \mathcal{A}] \subset B(H).$

Example

 $(\mathcal{O}(G), L^2(G)^{\oplus 2}, (\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}) \frac{\partial}{\partial t}$, translation) for (C(G), translation).

What are they good for?

The G-spectral triple (A, H, D, U) encodes the following:

What are they good for?

The G-spectral triple (A, H, D, U) encodes the following:

1. first-order (de Rham) differential calculus via

 $\mathcal{A} \ni \mathfrak{a} \mapsto [\mathsf{D}, \mathfrak{a}] \eqqcolon \mathfrak{c}(\mathfrak{d}\mathfrak{a});$

The G-spectral triple (A, H, D, U) encodes the following:

1. first-order (de Rham) differential calculus via

 $\mathcal{A} \ni \mathfrak{a} \mapsto [\mathsf{D}, \mathfrak{a}] \eqqcolon \mathfrak{c}(\mathfrak{d}\mathfrak{a});$

2. spectral geometry (e.g., dimension, volume, measure) via

 $(0, +\infty) \ni t \mapsto exp(-tD^2) \in \mathcal{L}_1(H)$ (ideally);

The G-spectral triple (A, H, D, U) encodes the following:

1. first-order (de Rham) differential calculus via

 $\mathcal{A} \ni \mathfrak{a} \mapsto [\mathsf{D}, \mathfrak{a}] \eqqcolon \mathfrak{c}(\mathfrak{d}\mathfrak{a});$

2. spectral geometry (e.g., dimension, volume, measure) via

 $(0, +\infty) \ni t \mapsto exp(-tD^2) \in \mathcal{L}_1(H)$ (ideally);

3. index theory (i.e., NC algebraic topology) via

 $[D] \in \mathsf{KK}^{\mathsf{G}}_{\mathfrak{n}}(\mathsf{A}, \mathbb{C}).$

The G-spectral triple (A, H, D, U) encodes the following:

1. first-order (de Rham) differential calculus via

 $\mathcal{A} \ni \mathfrak{a} \mapsto [\mathsf{D}, \mathfrak{a}] \eqqcolon \mathfrak{c}(\mathfrak{d}\mathfrak{a});$

2. spectral geometry (e.g., dimension, volume, measure) via

 $(0, +\infty) \ni t \mapsto exp(-tD^2) \in \mathcal{L}_1(H)$ (ideally);

3. index theory (i.e., NC algebraic topology) via

 $[D] \in \mathsf{KK}^{\mathsf{G}}_{\mathfrak{n}}(\mathsf{A}, \mathbb{C}).$

Points 1 and 2 hint at possibilities for NC gauge theory.

 $\label{eq:constraint} \begin{array}{l} \mbox{Definition (cf. Dąbrowski–Sitarz, Forsyth–Rennie)} \\ \mbox{A vertical geometry for } (\mathcal{A}, H, D, U) \mbox{ is odd } c(dt) \in B(H)^G, \mbox{ s.t.} \end{array}$

- 1. $c(dt)^*=-c(dt)$ and $c(dt)^2=-4\pi^2$,
- 2. $[c(dt), \mathbb{Cl}_n] = [c(dt), \mathcal{A}] = \{0\},\$
- 3. $\mu(\frac{\partial}{\partial t}) \coloneqq -\frac{1}{2}[D, \frac{1}{4\pi^2}c(dt)] dU(\frac{\partial}{\partial t}) \in B(H).$

 $\label{eq:constraint} \begin{array}{l} \mbox{Definition (cf. Dąbrowski–Sitarz, Forsyth–Rennie)} \\ \mbox{A vertical geometry for } (\mathcal{A}, H, D, U) \mbox{ is odd } c(dt) \in B(H)^G, \mbox{ s.t.} \end{array}$

- 1. $c(dt)^* = -c(dt)$ and $c(dt)^2 = -4\pi^2$,
- 2. $[c(dt), \mathbb{Cl}_n] = [c(dt), A] = \{0\},\$
- 3. $\mu(\frac{\partial}{\partial t}) \coloneqq -\frac{1}{2}[D, \frac{1}{4\pi^2}c(dt)] dU(\frac{\partial}{\partial t}) \in B(H).$

