ERRATUM: A RECONSTRUCTION THEOREM FOR ALMOST-COMMUTATIVE SPECTRAL TRIPLES

BRANIMIR ĆAĆIĆ

Abstract

We correct the pre-orientability axiom in our modified definition of commutative spectral triple, and accordingly correct the argument extending the reconstruction theorem for (orientable) commutative spectral triples to the non-orientable (viz., only pre-orientable) case.

The pre-orientability axiom in [2, Def. 2.7] does not hold in general for Diractype operators on Clifford module bundles over odd-dimensional manifolds, since the chirality element, in that case need not act as the identity $[4, \S I I .5 ; 5, \S 8]$. This, however, can be readily corrected, and the proof of [2, Cor. 2.19] (and thus of the main result, [2, Thm. 2.17]) can then be modified to accommodate the corrected definition.

First, we correct the pre-orientability axiom on a commutative spectral triple $(\mathcal{A}, \mathcal{H}, D)$ of metric dimension p, to hold in the necessary generality:

- Pre-orientability: There exists an antisymmetric Hochschild p-cycle $c \in$ $Z_{p}(\mathcal{A}, \mathcal{A})$ such that $\chi=\pi_{D}(c)$ is a self-adjoint unitary satisfying $a \chi=\chi a$ and $[D, a] \chi=(-1)^{p+1} \chi[D, a]$ for all $a \in \mathcal{A}$.
Given this, the definition of orientability must be reworded as follows:
Definition. A commutative spectral triple $(\mathcal{A}, \mathcal{H}, D)$ of metric dimension p is called orientable if p is even and $D \chi=-\chi D$, or if p is odd and $\chi=1$.

Let us now turn to the proof of [2, Cor. 2.19], in the case of p odd. Suppose, then, that $(\mathcal{A}, \mathcal{H}, D)$ is a commutative spectral triple of metric dimension p, with p odd, let c be the antisymmetric Hochschild p-cycle given by pre-orientability, and let $\chi=\pi_{D}(c)$. Write $D=D_{0}+M$ for

$$
D_{0}:=\frac{1}{2}(D+\chi D \chi), \quad M:=\frac{1}{2}(D-\chi D \chi) .
$$

Since χ commutes with elements of $[D, \mathcal{A}], M$ commutes with \mathcal{A}, and hence M is a self-adjoint element of $\operatorname{End}_{\mathcal{A}}\left(\mathcal{H}^{\infty}\right)$. The argument for the even case, mutatis mutandis, together with the following strengthened version of [2, Lem. A.10], then shows that $\left(\mathcal{A}, \mathcal{H}, D_{0}\right)$ is still a commutative spectral triple of metric dimension p, with $\pi_{D_{0}}(c)=\pi_{D}(c)=\chi$ and $D_{0} \chi=\chi D_{0}$:

Lemma. If $(\mathcal{A}, \mathcal{H}, D)$ is strongly regular and of metric dimension $p \in \mathbb{N}$, and if $M \subset \operatorname{End}_{\mathcal{A}}\left(\mathcal{H}^{\infty}\right)$ for $\mathcal{H}^{\infty}=\cap_{k} \operatorname{Dom} D^{k}$, then for all $T \in B(\mathcal{H}), f T|D|^{-p}=$ $f T\left|D_{M}\right|^{-p}$.

[^0]Proof. The case of p even is handled by [2, Lem. A.10], so suppose instead that p is odd, so that $p+1$ is even; by [2, Lem. A.11], it suffices to show that the operator $\left(D_{M}^{2}+1\right)^{-p / 2}-\left(D^{2}+1\right)^{-p / 2}$ is trace-class.

First, by the proof of [2, Lem. A.10], mutatis mutandis, and in particular by setting $n=\frac{p+1}{2} \in \mathbb{N}$, and then $\epsilon=\frac{p}{p+1}\left(n-i+\frac{1}{2}\right)>0$ when considering the term corresponding to $0 \leq i \leq n$, one finds that $\left(D_{M}^{2}+1\right)^{-p / 2 \alpha}-\left(D^{2}+1\right)^{-p / 2 \alpha} \in \mathcal{L}^{\alpha}(\mathcal{H})$, where $\alpha=\frac{p}{p+1}$ satisfies $0<\alpha<1$, and $\mathcal{L}^{q}(\mathcal{H})$ denotes the q th Schatten ideal in $B(\mathcal{H})$. Thus, $\left|\left(D_{M}^{2}+1\right)^{-p / 2 \alpha}-\left(D^{2}+1\right)^{-p / 2 \alpha}\right|^{\alpha} \in \mathcal{L}^{1}(\mathcal{H})$, so that by the BKS inequality [1, Thm. 1], $\left(D_{M}^{2}+1\right)^{-p / 2}-\left(D^{2}+1\right)^{-p / 2}$ is indeed trace-class.

Now, since χ commutes with D_{0} and with all elements of $\mathcal{A}, D_{1}=\chi D_{0}$ is a self-adjoint operator on \mathcal{H} satisfying $D_{1}^{2}=D_{0}^{2}$ and $\left[D_{1}, a\right]=\chi\left[D_{0}, a\right]$ for all $a \in \mathcal{A}$. Because of this, all the axioms for a commutative spectral triple of metric dimension p immediately follow for $\left(\mathcal{A}, \mathcal{H}, D_{1}\right)$ except for pre-orientability, but even then, since p is odd, $\pi_{D_{1}}(c)=\chi^{p} \pi_{D_{0}}(c)=\chi^{p+1}=1$, so that $\left(\mathcal{A}, \mathcal{H}, D_{1}\right)$ is, in fact, orientable. We may therefore apply the reconstruction theorem for commutative spectral triples [3, Thm. 11.3] to obtain a compact oriented Riemannian p-manifold X; the rest then follows exactly as in the even-dimensional case.

References

[1] M. Š. Birman, L. S. Koplienko, and M. Z. Solomjak, Estimates of the spectrum of a difference of fractional powers of selfadjoint operators, Izv. Vysš. Učebn. Zaved. Matematika $\mathbf{3 (1 5 4)}$ (1975), 3-10.
[2] Branimir Ćaćić, A reconstruction theorem for almost-commutative spectral triples, Lett. Math. Phys. 100 (2012), no. 2, 181-202.
[3] Alain Connes, On the spectral characterization of manifolds (2008), available at arXiv:0810. 2088v1 [math. OA].
[4] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton University Press, Princeton, NJ, 1989.
[5] Igor Prokhorenkov and Ken Richardson, Perturbations of Dirac operators, J. Geom. Phys. 57 (2006), no. 1, 297-321.

Department of Mathematics, California Institute of Technology, MC 253-37, 1200
E California Blvd, Pasadena, CA 91125
E-mail address: branimir@caltech.edu

[^0]: Date: June 28, 2012.

