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Cancers are heterogeneous and genetically unstable. Current
practice of personalized medicine tailors therapy to heterogeneity
between cancers of the same organ type. However, it does not yet
systematically address heterogeneity at the single-cell level within
a single individual’s cancer or the dynamic nature of cancer due to
genetic and epigenetic change as well as transient functional
changes. We have developed a mathematical model of personal-
ized cancer therapy incorporating genetic evolutionary dynamics
and single-cell heterogeneity, and have examined simulated clini-
cal outcomes. Analyses of an illustrative case and a virtual clinical
trial of over 3 million evaluable “patients” demonstrate that aug-
mented (and sometimes counterintuitive) nonstandard personal-
ized medicine strategies may lead to superior patient outcomes
compared with the current personalized medicine approach. Cur-
rent personalized medicine matches therapy to a tumor molecular
profile at diagnosis and at tumor relapse or progression, generally
focusing on the average, static, and current properties of the
sample. Nonstandard strategies also consider minor subclones,
dynamics, and predicted future tumor states. Our methods allow
systematic study and evaluation of nonstandard personalized
medicine strategies. These findings may, in turn, suggest global
adjustments and enhancements to translational oncology research
paradigms.
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Current practice of personalized medicine designs therapy
around stable differences between individual tumors. How-

ever, preexisting heterogeneity and genetic instability suggest the
need for therapeutic strategies that address intratumoral het-
erogeneity and dynamics.
Genetic instability has been postulated to be central to tumor

evolution (1). DNA sequencing reveals vast genetic variety as-
sociated with tumors: 20,000–30,000 mutations (2), about 1,000
of which are situated within exons (3) and 50–100 of which are
nonsynonymous clonal mutations (4).
Mathematical models using the focused quantitative modeling

methodology (5) have demonstrated that genetic instability en-
hances the efficiency of carcinogenesis, a result that is robust
across all plausible parameter values and model types (5–7). More
efficient mechanisms of carcinogenesis should be more common
in clinical tumors. Driving the enhanced efficiency is the more
rapid acquisition of oncogenic mutations, and quantitative anal-
ysis has suggested that tumors with three or fewer driver muta-
tions might not be genetically unstable, a prediction that was
recently confirmed for retinoblastoma (8). These models pre-
dicted heterogeneity within individual tumors, including spatial
heterogeneity (9). Moreover, in contrast to an ordered series of
mutational steps (10), the models predicted convergent and di-
vergent evolution leading to overlapping but nonidentical sets
of driver mutations within the same tumor (5–7). Recently, these

predictions have been confirmed in renal cell cancer, where
different mutations affecting the same pathway were spatially
separated within the primary, reflecting convergent evolution
(11). Pancreatic and breast cancers manifest genetic differences
between the primary and metastases (12–15). Relapsed pediatric
acute lymphoblastic leukemia (ALL) and primary adult ALL
also reveal subclonal structure and divergent evolution (16–18).
Additional diversity might, in principle, be detected by single-cell
genomic analysis (19). In some cases, different driver mutations
lead to different functional states, such as activation states of
signaling pathways, within different parts of the tumor, as was
seen for the mammalian target of rapamycin (mTOR) gene and
associated pathway in renal cell cancer (11). Thus, intratumoral
phenotypic and genotypic diversity is well established.
In the current personalized medicine paradigm, targeted

therapies directed at specific molecular states replace nonspecific
cytotoxics. Personalized medicine has the potential to transform
cancer therapy and drug development (20). Tumors are stratified
based on predictive biomarkers, which define molecular states,
and are then matched to corresponding treatments.
A limitation is that the tumor is often characterized by a bulk

measurement of the average molecular state, which may be dom-
inated by the primary clone, without reflecting smaller subclones.
A 1-cm3 tumor mass will contain ∼109 cells. Current sequencing
technology can detect a sequence variation present in ∼1:104
cells (19), meaning that in a 1-cm3 tumor mass, a single variant
cell is five orders of magnitude below the detection limit. More-
over, given the spatial heterogeneity demonstrated in renal cell
cancer (11), even characterization of the dominant clone from
a single location may be misleading (21).
Another concern is the frequent lack of biopsiable tumor

throughout the clinical course, meaning that available tumor
molecular information may not be current. Noninvasive methods,
such as circulating tumor cells (22), plasma DNA (23), or func-
tional imaging (24), could provide real-time information when
sufficiently mature for general application. Imaging may poten-
tially reveal spatial heterogeneity without multiple biopsies.
Dynamic resistance to therapy has been shown for many tumor

types and by a variety of genetic and nongenetic mechanisms.
In non-small cell lung cancer (NSCLC) treated with erlotinib
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or gefitinib, resistance mutations occur, most commonly in the
target EGF receptor (EGFR) (22, 25). Other resistance mech-
anisms include activation of parallel signaling pathways, such as
c-Met, through amplification, which is, at times, ligand-induced
(26). Importantly, when erlotinib or gefitinib resistance develops,
the drug’s withdrawal may trigger tumor rebound, suggesting the
persistence of a sensitive subpopulation below the detection limit
(27). Resistance to crizotinib, a drug targeted to a unique fusion
protein involving the anaplastic lymphoma kinase in NSCLC, has
been documented due to mutations in the target, amplification of
the target, loss of the original translocation leading to the fusion
protein, increased signaling in the EGFR pathway (including 1
EGFR activating mutation), c-Kit amplification, and KRAS mu-
tation, sometimes with more than one resistance mechanism in
the same patient (28, 29). In chronic myelogenous leukemia,
most therapeutic resistance is due to mutation in the targeted
BCR-ABL fusion protein, and combinations may be important to
delay the emergence of multiply resistant cells (30, 31). Non-
genetic resistance mechanisms occur in tumors and may be im-
mediate because they are wired into feedback loops in signaling
pathways. Recent examples include resistance to vemurafenib in
colorectal cancer cells (32, 33) and to PI3-kinase inhibitors (34)
via up-regulation of upstream signaling pathways. Given these
dynamics, there is a need to take possible future states into ac-
count, perhaps thinking several therapeutic maneuvers ahead.
We have developed methods for systematic evaluation of non-

standard personalized medicine strategies. A strategy is a data-
driven method for planning a sequence of therapies, for example,
when to give combination therapy as opposed to sequential high-
dose therapies or when to change therapies. Like therapies, strat-
egies may be individualized. Nonstandard personalized medicine
strategies imply adjustments in current personalized medicine,
as well as suggesting novel paradigms for oncology translational
research.
Building on models of cancer therapy and resistance for che-

motherapy (35, 36), we have created a mathematical model of
cancer therapies, incorporating single-cell heterogeneity and
(epi)genetic dynamics (all known mechanisms of genetic and
epigenetic change) and examined the impact of various strategic
choices on patient outcomes. We present an illustrative example
and a clinical trial simulation with over 3 million virtual patients.
We demonstrate that when subpopulations and genetic dynamics
are taken into account, personalized medicine as currently prac-
ticed can be further improved by adopting new and sometimes
counterintuitive strategies, including thinking several therapeutic
moves ahead. The potential magnitude and significance of this
improvement are substantial.

Results
Model. We created a mathematical model to predict patient out-
comes (Methods and SI Methods). The model comprises two
drugs, drug-1 and drug-2, and cell types representing four phe-
notypic states: sensitive to both drugs (S); resistant to drug-1,
sensitive to drug-2 (R1); resistant to drug-2, sensitive to drug-1
(R2); and resistant to both drugs (R1–2).
Tumors contain a continuously evolving mixture of the four

cell types, each with its own characteristic exponential net growth
rate. Cells transition between phenotypic states at each cell
generation by heritable mechanisms. Each phenotypic state may
correspond to many genotypes, and the net transition rate be-
tween phenotypic states is the sum of the rates from all possible
mechanisms of genetic change affecting the sensitivity/resistance
phenotype. Transient functional states, such as activation of sig-
naling pathways, may be directly linked to genetic states, as re-
cently demonstrated in renal cell cancer (11).
Assumptions include a dose-proportional decrease in the ex-

ponential growth constant with therapy. The total dose of both
drugs in combination cannot exceed the normalized full dose of

either drug, due to toxicity. The terms “drug-1” and “drug-2”
may also refer to combinations directed at single states. For
example, when there is hard-wired nongenetic resistance based
on feedback activation of receptor tyrosine kinases (RTKs), such
as occurs for vemurafenib and for PI3-kinase inhibitors (32–34),
a combination that includes an inhibitor of the upstream RTK
may be optimal for dealing with the underlying state. This op-
timized combination might be referred to as drug-1 because the
core model deals only with genetic and epigenetic mechanisms of
sensitivity and resistance (SI Methods).
The model outputs the number of cells of each type as a

function of time and treatment. Patients begin with a minimally
detectable 1-cm3 lesion of 109 cells or a 5-cm3 lesion and no R1–2
cells. “Complete response” denotes a decrease in cells below 109.
“Tumor progression” implies relapse and/or a doubling in cell
number for detectable disease. “Relapse” denotes a return to≥109
cells. “Incurable” refers to any state containing R1–2 cells. “Mor-
tality” corresponds to a tumor burden of ≥1013 cells.