Its vertical Dirac operator is

 $D_{\nu} \coloneqq c(dt) \, dU(\frac{\partial}{\partial t}).$

 $\label{eq:constraint} \begin{array}{l} \mbox{Definition (cf. Dąbrowski–Sitarz, Forsyth–Rennie)} \\ \mbox{A vertical geometry for } (\mathcal{A}, H, D, U) \mbox{ is odd } c(dt) \in B(H)^G, \mbox{ s.t.} \end{array}$

- 1. $c(dt)^* = -c(dt)$ and $c(dt)^2 = -4\pi^2$,
- 2. $[c(dt), \mathbb{Cl}_n] = [c(dt), \mathcal{A}] = \{0\},\$
- 3. $\mu(\frac{\partial}{\partial t}) \coloneqq -\frac{1}{2}[D, \frac{1}{4\pi^2}c(dt)] dU(\frac{\partial}{\partial t}) \in B(H).$

Its vertical Dirac operator is

 $\mathsf{D}_{\mathsf{v}} \coloneqq \mathsf{c}(\mathsf{d} \mathsf{t}) \, \mathsf{d} \mathsf{U}(\frac{\partial}{\partial \mathsf{t}}).$

We also define $V_1 \mathcal{A} \coloneqq \mathbb{C}l_1 \cdot \mathbb{C}[c(dt)] \cdot \mathcal{A}$ and $V_1 \mathcal{A} \coloneqq \overline{V_1 \mathcal{A}}^{B(H)}$.

Remainders and horizontal Dirac operators

Definition

A remainder for $(\mathcal{A}, H, D, U; c(dt))$ is $Z \in B(H)^G$ odd, s.t.

 $\mathsf{Z}^* = \mathsf{Z}, \quad [\mathsf{Z}, \mathbb{C}\mathsf{l}_n] = \mathsf{O}.$

Remainders and horizontal Dirac operators

Definition

A remainder for $(\mathcal{A}, H, D, U; c(dt))$ is $Z \in B(H)^G$ odd, s.t.

 $\mathsf{Z}^* = \mathsf{Z}, \quad [\mathsf{Z}, \mathbb{Cl}_n] = \mathsf{O}.$

Its horizontal Dirac operator is

 $D_h[Z] \coloneqq D - D_v - Z.$

Remainders and horizontal Dirac operators

Definition

A remainder for $(\mathcal{A}, H, D, U; c(dt))$ is $Z \in B(H)^G$ odd, s.t.

 $\mathsf{Z}^* = \mathsf{Z}, \quad [\mathsf{Z}, \mathbb{C} \mathsf{l}_n] = \mathsf{O}.$

Its horizontal Dirac operator is

$$D_h[Z] \coloneqq D - D_v - Z.$$

Example

The canonical remainder for (A, H, D; U; c(dt)) is

 $Z_{can} \coloneqq c(dt)\mu(\frac{\partial}{\partial t}).$

Principal spectral triples

Definition

If (A, α) is principal, then $(\mathcal{A}, H, D, U; c(dt); Z)$ defines a principal G-spectral triple for (A, α) whenever

1.
$$\forall n \in \mathbb{Z}$$
, $\overline{(V_1 \mathcal{A})_n \cdot H^G} = H_n$,
2. $\{\omega \in V_1 \mathcal{A} \mid \omega|_{H^G} = 0\} = \{0\}$,
3. $[D_h[Z], \mathcal{A}] \subset \overline{A \cdot [D - Z, \mathcal{A}^G]}^{B(H)}$,
4. $[D_h[Z], c(dt)] = 0$.

Principal spectral triples

Definition

If (A, α) is principal, then $(\mathcal{A}, H, D, U; c(dt); Z)$ defines a principal G-spectral triple for (A, α) whenever

1.
$$\forall n \in \mathbb{Z}$$
, $\overline{(V_1 \mathcal{A})_n \cdot H^G} = H_n$,
2. $\{\omega \in V_1 \mathcal{A} \mid \omega|_{H^G} = 0\} = \{0\}$,
3. $[D_h[Z], \mathcal{A}] \subset \overline{A \cdot [D - Z, \mathcal{A}^G]}^{B(H)}$,
4. $[D_h[Z], c(dt)] = 0$.