Illustrative Example. Fig. 1A illustrates how the model works for
the current personalized medicine strategy. The patient presents
with a single lesion of 109 S cells, as judged by next-generation
sequencing, with sensitivity for variants of 1:104 cells. Drug-1 is
the best drug for S cells, causing a log kill within 23 d, whereas
drug-2 slows S-cell growth by 90%. However, the case is con-
structed with undetected preexisting heterogeneity and dynamic
asymmetry. Specifically, there are 104 preexisting R1 cells, or 1 in
105, 10-fold below the level of detection. Second, transitions to
drug-2 resistance occur at a rate of 4 × 10−7, whereas acquisition
of drug-1 resistance occurs 100 times more slowly (dynamic
asymmetry). These assumptions are plausible for human cancers
(37). In order for R1 cells to outnumber R2 cells, even though
resistance to drug-2 occurs more quickly, a specific evolutionary
history is required in which a recent event enhanced the ability to
acquire drug-2 resistance. For example, if drug-2 resistance
requires genetic change in both copies of a gene, change in one
copy may have occurred, leading to the opportunity for rapid
acquisition of drug-2 resistance through loss of heterozygosity.
In the current personalized medicine strategy (Fig. 1A), the

patient is treated with drug-1, the best drug for S cells, based on
the biopsy result and enjoys an initial complete response. How-
ever, 14 mo after initial diagnosis, relapse occurs and biopsy in-
dicates pure R1 cells (104 R1–2 cells, resulting from random,
passive acquisition of drug-2 resistance by the expanding R1
clone, are undetected). Treatment with drug-2 ensues, resulting
in another complete response. Twenty-eight months from initial
diagnosis, the patient has an incurable relapse, predominantly
with R1–2 cells. The multiple relapses featured in this clinical
course are typical in practice.
In contrast, in one possible nonstandard personalized medi-

cine strategy (Fig. 1B), the physician considers the possible risk
of undetected R1 cells, and their ability to evolve rapidly into
incurable R1–2 cells. The physician may be considering genetic
information about the likelihood of certain subclones available
from the literature, such as the recent report of subclone fre-
quencies in over 100 cases of triple-negative breast cancer (38).
Accordingly, the patient is treated for 4 mo with the inferior drug
for S cells, drug-2, allowing the tumor to grow slowly under
careful observation but killing some of the R1 cells if present.
Subsequent switching to a 50:50 mix of the two drugs results in
a complete response and an apparent cure.
By allowing the tumor to grow slowly rather than treating it with

the better drug for the observed population, and by prioritizing
rapid treatment of a hypothetical risk over optimally treating what
is observed, the nonstandard personalized medicine approach has
yielded a substantially improved outcome. Importantly, an upfront
combination of the drugs might not have been sufficiently effec-
tive in preventing the emergence of the R1–2 state.
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Evolutionary dynamics and initial conditions affect the results.
Thus, if the patient had an undetected subpopulation of R2 cells
rather than R1 cells, the two sequences described above both
lead to cure, the nonstandard sequence more rapidly (SI Results
and Figs. S1 and S2).
A demonstration program for individual case analysis is pro-

vided on the Web (SI Methods).

Large-Scale Simulation. In the large-scale simulation (Methods and
SI Methods), over 30 million parameter configurations are ana-
lyzed to assess the generality of the illustrative example, the po-
tential benefits of nonstandard personalized medicine strategies,
and the conditions under which minimizing the chance of tran-
sitions to incurability are an overriding strategic concern.
Parameters that were varied include proportions of different

cell types, net growth rates, drug sensitivities, and transition rates
between phenotypic states. Parameter ranges are derived from
clinical, in vitro, and in vivo data sources, such as a series of 228
patients with pancreatic cancer with autopsies for 101 of them
(39), and bracket all possible values to ensure inclusion of all
possible biologically relevant scenarios. Within each parameter
range, there are a large number of possible discrete values (e.g.,
many degrees of sensitivity/resistance are explored), and the
simulation steps through every possible parameter combination
once. Due to the inclusion of extreme parameter values, the
parameter combinations were then prescreened, and the follow-
ing were eliminated: (i) any combination in which one of the two
drugs was not minimally effective against any cell type, because
there are no strategic choices in this case, and (ii) any combina-
tion in which all treatment strategies resulted in survival greater
than 4 y, corresponding to very slow growth rates or highly sen-
sitive cells. Because the simulation was truncated at 5 y, it could
not compare strategies in scenarios in which survival approached
or exceeded this length of time (SI Methods).
Drug-1 is the better treatment against S cells. Survival is checked

weekly, and treatments are adjusted every 45 d based on the var-
ious strategies. Ability to measure the cell populations is assumed.

The simulation runs nearly 5 y (255 wk for economical data
storage).
Six strategies are compared: current personalized medicine

(strategy 0) and five alternatives (Table 1 and SI Methods). As in
typical randomized oncology phase 3 trials, one strategy is “sig-
nificantly better” than another if the superior strategy gives at
least 8 wk of absolute improvement and 25% relative improve-
ment in survival compared with the reference strategy. Strategy
matters if at least one strategy is significantly better than another.
The resulting “clinical trial” contained 3,091,175 virtual patients,

and strategy mattered for 1,001,868, showing a possible benefit
of strategic choices. For the other 2 million patients, the current
personalized medicine strategy gave results comparable to the
other strategies. Moreover, the mean and median survival rates
and percentage of 5-y survival rates seen for the simulated cur-
rent personalized medicine strategy were similar to typical
results for patients with metastatic solid tumors, confirming the
ability of the simulation to give realistic results. Sampling of
parameter values in the simulation may or may not reflect their
unknown distribution in patients.
The current personalized medicine strategy was generally in-

ferior. Other strategies produced double the mean and median
survival rates (Table 2). The Kaplan–Meier survival plot over
evaluable virtual patients (Fig. 2) shows a dramatic benefit of
nonstandard strategies over current personalized medicine. Five-
year survivorship is 0.7% for current personalized medicine and
17–20% for the other strategies (Table 2). Strategy 2.2, similar to
the illustrative example, is most frequently significantly superior
to the other strategies (Table 2). No strategy is inferior to the
current personalized medicine strategy as frequently as it is su-
perior, nor is the current personalized medicine strategy ever the
best (Table 2).
We examined what features are required for strategy to matter

(SI Results). Either preexisting heterogeneity or rapid genetic
dynamics are generally required for strategy to matter. Given no
R1 preexisting (with drug-1 as the better drug for S, only R1
creates strategic dilemmas), and low S→R1 transition rates,

Fig. 1. Illustrative example contrasting current practice of personalized medicine (A) and nonstandard personalized medicine (B). Time (months) is on the
x axis, and cell number is on the y axis. The total number of cells (N) is shown in blue (multiplied by 1.5 to create separation from the predominant population
for clarity), S cells are shown in green, R1 cells are shown in red, R2 cells are shown in light blue, and R1–2 cells are shown in magenta. Treatments are indicated
by the solid bars at the top: green is drug-1, blue is drug-2, and both colors indicate a combination. In the current personalized medicine strategy (A), the
patient is treated with drug-1 and experiences a complete response, only to relapse 14 mo after diagnosis with R1 cells. He/she is then treated with drug-2,
experiencing a second complete response before he/she relapses with incurable R1–2 cells 28 mo after initial diagnosis. In the nonstandard personalized
medicine strategy (B), the patient is treated with drug-2 for 4 mo to suppress a possible R1 subpopulation even though it has not been detected. The bulk
tumor slowly grows under observation. At 4 mo, treatment continues with an equal mixture of drug-1 and drug-2, resulting first in a complete response and
then in an apparent cure. Note that initial treatment with an equal drug mixture would have been less effective in immediate eradication of R1 cells, allowing
more time for incurable R1–2 cells to evolve. Parameter values are provided in SI Methods.
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strategy mattered in 1.1% of evaluable cases, compared with
32.4% of evaluable cases in the overall simulation. However, we
do not need both preexisting heterogeneity and rapid genetic
dynamics for strategy to matter: the number of cases where it
matters is relatively constant as either of these parameters alone
is varied. Finally, asymmetry of transition rates, sensitivity pat-
terns, or preexisting subpopulations are not required, not occur-
ring more often than expected in cases where strategy matters.
These results suggest that the illustrative example represents only
one of many scenarios where strategy matters.
Strategy 1 differs from strategies 2–4 in that it never prioritizes

prevention of R1–2 cell formation; instead, it simply minimizes
the predicted total population. In most cases, the full benefit can
be captured with this simple approach alone. By estimating the
time to either incurability (τ1–2) or death due to other pop-
ulations, one can determine if τ1–2 is the shorter, indicating that
the threat of incurability is more imminent than the threat of
mortality from all other subpopulations (SI Methods). Strategy 1
is more likely to be inferior to strategies 2–4 if this condition is
met (Table S1).

Discussion
We have shown that genetic dynamics and single-cell heteroge-
neity can have a significant impact on optimal personalized med-
icine strategies and that striking therapeutic gains are possible. The

magnitude of the average benefit would have been significant even
if applicable only to a single class of therapies and a restricted
subset of patients. In contrast, a comprehensive exploration of
oncology parameter space via simulation indicates that the ben-
efit is applicable across a very broad range of therapy and tumor
characteristics. We believe the systematic study of nonstandard
personalized medicine strategies is an important area for exper-
imental and theoretical investigation.
The current study is a proof of concept using a simple, focused

model and is not intended to represent all known complexities
of tumor behavior at either the single-cell level or the popula-
tion level, where complex ecologies may provide further selection
for heterogeneity. With appropriate sensitivity analyses, simple
models can answer high-level focused questions (“Is the current
strategy for personalized therapy of cancer the best possible?”)
in a way that is clear and valid across a broad range of cases (5).
In this paper, we have asked this high-level focused question and
tested its generality over millions of possible scenarios, with com-
prehensive parameter ranges based on clinical and experimental
data. The high-level conclusions are shown to be robust. How-
ever, detailed conclusions will vary, depending on more detailed
tumor behavior, and the model must be customized for each tu-
mor type under consideration based on molecular and empirical
knowledge. In SI Methods, we discuss a framework for linking
the simple core strategy model presented here to molecular and

Table 1. Treatment strategies

Strategy Summary Details

0 Current personalized medicine paradigm The patient is treated with the best drug for the
observed predominant cell type and switched to the
alternative drug on tumor progression or relapse

1 Minimize total cell population (i.e., give the drug
combination that the model predicts will do so)

Minimized at next 45-day time point

2.1 Minimize the chance of developing incurable R1–2 cells unless
there is radiologically detectable disease burden above a
“threshold” cell number; then, minimize total population

Threshold cell number to be considered radiologically
detectable is 109 or more; minimization applies to next 45-day
time point

2.2 Minimize the chance of developing incurable R1–2 cells unless
there is a large disease burden above a threshold cell number;
then, minimize total population

Threshold cell number to be considered large disease burden
is 1011 or more; minimization applies to next 45-day time point

3 Minimize the total population unless there is an immediate threat
of developing an incurable R1–2 cell; then, minimize R1–2 cells

Immediate threat is defined as predicted number of R1–2

cells ≥1 at next 45-day time point
4 Treat the most proximal threat Estimated time to mortality from each cell type is compared

with estimated time to the first incurable R1–2 cell; the threat
estimated to have the shortest time is prioritized in treatment;
mortality is defined as a tumor cell burden of 1013

A strategy is a data-driven method for planning a sequence of therapies, based on both individual patient data and general oncology knowledge. The
strategies discussed in this paper are examples only and are not meant to be a comprehensive list.

Table 2. Comparison of treatment strategy results

Strategy 0 1 2.1 2.2 3 4

Median survival*,wk 26 58 58 58 58 51
Mean survival*, wk 48.4 95.3 95.7 96.5 96.8 91.7
Survival at 5 y, % 0.7 18.7 19.0 19.7 19.4 17.6
No. of cases strategy numerically better than all others 1,538 244 4,292 60,599 2,124 2,206
No. of cases strategy significantly† better than all others 0 0 24 2,367 157 315
No. of cases significantly† better than strategy 0 N.A. 951,165 947,634 947,568 971,111 823,939
No. of cases significantly† worse than strategy 0 N.A. 6,808 5,725 2,762 630 27,597

Strategy results are based on performance in a virtual clinical trial of over 3 million evaluable cases. Evaluable means that both drugs
met minimal criteria for efficacy, providing strategic choices, and that the minimum survival of the worst strategy is ≤80% of the
simulation length, allowing room for other strategies to demonstrate superiority. Strategies are defined in Table 1. N.A., not applicable.
*Simulation truncated at 255 wk, which is nearly 5 y, and data can be stored as 8 bits.
†Significantly better means at least 8 wk of absolute improvement and 25% relative improvement compared with the reference
strategy, in analogy to the typical minimum improvement deemed clinically significant in randomized phase 3 trials in cancer.
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empirical knowledge of specific tumors and therapies, including
complications not represented in the core model.
States in the core model correspond to heritable drug sensi-

tivity/resistance phenotypes over all available drugs, and there
may be a very large number of underlying molecular states that
contribute to a single phenotype. The condensation from a large
number of molecular/genetic states to a smaller number of clus-
ters of phenotypic sensitivity/resistance profiles is essential to
allow computationally feasible examination of highly innovative
strategies, especially when real systems with more than two
therapies are considered. Intermediate sensitivity states that may
arise from haploinsufficiency or gene dosage effects must also be
considered in a full model.
Similarly, the transition rate from phenotype A to phenotype

B is actually the sum of individual rates from all known genetic
and epigenetic mechanisms of transition at all relevant loci.
Recent work on mechanisms of resistance to crizotinib (28, 29)
gives an example of how multiple mechanisms can contribute to
the resistance phenotype, and these processes would all have to
be identified, and rates summed, to give a net transition rate.
Nongenetic resistance mechanisms are addressed separately
(SI Methods).
Relevant data sources for condensing molecular states into

shared sensitivity phenotypes, or for summing transition rates to
get a net transition rate, include molecularly annotated cell line
panels (40), genetic data at the subclonal level from large cohorts
of patients (38), computational integration of data from multiple
sources along curated signaling pathways (41), and high-through-
put functional genomic screens using siRNA and shRNA (42).