Examples (cf. Brain-Mesland-Van Suijlekom)

- 1. The canonical spectral triple for $C(\mathbb{T}^2_{\theta}) \cong C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$.
- 2. The canonical spectral triple for $C(S^3_{\theta})$.

Given a principal G-spectral triple (A, H, D, U; c(dt); Z):

Given a principal G-spectral triple (A, H, D, U; c(dt); Z):

 c(dt) encodes orbitwise intrinsic geometry and index theory via the *wrong-way cycle* (cf. Wahl)

$$(\mathcal{A}, \mathsf{E}_1, \mathsf{S}_1, \mathsf{V}_1) \coloneqq (\mathcal{A}, \mathsf{L}^2(\mathsf{V}_1 \mathsf{A}, \mathbb{E}_{\mathsf{V}_1 \mathsf{A}^\mathsf{G}}), \mathsf{c}(\mathsf{d} \mathsf{t}) \mathsf{d} \alpha(\frac{\partial}{\partial \mathsf{t}}), \alpha);$$

Given a principal G-spectral triple (A, H, D, U; c(dt); Z):

 c(dt) encodes orbitwise intrinsic geometry and index theory via the *wrong-way cycle* (cf. Wahl)

 $(\mathcal{A}, \mathsf{E}_1, \mathsf{S}_1, \mathsf{V}_1) \coloneqq (\mathcal{A}, \mathsf{L}^2(\mathsf{V}_1 \mathsf{A}, \mathbb{E}_{\mathsf{V}_1 \mathsf{A}^\mathsf{G}}), c(\mathsf{d} t) \mathsf{d} \alpha(\tfrac{\partial}{\partial t}), \alpha);$

2. $D^{G}[Z] \coloneqq D_{h}[Z]|_{H^{G}}$ encodes basic geometry and index theory via $(V_{1}\mathcal{A}^{G}, H^{G}, D^{G}[Z]);$

Given a principal G-spectral triple (A, H, D, U; c(dt); Z):

 c(dt) encodes orbitwise intrinsic geometry and index theory via the *wrong-way cycle* (cf. Wahl)

 $(\mathcal{A}, \mathsf{E}_1, \mathsf{S}_1, \mathsf{V}_1) \coloneqq (\mathcal{A}, \mathsf{L}^2(\mathsf{V}_1 \mathsf{A}, \mathbb{E}_{\mathsf{V}_1 \mathsf{A}^\mathsf{G}}), c(\mathsf{d} t) \mathsf{d} \alpha(\tfrac{\partial}{\partial t}), \alpha);$

- 2. $D^{G}[Z] \coloneqq D_{h}[Z]|_{H^{G}}$ encodes basic geometry and index theory via $(V_{1}\mathcal{A}^{G}, H^{G}, D^{G}[Z]);$
- 3. [D_h[Z], ·] encodes orbitwise extrinsic geometry and the principal connection.

Given a principal G-spectral triple (A, H, D, U; c(dt); Z):

 c(dt) encodes orbitwise intrinsic geometry and index theory via the *wrong-way cycle* (cf. Wahl)

 $(\mathcal{A}, \mathsf{E}_1, \mathsf{S}_1, \mathsf{V}_1) \coloneqq (\mathcal{A}, \mathsf{L}^2(\mathsf{V}_1 \mathsf{A}, \mathbb{E}_{\mathsf{V}_1 \mathsf{A}^\mathsf{G}}), c(\mathsf{d} t) \mathsf{d} \alpha(\tfrac{\partial}{\partial t}), \alpha);$

- 2. $D^{G}[Z] \coloneqq D_{h}[Z]|_{H^{G}}$ encodes basic geometry and index theory via $(V_{1}\mathcal{A}^{G}, H^{G}, D^{G}[Z]);$
- 3. [D_h[Z], ·] encodes orbitwise extrinsic geometry and the principal connection.

Note (cf. Carey–Neshveyev–Nest–Rennie, Arici–Kaad–Landi...) Since G = U(1), the cycle (A, E_{ρ}, S_{ρ}) represents the extension class [∂] $\in KK_1(A, A^G)$ of A as a Pimsner algebra.

Synthesis

Theorem

Let (A, H, D, U; c(dt); Z) be a principal G-spectral triple:

1.
$$H\cong E_1\widehat{\otimes}_{V_1A^G}H^G$$
 and $D_\nu=S_1\widehat{\otimes}\,id;$

- [D_h[Z], ·] canonically induces a Hermitian connection ∇[Z] on E₁ s.t. D_h[Z] = id ⊗_{∇[Z]}D^G[Z];
- 3. $[D] = [S_1] \otimes_{V_1A^G} [D^G[Z]]$ in G-equivariant KK-theory.

Synthesis

Theorem

Let (A, H, D, U; c(dt); Z) be a principal G-spectral triple:

1.
$$H\cong E_1\widehat{\otimes}_{V_1A^G}H^G$$
 and $D_\nu=S_1\widehat{\otimes}\,id;$

- [D_h[Z], ·] canonically induces a Hermitian connection ∇[Z] on E₁ s.t. D_h[Z] = id ⊗_{∇[Z]}D^G[Z];
- 3. $[D] = [S_1] \otimes_{V_1 A^G} [D^G[Z]]$ in G-equivariant KK-theory.

Thus, in G-equivariant unbounded KK-theory,

$$\begin{split} (\mathcal{A}, H, D-Z, U) \\ &\cong (\mathcal{A}, \mathsf{E}_1, \mathsf{S}_1, \mathsf{V}_1; \nabla[Z]) \widehat{\otimes}_{\mathsf{V}_1 \mathcal{A}^{\mathsf{G}}}(\mathsf{V}_1 \mathcal{A}^{\mathsf{G}}, \mathsf{H}^{\mathsf{G}}, \mathsf{D}^{\mathsf{G}}[Z], \mathsf{id}). \end{split}$$

Gauge potentials

Fix a principal G-sp. tr. $(A, H, D_0, U; c(dt); 0)$ for (A, α) .

Gauge potentials

Fix a principal G-sp. tr. $(A, H, D_0, U; c(dt); 0)$ for (A, α) .

Definition

A gauge potential is an operator D on H s.t.

1. $(\mathcal{A}, H, D, U; c(dt); 0)$ is a principal G-sp. tr. for (A, α) ,

2.
$$(D - D_0)(D_v + i)^{-1} \in B(H)$$
,

3.
$$[D - D_0, \mathcal{A}^G] = \{0\}$$
 and $[D - D_0, c(dt)] = 0$.

Let \mathfrak{At} be the set of all gauge potentials.

Gauge potentials

Fix a principal G-sp. tr. $(A, H, D_0, U; c(dt); 0)$ for (A, α) .

Definition

A gauge potential is an operator D on H s.t.

1. $(\mathcal{A}, H, D, U; c(dt); 0)$ is a principal G-sp. tr. for (A, α) ,

2.
$$(D - D_0)(D_v + i)^{-1} \in B(H)$$
,

3.
$$[D - D_0, \mathcal{A}^G] = \{0\}$$
 and $[D - D_0, c(dt)] = 0$.

Let $\mathfrak{A}\mathfrak{t}$ be the set of all gauge potentials.

It follows that for all $\mathsf{D},\mathsf{D}'\in\mathfrak{A}\mathfrak{t},$

$$[D] = [S_1] \widehat{\otimes}_{V_1 A^G} [D^G[0]] = [S_1] \widehat{\otimes}_{V_1 A^G} [(D')^G[0]] = [D'].$$

Definition

A relative gauge potential is an odd operator \mathbb{A} on \mathbb{H} , s.t.

1. for some (and hence every) $\mathsf{D}\in\mathfrak{At}$, we have

$$[\mathbb{A},\mathcal{A}] \subset \overline{A \cdot [D,\mathcal{A}^G]}^{B(H)},$$

2. $\mathbb{A}(D_{\nu}+i)^{-1}\in B(H)$,

3. $[\mathbb{A}, \mathbb{Cl}_n] = [\mathbb{A}, \mathcal{A}^G] = \{0\} \text{ and } [\mathbb{A}, c(dt)] = 0;$

let $\mathfrak{a}\mathfrak{t}$ be the \mathbb{R} -vector space of all relative gauge potentials.