This illustrates the principle of linked models, some relatively
simple, feeding each other information to represent a complex
system. The information about the tumor type and therapies of
interest can be calculated once and used to inform the focused
core model through its impact on the probability distributions
of parameter values. In a separate step, the core model would
calculate the patient outcome resulting from a series of innovative
treatment strategies.
In a comprehensive model, some information will be uncertain

or missing. Therefore, advanced techniques for optimizing strat-
egies in the face of uncertainty will be required (43). It is un-
known how much missing information can be tolerated without
affecting the utility of the models. This is an important area for
future research. The models are a supplement to, rather than a
substitute for, sound clinical judgement.
Because the number of phenotypic states is much smaller than

the number of molecular states, a strategic model for cancer
therapy could also become an organizing principle for our ever-
expanding body of molecular data and understanding. Areas
needed for progress in the treatment strategy model may cor-
respond to key research and drug discovery priorities.
We have introduced methodology for systematic study of non-

standard personalized medicine strategies. There are key differ-
ences from the current personalized medicine paradigm. Instead
of focusing on majority populations at diagnosis or at the treat-
ment time, nonstandard personalized medicine strategies con-
sider all subpopulations and the whole time course of possible
states. In particular, nonstandard personalized medicine strate-
gies may emphasize preventing fully resistant or incurable states
by attacking their immediate precursors (SI Methods, Fig. S3,
and Table S2). This leads to the possibility that, assuming suffi-
cient knowledge, one might not treat initially with the targeted
agent that is most effective against the predominant observed
population. Although we may not have sufficient knowledge to
adopt such a counterintuitive strategy at the moment, our mo-
lecular knowledge of cancer, its therapy, and its evolution is in-
creasing rapidly. In the future, initial treatment might consider
the probability distribution of current states below the detection
limit and even future states. We note that current combination
chemotherapy already incorporates some of these principles,
although nonstandard personalized medicine may not always
recommend combinations.
To facilitate application of nonstandard personalized medi-

cine strategies, current efforts in translational oncology should
be augmented in specific ways. This, in turn, may provide new
directions for these fields.
Currently, biological samples exist predominantly from di-

agnosis and less frequently from relapse. In contrast, we suggest
working backward from the fatal end states. This would require
advance directives from healthy individuals to donate tumor
tissue immediately on death due to cancer in much the same way
that we all specify, when healthy, that we will donate organs,
when feasible, after accidental death. Cell lines, patient sample
banks, and patient-derived xenografts should be established from
these sources, ideally paired with diagnostic samples and treat-
ment course information.
Experimental validation of this approach could involve an

in vitro or in vivo system determined by sensitivity and resistance
to two drugs, with known underlying heritable molecular types.
Predictable and sufficient transition rates are required. Cell
populations and survival rates need to be determined under dif-
ferent strategic paradigms with varying initial subpopulations.
Application of nonstandard personalized medicine to cancer

requires experimental validation, detailed integration of current
knowledge into customized models, and further conceptual and
technological advances. However, we have shown that the ben-
efit of such an approach, when successfully applied, will be
highly significant.

Fig. 2. Kaplan–Meier survival curves of a virtual clinical trial incorporating
different strategies. Approximately 3 million evaluable virtual patients were
treated with each of the strategies. The x axis shows time (weeks), and the
y axis shows the surviving patient fraction. Strategy 0 (dark blue) is the current
personalized medicine strategy: treatment with the best drug for the ob-
served predominant cell type and switching to the alternative drug on tumor
progression or relapse. Strategy 1 (green) minimizes total cell numbers at the
next time point. Strategy 2.1 (red) minimizes the chance of developing in-
curable R1–2 cells at the next time point unless the patient has detectable
disease (109 cells); at that point, total cell number is minimized. Strategy 2.2
(light blue) minimizes the chance of developing incurable R1–2 cells at the
next time point unless the patient has a high disease burden (1011 cells); at
that point, the total number of cells is minimized. Strategy 3 (magenta)
minimizes the total cells at the next time point unless the predicted R1–2 cell
population at that time point is ≥1; in that case, the R1–2 cell population is
minimized. Strategy 4 (olive) predicts the time to mortality from each cell
population and the time to “incurability” from forming R1–2 cells, prioritiz-
ing treatment of the most imminent threat at the next time point.
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Methods
Model. Denote a four-component vector, ~x = ðxS; xR1; xR2; xR1−2Þ, as the cell
population of each class. We assume that cell death rates are zero in the
absence of therapy, that all cells have the same growth rate, and that
the drugs work by increasing cell death. For each class, i∈ fS;R1;R2;R1−2g,
the net growth rate is g0xi +

P
j≠ i

Tði; jÞg0xj − ðSaði; 1Þd1 + Saði; 2Þd2Þxi : The first

term corresponds to the growth rate of cell type i with a rate g0 shared by all
cell types. The second term corresponds to the transitions from all other cell
types, where Tði; jÞ specifies the transition rate (per cell per generation) from
cell type j to i. We assume that (i) transition rates from resistant to sensitive
cell types are negligible, (ii) the transition rate of acquiring the resistance to
one drug is independent of the resistance phenotype to another drug, and
(iii) transition rates of acquiring double resistance in one step are negligible.
Thus, TðR1; SÞ= TðR1−2;R2Þ, TðR2; SÞ= TðR1−2;R1Þ, and all other entries of T
are zero. The third term corresponds to the treatment-caused cell death,
where ðd1;d2ÞT ≡~d represents the normalized dosages of the two drugs (d1

is drug-1 and d2 is drug-2) with the constraints 0≤d1;d2;d1 +d2 ≤1 and
Saði; 1Þ; Saði; 2Þ represents the sensitivities of cell type i to drug-1 and drug-2.
The population dynamics of the four cell types can be compactly expressed
as a matrix differential equation:

d~x
dt

=
h�
I+ T

�
g0 −diag

�
Sa~d

�i
U
�
~x −1

�
~x; [1]

where I denotes a four-by-four identity matrix and diagð:Þ denotes an op-
erator of placing vector components on the diagonal entries of a zero ma-
trix. Uð~x − 1Þ~x sets component values to 0 if they are less than 1; that is,
Uð~x − 1Þ= 0 for x < 1 and Uð~x − 1Þ= 1 for x ≥ 1. This term stipulates that
fractional cell numbers (less than 1 cell) do not contribute to cell division.

This equation was implemented in MATLAB 7.7.0 (R2008b; MathWorks)
and manually explored on a Gateway T-6836 computer with the Windows

Vista (Microsoft Corporation) operating system and a 2.0-GHz Intel Core 2
Duo CPU T5750 processor to produce the illustrative example.

Large-Scale Simulation. A large-scale simulation was carried out to compare
a current personalized medicine strategy with five alternative strategies for
over 30 million configurations of nine parameters involving initial pop-
ulations of each cell type, growth rates, drug sensitivities, and transition rates.
Detailed definitions of the strategies and the parameters, as well as ranges
and values of the parameters, are provided in SI Methods.

We can solve Eq. 1 analytically given a time-varying dosage ~dðtÞ and the
initial population ~xð0Þ. Insert “break points” in the time interval whenever
~dðtÞ changes or a component in ~xðtÞ crosses 1 (increases from a fractional
number to a number larger than 1 or vice versa). Between any two con-
secutive break points, the term on the right-hand side of Eq. 1, ½ðI+ TÞg0 −
diagðSa~dÞ�Uð~x − 1Þ≡ A, is a constant matrix. The solution of a first-order
linear matrix differential equation d~xðtÞ

dt = A~x
�
t
�
is ~xðtÞ= eAt~xð0Þ. Hence, ~xðtÞ

can be obtained by solving the first-order linear matrix differential equation
piecewise.

We implemented the simulation in a C program and ran it on 23 Hewlett
Packard DL360 G7 servers in parallel. Each server contains dual Intel(R) Xeon
(R) CPUs E5520 with 2.27GHz and 24 GB of main memory. The running time
was approximately 1 day.
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SI Results
Analysis of Case Related to the Illustrative Example. The outcomes
and optimal strategy depend heavily on the initial conditions. In
the illustrative example given the in main text, in which there is
an undetected population of cells resistant to drug-1 and sensitive
to drug-2 [R1, which is the best drug for cells sensitive to both
drugs (S)], a strategy that considers the risk of undetected R1
by treating with drug-2 for 4 mo followed by an equal combina-
tion of drug-1 and drug-2 is superior to the current personalized
medicine strategy, resulting in cure, whereas the current person-
alized medicine strategy results in incurable relapse at 28 mo.
If, on the other hand, we consider slightly different initial

conditions, where the patient begins with 109 S cells and 104 cells
resistant to drug-2 and sensitive to drug-1 (R2), there is no obvious
dilemma, because drug-1 is the best drug for both. We compared
the conventional personalized medicine strategy (Fig. S1) with a
nonstandard strategy in which we treat with drug-1 for 4 mo,
followed by an equal combination of both drugs (Fig. S2).
In the conventional personalized medicine strategy, we treat

with drug-1, and the patient first responds and then relapses with
the R1 cell type, which was not preexisting but arose from S cells
by mutation. Subsequent treatment with drug-2 cures the patient
at 32 mo.
In the nonstandard personalized medicine strategy, the patient

is cured in 10 mo without enduring relapse, because the com-
bination prevents relapse with R1 cells.
By the criteria of our main analysis, the strategies would be

considered equal, because both result in cure and long-term sur-
vival; however, even in this case, a nonstandard strategy is better in
that the patient is cured more quickly and does not suffer a relapse
before cure. Moreover, if the simulation were stochastic rather
than deterministic, one would likely see a greater risk for not being
cured with the conventional personalized medicine strategy.