Thus, for all $D_1, D_2 \in \mathfrak{At}$, we have $D_1 - D_2 \in \mathfrak{at}$.

Gauge transformations

Definition

A gauge transformation is $\mathbb{S} \in U(H)^G$ even, s.t.

- 1. $SAS^* \subseteq A$,
- 2. $[\mathbb{S}, \mathbb{Cl}_n] = [\mathbb{S}, \mathcal{A}^G] = \{0\} \text{ and } [\mathbb{S}, c(dt)] = 0,$
- 3. for some (and hence every) $D\in\mathfrak{A}\mathfrak{t},$ we have $\mathbb{S}[D,\mathbb{S}^*]\in\mathfrak{a}\mathfrak{t};$

let \mathfrak{G} be the group of all gauge transformations.

Gauge transformations

Definition

A gauge transformation is $\mathbb{S} \in U(H)^G$ even, s.t.

- 1. $SAS^* \subseteq A$,
- 2. $[\mathbb{S}, \mathbb{Cl}_n] = [\mathbb{S}, \mathcal{A}^G] = \{0\} \text{ and } [\mathbb{S}, c(dt)] = 0,$
- 3. for some (and hence every) $D\in\mathfrak{A}\mathfrak{t},$ we have $\mathbb{S}[D,\mathbb{S}^*]\in\mathfrak{a}\mathfrak{t};$

let \mathfrak{G} be the group of all gauge transformations.

We can now define the gauge action of \mathfrak{G} on \mathfrak{At} by

 $\forall \mathbb{S} \in \mathfrak{G}, \, \forall \mathbb{D} \in \mathfrak{A}\mathfrak{t}, \quad \mathbb{S} \triangleright \mathbb{D} \coloneqq \mathbb{S}\mathbb{D}\mathbb{S}^* \in \mathfrak{A}\mathfrak{t}$

and the gauge action of \mathfrak{G} on \mathfrak{at} by

 $\forall \mathbb{S} \in \mathfrak{G}, \, \forall \mathbb{A} \in \mathfrak{at}, \quad \mathbb{S} \triangleright \mathbb{A} \coloneqq \mathbb{S} \mathbb{A} \mathbb{S}^* \in \mathfrak{at}.$

A punchline of sorts

Theorem

- 1. \mathfrak{At} is a $\mathbb{R}\text{-affine}$ space with space of translations $\mathfrak{at}.$
- 2. The gauge action of & on $\mathfrak{A}\mathfrak{t}$ is affine with linear part the gauge action of \mathfrak{G} on $\mathfrak{a}\mathfrak{t}$.

A punchline of sorts

Theorem

- 1. \mathfrak{At} is a $\mathbb{R}\text{-affine}$ space with space of translations $\mathfrak{at}.$
- 2. The gauge action of & on $\mathfrak{A}\mathfrak{t}$ is affine with linear part the gauge action of \mathfrak{G} on $\mathfrak{a}\mathfrak{t}$.

Example

The commutative case (up to an explicit groupoid cocycle).

Example

For the canonical spectral triple on $C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z} \cong C(\mathbb{T}^2_{\theta})$,

$$\{ \mathbb{A} \in \mathfrak{a} \mathfrak{t} \mid \mathbb{A}|_{H^{G}} = 0 \} \cong Z^{1} \left(\mathbb{Z}, C(\mathbb{T}, \mathbb{R}) \right),$$

$$\{ \mathbb{S} \in \mathfrak{G} \mid \mathbb{S}|_{H^{G}} = id \} \cong Z^{1} \left(\mathbb{Z}, C^{1}(\mathbb{T}, U(1)) \right)$$

with $\mathfrak{s} \triangleright (basepoint + \mathfrak{a}) = basepoint + (\mathfrak{a} + \mathfrak{s}d\mathfrak{s}^*).$