When Does Strategy Matter? The illustrative case in the main text
had three main features: preexisting heterogeneity below the level
of detection, with the minority subpopulation resistant to the
recommended drug for the main population; rapid genetic dy-
namics; and asymmetry (unequal transition rates to resistance to
the two different drugs, which could also manifest as different
degrees of resistance to the two drugs or as unequal amounts of
the possible resistant subpopulations). We examined the ∼3 mil-
lion evaluable virtual cases in the simulation, for ∼1 million of
which “strategy mattered,” to see if the features of the illustrative
case were required for strategy to matter. “Strategy matters” was
defined as at least one strategy significantly superior to another,
meaning at least 8 wk of absolute improvement and 25% relative
survival advantage of the superior strategy over the inferior ref-
erence strategy.
In the simulation, d1 was the superior drug by convention,

meaning that R1 could be a minority subpopulation resistant to
the “better drug.” If we look at the cases for the seven values of
xR1/N (N ¼ xS þ xR1 þ xR2 þ xR1−2) allowed in the simulation,
where R1−2 are cells resistant to both drug-1 and drug-2, we see
there is not a dramatic dependence of the number of cases where
strategy matters on preexisting heterogeneity alone. In fact, there
are numerous cases where strategy matters where there is no
preexisting heterogeneity.

xR1/N = 0; 81,624 cases
xR1/N = 1 × 10−9; 152,246 cases
xR1/N = 1 × 10−7; 170,268 cases

xR1/N = 1 × 10−5; 165,043 cases
xR1/N = 1 × 10−3; 176,931 cases
xR1/N = 1 × 10−1; 158,660 cases
xR1/N = 9 × 10−1 (no longer the minority population); 97,096

cases

In a similar manner, we looked to see if there is a dependence,
in the 1 million cases where strategy mattered, on the rate of
transition to resistance to either d1 or d2. Again, there was no
dramatic dependence of the number of cases where strategy
mattered on either of these single parameters.

S → R1 transition rate = 1 × 10−11; 154,564 cases
S → R1 transition rate = 2.154 × 10−10; 154,221 cases
S → R1 transition rate = 4.642 × 10−9; 154,288 cases
S → R1 transition rate = 1 × 10−7; 150,576 cases
S → R1 transition rate = 2.154 × 10−6; 141,533 cases
S → R1 transition rate = 4.642 × 10−5; 130,626 cases
S → R1 transition rate = 1 × 10−3; 116,060 cases
S → R2 transition rate = 1 × 10−11; 144,627 cases
S → R2 transition rate = 2.154 × 10−10; 162,919 cases
S → R2 transition rate = 4.642 × 10−9; 161,834 cases
S → R2 transition rate = 1 × 10−7; 148,738 cases
S → R2 transition rate = 2.154 × 10−6; 143,135 cases
S → R2 transition rate = 4.642 × 10−5; 130,219 cases
S → R2 transition rate = 1 × 10−3; 110,396 cases

To investigate the importance of asymmetry, we compared the
number of expected vs. observed symmetrical cases, where R1 =
R2, relative resistance of R1 to d1 = relative resistance of R2 to
d2, and transition rate to resistance to d1 = transition rate to
resistance to d2. If there are fewer numbers of symmetrical cases
where strategy matters than expected based on their possibility
of being chosen (generally 1/7-fold the number of cases, except
for the subpopulation numbers where their sum cannot exceed
N), this would imply a tendency to asymmetry. There was no
marked tendency to asymmetry based on number of symmetrical
cases where strategy matters being similar to that expected:

Equal numbers of two minority subpopulations: 143,124 cases
expected and 137,614 cases observed
Equal relative resistance to two drugs: 166,978 cases expected,
and 161,244 cases observed
Equal transition rates to resistance to two drugs: 166,978 cases
expected and 139,523 cases observed

Finally, we asked whether strategy could still matter in the
absence of both preexisting heterogeneity and rapid genetic dy-
namics. The data suggest that for strategy to matter, at least one
of those two elements should usually be present. The expected
number of cases where strategy matters and where there are no
preexisting R1 cells and the lowest transition rate to R1 cells is
1/72-fold the number of cases where strategy matters, or 20,466
cases. In contrast, only 659 such cases are observed. More-
over, ∼85% of these cases occur in a narrow band of growth
rates from 1.8 to 5 × 10−5. Whereas strategy matters in 32.4% of
cases in the simulation, in the absence of both preexisting het-
erogeneity and rapid genetic dynamics, strategy matters in only
1.1% of the cases.
Overall, the results suggest that the conditions of the illustrative

example are only one of many possible situations where strategy
might matter. Preexisting heterogeneity or genetic instability may
be required for cases where strategy matters to be frequent.
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SI Methods
Cancer Model. The model can be compactly expressed as a matrix
differential equation:

d~x
dt

¼
h�
I þ T

�
g0 − diag

�
Sa~d

�i
U
�
~x − 1

�
~x; [S1]

where I denotes a four-by-four identity matrix and diagð:Þ is an
operator of placing vector components on the diagonal entries
of a zero matrix. T is a four-by-four transition rate matrix, and
Sa is a four-by-two matrix of drug sensitivities. Uð~x − 1Þ~x is the
Heaviside step function that sets component values to 0 if they
are less than 1, that is, U(x − 1) = 0 for x < 1 and U(x − 1) = 1
for all x ≥ 1. This term stipulates that fractional cell numbers
(less than 1 cell) do not contribute to cell division.

Demonstration Program for Calculating Individual Cases (Web Site).
We have provided a demonstration program for calculating in-
dividual cases. To try it, click on the URL (http://cancermodel.
stat2.sinica.edu.tw/cell_n_drug). Contact the authors with ques-
tions or comments.

Comparison of Current Personalized Medicine Strategy with Nonstan-
dard Personalized Medicine Strategies. We have introduced meth-
odology for systematic study of next-generation personalized
medicine strategies. Key differences from the current personal-
ized medicine paradigm are summarized in Table S2. Instead of
focusing on majority populations at diagnosis or at the time of
treatment (initial or current predominant states), next-generation
personalized medicine strategies consider all subpopulations
and the whole time course of possible states. In particular, next-
generation personalized medicine strategies may emphasize pre-
venting fully resistant or incurable end states by attacking their
immediate precursors, the penultimate treatable states (Fig. S3).
This leads to the possibility that, assuming sufficient knowledge,
one might not treat initially with the targeted agent that is most
effective against the predominant observed population. Although
we may not have sufficient knowledge to adopt such a counterin-
tuitive strategy at the moment, our molecular knowledge of can-
cer, its therapy, and its evolution is increasing rapidly. In the
future, initial treatment might consider the probability distribution
of current states below the detection limit and even future states.

Treatment Strategies. Our objective is to demonstrate the advan-
tages of strategy-based treatments (adjusting drug dosages ac-
cording to the predicted risks) over the current paradigm of
personalized medicine (choosing treatments based on the mo-
lecular properties of the predominant subpopulation and chang-
ing drugs when tumor progression or relapse is detected).We note
that more complex individualized strategies, such as the ones
below, are also personalized medicine, just not as currently prac-
ticed. To fulfill this goal, we implemented six treatment strategies
in simulation studies. We assume in this simulation that the cell
type S is more sensitive to drug-1 (d1) than to drug-2 (d2) and that
the cell type R2 is more sensitive to d1 than the cell type R1 is to
d2. Hence, d1 is overall the superior drug.

Strategy 0: Current personalized medicine strategy. Initially,
treat the patient with d1 alone if xR1

xSþxR1þxR2þxR1−2
≤ 0:5 (i.e., the

R1 population does not dominate the tumor). Otherwise, treat
the patient with d2 alone. A nadir is a local minimum of the
total population among the time-series profile where the cur-
rent treatment is maintained. Maintain the current treatment
until either one of the following events occurs: (i) The total
population reaches twice the nadir population [Response Eval-
uation Criteria In Solid Tumors (RECIST) tumor progression
scaled up to represent tumor volume rather than a single linear
dimension], or (ii) the total population reemerges from a level

below the detection threshold (109; relapse). If either (i) or (ii)
occurs, switch to another drug. Strategy 0 mimics the current
paradigm of personalized medicine in that the initial treatment
is selected by molecular characterization of the predominant
population and classification into one of the four cell types.

Strategy 1: Minimize the predicted total population. Every
45 days, adjust~dðtÞ to minimize the predicted total population
by maintaining the (hypothetical) treatment over a period of
“lookahead time.” Vary d1 and d2 between 0 and 1 with a 0.01
interval. For each dosage combination, evaluate the predicted
total population by solving Eq. S1, with the initial populations
being the currently observed populations of each cell type,~dðtÞ
being fixed to the given dosage combination, and the dura-
tion being the lookahead time (45 days). Choose the dosage
combination that minimizes the predicted total population.

Strategy 2: Minimize the risk of incurable cells developing
unless there is an immediate threat of mortality. Every 45 days,
adjust ~dðtÞ to minimize the predicted R1−2 population if the
total population does not exceed a threshold. R1−2 is resistant
to both drugs; therefore, it is often incurable. All simulations
start with an R1−2 population of 0. By preventing the formation
of R1−2, the possibility for long-term disease control and/or
cure is maintained. If the total population exceeds the thresh-
old, adjust~dðtÞ to minimize the predicted total population. We
implement two threshold values in simulation studies: strategy
2.1:109 and strategy 2.2:1011. Strategy 2 places prevention of
the double-resistant mutant R1−2 at a higher priority than re-
duction of the total population, unless the total population has
reached a threshold to threaten the patient’s life. The rationale
is that suppressing R1−2 maintains the chance of cure.

Strategy 3: Minimize the predicted total population unless
there is a prediction that the first incurable cell will form
within 45 days. Every 45 days, adjust ~dðtÞ to minimize the
predicted total population if the predicted R1−2 population is
<1. Otherwise adjust~dðtÞ to minimize the predicted R1−2 pop-
ulation. The rationale is to switch to prevention of R1−2 only if
the predicted risk of R1−2 emergence is prominent. However, if
the current xR12 ≥ 1 and R1−2 is not curable (g0 − SaðR1−2; 1Þ−
SaðR1−2; 2Þ> 0), minimize the predicted total population; that
is, if R1−2 has already appeared, we no longer focus on pre-
venting its appearance. Given that we allow for “relative” re-
sistance, it is possible that R1−2 is not incurable; however, in
most of our parameter settings, it is incurable.

Strategy 4: Estimate the time to either incurability or death,
and react to the most proximal threat as long as there is a
chance of cure. Every 45 days, evaluate the predicted dura-
tions toward incurability (xR1−2 ≥ 1) and mortality (population
≥1013) dictated by the growth of S, R1, R2, and R1−2 popula-
tions. For each dosage combination~d, define τincð~dÞ as the pre-
dicted time to incurability (xR1−2 ≥ 1), given the currently ob-
served population and ~d fixed. Define τSð~dÞ as the predicted
time to xS causing mortality (xS ≥ 1013), given the currently
observed population and~d fixed. τR1; τR2; τR1−2 can be defined
in the same fashion. If the current xR1−2 < 1 or R1−2 is curable
[i.e., there exists some ~d such that each component of
diagðSa~dÞ> g0], vary ~d to maximize minðτinc; τS; τR1; τR2; τR1−2Þ,
with the constraint that minðτS; τR1; τR2; τR1−2Þ> 45 days. If
such a dosage combination does not exist, maximize
minðτS; τR1; τR2; τR1−2Þ. If the current xR1−2 ≥ 1 and R1−2 is
not curable, maximize minðτS; τR1; τR2; τR1−2Þ. The rationale
is to quantify the risk induced by each cell type as the pre-
dicted duration toward incurability or mortality and to find the
dosage combination to minimize the risk.

Predicting Populations of Each Cell Type. Eq. S1 can be solved ana-
lytically if~dðtÞ is piecewise constant. This is the case for practical
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treatments, because the dosages are altered only at fixed time
intervals or when the current treatment regimen fails. Suppose
with time interval ½0;T�, ~dðtÞ≡~d is a constant. If all components
of ~x> 1, Eq. S1 is then reduced to a first-order linear matrix
differential equation:

d~x
dt

¼
h�
I þ T

�
g0 − diag

�
Sa~d

�i
~x ≡ A~x: [S2]

The solution of Eq. S2 is simply the matrix exponential times of
the initial population eAt~xð0Þ. This solution sustains as long as
~dðtÞ stays constant and all components of~x> 1.

If some components of ~x< 1, (e.g., xR1−2 < 1), Eq. S2 is no
longer equivalent to Eq. S1. Uð~x− 1Þ~x sets fractional cell num-
bers to 0, and thus blocks their contribution to the growth rates.
In this case, we define a matrix B such that the rows corre-
sponding to the fractional populations are 0 and the remaining
rows are equal to those of A. Hence, Eq. S1 becomes

d~x
dt

¼ B~x; [S3]

and the solution is eBt~xð0Þ. Eq. S3 is valid only if the population of
each cell type does not cross the boundary of one cell (increases
from x< 1 to x> 1 and vice versa). When boundary crossing
occurs, the constant matrix B has to be updated, and the pop-
ulation before boundary crossing is treated as the initial pop-
ulation for the new differential equation.
Prediction of each population is summarized as follows:

i) Divide time into regular intervals (45 days in this applica-
tion), in which ~dðtÞ is constant within each interval but is
allowed to vary between intervals.

ii) At the beginning of each interval, update Eq. S1 by replacing
~dðtÞ with the new dosage combination and setting the initial
population as the calculated population of the prior interval.

iii) Construct the constant matrix B from ½ðI þ TÞg0 − diagðSa~dÞ�
Uð~x− 1Þ≡ A and the initial population of the current inter-
val. Set the rows of B corresponding to fractional populations
to 0.

iv) Denote ~xðTiÞ the initial population of the interval ½Ti;Tiþ1Þ
and Bi the corresponding constant matrix in Eq. S3. The
solution for t ∈ ½Ti;Tiþ1Þ is ~xðtÞ ¼ eBiðt−TiÞ~xðTiÞ if entries of
~xðtÞ do not cross the single-cell boundary.

v) If boundary crossing occurs on τ∈½Ti;Tiþ1�, update Bi accord-
ingly and set the initial population of Eq. S3 to~xðτÞ.

vi) Continue matrix and initial population updates to the end of
the total time considered (5 y in this study).

Simulation Studies. We carried out large-scale simulation studies
to assess the effectiveness of each treatment strategy under
different parameter settings. The following parameters in the
cancer growth model and treatment strategies were varied in
simulation experiments. The model parameter ranges were de-
signed to bracket realistic parameter values based on clinical,
in vitro, and in vivo data. By bracketing possible parameter
values, we were able to state that the conclusions were robust
and general across a broad range of individual tumors. All
evaluable combinations of parameters over these broad ranges
were investigated.

The initial total population was 5× 109, roughly equivalent to
a 5-cm3 lesion.
The lookahead time of predicting responses under each fixed
treatment strategy was 45 days, similar to the 6 wk that elapse be-
tween computed tomography (CT) evaluations on clinical studies.

Possible values for the ratio of the initial R1 and total popu-
lations were 0, 10−9, 10−7, 10−5, 10−3, 0.1, and 0.9. Thus, the
subpopulations vary from absent to only five cells; from four
2-log increments to 10%; and, finally, the case where they are
the dominant population.

Possible values for the ratio of the initial R2 and total popu-
lations were 0, 10−9, 10−7, 10−5, 10−3, 0.1, and 0.9. These
values are the same as the ratio of the initial R1 and total
populations.

Possible values for a net growth rate (per day), g0, were 0.001,
0.002642, 0.00698, 0.018439, 0.048714, 0.128696, and 0.34.
The maximum value is a worst case scenario assuming a
48-h growth rate, 100% cells in cycle, and zero death rate
(1–3). In contrast, the minimum value is a very slow-growing
tumor that doubles in size over a 2-y period. The low range is
roughly in accord with the range of growth rates that fit data
from 228 patients with pancreatic cancer, 101 of whom also
contributed autopsies (i.e., 0.005–0.02 per day) (4). The in-
termediate values represent equal log increments. A value of
0.055 corresponds to a relatively fast-growing realistic tumor
that doubles in size in the 6-wk interval between CT scans.

The sensitivity of S to d1 relative to the natural growth rate
was SaðS;1Þ

g0
. The ratio is < 1 if S is resistant to d1. Possible

values were 0.000560, 0.005379, 0.051674, 0.496387, 4.768310,
45.804544, and 440. A range of sensitivities was first derived.
The minimum sensitivity of interest should be sufficient to
cause a 25% increase in the progression-free survival (20%
decrease in the instantaneous progression hazard) for the
slowest growth rate tumor in the range listed above. That
corresponds to the minimum effect size deemed of interest
in clinical drug development programs. The maximum sensi-
tivity was calculated to cause a 4-log decrease in cell count
over 3 mo for the fastest growing tumor in the range listed
above. The highest sensitivity to the growth rate ratio involved
the highest sensitivity divided by the lowest growth rate. The
lowest sensitivity to the growth rate ratio involved the lowest
sensitivity divided by the highest growth rate. Between these
extremes, the range was divided into equally spaced logarith-
mic intervals.

The sensitivity of S to d2 over d1 was SaðS;2Þ
SaðS;1Þ. Possible values

were 0.000400, 0.001474, 0.005429, 0.020000, 0.073681,
0.271442, and 1. Here we assume that d1 is more effective
than d2 against S cells. Because d1 is superior to d2 by con-
vention, the highest possible value of this ratio is 1. The lowest
possible value is the lowest sensitivity of interest divided by
the highest sensitivity of interest. The range is divided into
equally spaced logarithmic intervals.

The sensitivity of R1 to d1 over sensitivity of S to d1 was
SaðR1;1Þ
SaðS;1Þ .

Possible values were 0, 10−5, 9.564 × 10−5, 9.146 × 10−4, 8.747 ×
10−3, 8.365 × 10−2, and 0.8. These were picked arbitrarily to
include 0 (complete resistance), 1× 10−5 (considerable resis-
tance), and 0.8 (minimal resistance), with equal logarithmic
spacing of other values between 1× 10−5 and 0.8.

The sensitivity of R2 to d2 over the sensitivity of S to d2 was
SaðR2;2Þ
SaðS;2Þ . Possible values were 0, 10

−5, 9.564 × 10−5, 9.146 × 10−4,
8.747 × 10−3, 8.365 × 10−2, and 0.8. These values are identical
to those immediately above.

The S→R1 transition rate (per cell division) was TðR1; SÞ. Pos-
sible values were 10−11, 2.154 × 10−10, 4.642 × 10−9, 10−7,
2.154 × 10−6, 4.642 × 10−5, and 10−3. Transitions can occur
by any known genetic or epigenetic mechanism, including mu-
tations, translocations, insertions, deletions, translocations,
amplifications, copy number change, DNA methylation, and/
or modification of histones. The total transition rate is the sum
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of all possible transition rates over all relevant loci that alter
the sensitivity/resistance phenotype. These loci may corre-
spond to “driver” loci; however, in some cases, they correspond
to “passenger” loci (i.e., some genetic changes, although not
part of the original oncogenic mutations, may still drive resis-
tance to therapy) (5). The lowest transition rate value assumes
the WT mutation rate estimated for human stem cells (6). It is
in accord with a minimal mutation burden in the most genet-
ically stable tumor, yet sequenced, retinoblastoma (minimum
2.2 × 10−8 burden in a full tumor, or 2.2 × 10−10 or less per
generation if 100 or more cell generations to generate the
retinoblastoma are assumed) (7).

The highest transition rate value assumes this rate initially,
a maximal mutator mutation of 50,000-fold increase in muta-
tion rate (8), and many parallel pathways to acquire resistance
(100 proteins, mutation of which could lead to resistance, each
with 20 possible loci for mutation). Note that a typical protein
is at least 100 amino acids, and, on average, 30% of loci in-
activate enzymes when there is a nonsynonymous mutation
(9). This rate is also ∼10-fold the rate of genetic change per
locus in cells with a chromosomal instability (CIN) mutation
(10), allowing for 10 parallel pathways of resistance by CIN.

The range of 10−11 to 10−3 thus encompasses a broad range of
possible values. It is in accord with modeling of data from a
series of 228 patients with pancreatic cancer, 101 of whom had
autopsies (4). The best fit to this data was with a genetic
change rate of 6 × 10−5, but all values within the range ex-
plored (10−9 to 10−4) had nearly equally good fits.

The other values are at equally spaced logarithmic intervals.

Possible values for an S → R2 mutation rate (per cell division)
TðR2; SÞ were 10−11, 2.154 × 10−10, 4.642 × 10−9, 10−7, 2.154 ×
10−6, 4.642 × 10−5, and 10−3. These values are identical to
those directly above them.

There are 79 ¼ 40; 353; 607 total possible parameter config-
urations. For each configuration, we applied each of the six
strategies (strategies 2.1 and 2.2 were treated as distinct strate-
gies) independently. The population of each cell type was sim-
ulated every 45 days according to the imposed drug dosage and
Eq. S1. The drug dosage for the following period was updated
according to each of the six strategies. Simulation stopped if the
total population of cancer cells exceeded 1013 or the simulation
time exceeded 5 y. The survival period of each strategy in each
parameter configuration was reported.
Due to the inclusion of extreme parameter values, the pa-

rameter combinations were then prescreened and the following
combinations were eliminated from the final analysis: (i) any
combination in which one of the two drugs was completely in-
effective against all cell types, because there are no strategic
choices in this case or (ii) any combination in which all treatment
strategies resulted in survival greater than 4 y, corresponding to
very slow growth rates or highly sensitive cells. Because the
simulation was truncated at 5 y, and because a significant survival
difference required at least a 25% improvement compared with
a reference, it was not possible to ascertain if there was im-
provement if all strategies resulted in survival for longer than 4 y.

Comparison of Total Population Minimizing Strategy (Strategy 1)
with Other Strategies Switching Between Minimizing Total and R1–2
Populations.Here, we compare strategy 1 with strategies 2.1, 2.2, 3,
and 4. Strategy 1 minimizes the estimated total population and
does not treat R1−2 differently. The other four strategies all have
some scheme for switching between minimizing the total pop-
ulation and the R1−2 population.
At each time point, when deciding the drug dosage, we have to

consider two types of risks: the risk from the R1−2 population and
the risk from the remaining cell types. If strategy 1 is among the

better strategies, then, in principle, the risk from the S, R1, and
R2 populations should outweigh the risk from the R1−2 pop-
ulation. Thus, if we can quantify the risk from each population,
we may predict whether strategy 1 works.
We quantify the risk from each population in the following

way. Suppose we apply a single drug constantly to minimize a
population and ignore the discrepancy of fractional counts, what
is the time that it takes the target population to reach a mortal
number? Formally, define

F1 ¼ ðI þ TÞdiagðg0Þ− diagðSa~d1Þ
F2 ¼ ðI þ TÞdiagðg0Þ− diagðSa~d2Þ;

[S4]

where d1 ¼ ½1; 0�t and d2 ¼ ½0; 1�t. F1 and F2 are the growth rate
matrices of applying d1 or d2 constantly.
For each population i ∈ fS;R1;R2;R12g, define

τi ¼ arg mint
�
min

�ðexpðF1tÞ~xð0ÞÞi; ðexpðF2tÞ~xð0ÞÞi
�
≥ xmortal

�
:

[S5]

τi is the estimated time that population i takes to reach the
mortal threshold. We quantify the risks from each population
with τi. A smaller τi implies a higher risk. The total risk of
mortality, τtotal, can be estimated from the sum of the rates at-
tributable to each τi:

1
τtotal

¼
X
i

�
1
τi

�
: [S6]

In a similar manner, we define τinc, the time to incurability, as the
estimated time until the first R1−2 cell forms, given that these
cells are incurable:

τinc ¼ arg mint
�
min

�ðexpðF1tÞ~xð0ÞÞ4; ðexpðF2tÞ~xð0ÞÞ4
�
≥ 1

�
;

[S7]

where x4 is the number of the fourth cell type, R1−2.
Conditions in which τinc is strictly minimum (i.e., τinc < τtot)

should be more likely to have at least one of the strategies 2.1,
2.2, 3, and 4 superior to strategy 1. In fact, among virtual patients
for whom this condition is met, strategy 1 is significantly inferior
to either strategy 2.1, 2.2, 3, or 4 in 13.4% of cases, a 5.4-fold
enrichment over when the condition is not met (Table S1).

Parameter Values for the Illustrative Case. In the illustrative case
described in the main text, there is an initial undetected minority
population of R1 cells (preexisting undetected heterogeneity),
rapid transition rates overall (rapid genetic dynamics), and a faster
acquisition of R2 resistance than of R1 resistance (asymmetry).
The parameters are:

R1

N
¼ 10−5

R2

N
¼ 0

R1−2

N
¼ 0

g0 ¼ 0:05 ðall cell typesÞ

SaðS; 1Þ ¼ 0:15

Beckman et al. www.pnas.org/cgi/content/short/1203559109 4 of 8

www.pnas.org/cgi/content/short/1203559109


SaðR1; 1Þ ¼ 0:0225

SaðR1; 2Þ ¼ 0:15

SaðR2; 1Þ ¼ 0:15

SaðR2; 2Þ ¼ 0:0225

SaðR1−2; 1Þ ¼ 0:0225

SaðR1−2; 2Þ ¼ 0:0225

Transition rate to resistance to d1 : 4× 10−9
Transition rate to resistance to d2 : 4× 10−7

Linkage of Core Model to Other Models. The current model focuses
on drug sensitivity/resistance phenotypes as determined by ge-
netic and epigenetic factors and their influence on optimal
personalized medicine factors. The focus on heritable phenotypes
and the condensation of a very large number of genotypes onto
a smaller number of phenotypic clusters are both essential to
allow computationally feasible evaluation of complex treatment
strategies. We term this focused model the “core model.” Sup-
ported by extensive sensitivity analysis over a broad range of
parameters, the core model has produced high-level conclusions
about personalized medicine strategies.
In applying this core model in detail to real tumors, many

additional complexities will need to be taken into account. These
additional complexities will need to be evaluated by separate
linked models, which then feed information to the core model.
This framework of linked models then allows representation of
the complexities of individual tumors and therapies so that de-
tailed conclusions can be drawn. This is a more efficient approach
for a complex system in that properties of individual tumors can
be computed in separate steps and then applied to a large number
of candidate treatment strategies.
When applied to real tumors, the core model will, in many

cases, need to specify probability distributions of parameter
values rather than discrete values. The current core model uses
broad ranges of parameter values with a uniform distribution
(each value of the parameter is assigned equal probability);
however, when linked to other sources of information, these
probability distributions may be narrowed down and become
more structured. Below, we give a high-level concept of how the
core model would assimilate information from other models
about (i) the heritable states underlying a sensitivity or resistance
phenotype and transitions between these states, (ii) passenger vs.
driver mutations, (iii) nongenetic mechanisms of resistance, and
(iv) biodistribution.
Sources of information for mapping phenotypic states onto genetic states
and for estimation of transition rates. The following sources would be
used to get a mapping between phenotypic sensitivity/resistance
states and underlying genotypes, as well as to estimate the prob-
ability of existence of a particular state:

i) Direct measurement: This requires the development of non-
invasive methods for sampling and molecular and/or pheno-
typic characterization at the single-cell level.

ii) Empirical databases: By collecting information on a large
number of patients at diagnosis and autopsy, one can begin
to characterize the possible states and their likelihood of oc-
currence empirically. For example, in a recent paper (11), the
detailed subclonal structure of ∼100 triple-negative breast
cancers was presented, albeit not yet at single-cell resolution.

Molecular studies of panels of cell lines can be used to sup-
plement this empirical information, and these cell lines can
be directly tested for drug sensitivity phenotypes to correlate
with the genetic and epigenetic annotations (12).

iii) Computational pathway analysis: As an example PARADIGM
software (University of California at Santa Cruz Cancer Ge-
nomics Browser) can analyze over 1,400 curated signaling
pathways. Such software may be used in the future in an at-
tempt to predict what molecular substates may be associated
with a particular sensitivity profile in that a variety of specific
modifications might present with similar phenotypic effects an-
alyzed at the pathway level (13). By using this software, it might
be possible to predict additional genetic states associated with
a phenotype based on their pathway relationship to others
that had been determined experimentally.

iv) Functional genomics: High-throughput screens with siRNA
and shRNA can be applied systematically to predict what
genotypes might be associated with sensitivity and resistance
phenotypes (14).

The transitions between these states may be by any mechanism,
not limited to mutations of a single driver gene but including all
known mechanisms of genetic and epigenetic change (mutation,
insertion, deletion, translocation, amplification, chromosome loss
or gain, DNA methylation, or histone modification). The total
transition rate between phenotypic states A and B is the sum of
the rates corresponding to all possible ways of getting from
phenotype A to phenotype B. Given that we may not know which
of many underlying molecular states is currently resulting in
phenotype A, we may have to calculate the rate of transition to B
for each possible molecular state underlying phenotype A and
add up all these rates, each multiplied by the probability of a
particular molecular state underlying the phenotype. For any in-
dividual rate, we will need to know how similar the two molecular
states are and the rates of possible interconversion mechanisms.
Because genetic instability mutations may affect these individual
rates, the individual rates themselves may need to be represented
as ranges or probability distributions.
Driver and passenger mutations.The model is fundamentally a model
of phenotypic transitions between drug sensitivity states, and the
phenotypic transition may occur via any of a large number of
possible genetic changes. The total rate of phenotypic change is
the sum of the rates from all the individual changes that could, in
principle, lead to the phenotypic change. For drug resistance, this
could be by acquisition of a new driver mutation that circumvents
the previous therapy, but it could also be due to a passenger
mutation. Such a mutation, although not implicated in driving the
tumor originally, may drive resistance. For example, a mutation
may occur that leads to alterations in cellular distribution or
metabolism of the drug.We have previously written about the fact
that passenger mutations represent a reservoir of diversity that
may also contribute to drug resistance, and therefore survival
under drug therapy (5).
Passenger mutations differ from driver mutations in that they

are not selected for in the absence of therapy. This is reflected
in the net growth rate parameters in the absence of drug therapy
in the model, which will not reflect an increase in growth rate
with the acquisition of a passenger mutation.
Nongenetic changes. Known mechanisms of resistance to vemur-
afenib also exemplify resistance mechanisms that do not involve
genetic change (15, 16). In particular, in colorectal cancer, ve-
murafenib inhibition of B-Raf leads to feedback up-regulation of
EGF receptor (EGFR), in turn, leading to two events: (i) up-
stream activation of Ras, leading to dimerization of B-Raf,
rendering vemurafenib ineffective and (ii) parallel activation of
the pI3-kinase signaling pathway, potentially circumventing the
Ras-Raf-Mek pathway to the extent that it may still be inhibited.
This resistance is hard-wired, occurs rapidly, and does not re-
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quire genetic change. Such feedback loops are common in sig-
naling pathways, and, in fact, a similar feedback loop affects pI3-
kinase pathway inhibitors (17).
In the main text, we state that “‘drug-1’ and ‘drug-2’ may also

refer to combinations directed at single states.” This statement
has a very specific meaning: in a case such as vemurafenib in
colorectal cancer, vemurafenib clearly should be given in com-
bination with an EGFR inhibitor. If the heritable state is that
described for colorectal cancer (15), drug-1 means an optimized
drug or drug combination for the transient adaptations that can
be assumed within that heritable state (i.e., a combination, such
as vemurafenib and cetuximab). The optimized combination
must be determined by a linked model separate from the core
model. High-content phosphoproteomics (18) is an important
source of information in attempting to understand signaling as it
relates to nongenetic mechanisms of resistance.
In some cases, an optimized combination to deal with non-

genetic resistance is not available. In this case, that fact is reflected
in lesser net efficacy parameter input into the model. In other

cases, nongenetic resistance may be variable. In this case, it can be
represented by a probability distribution of the efficacy param-
eter. This probability distribution could be different in different
genetic states; that is, genetic states could influence the likelihood
of a particular resistance mechanism. All this can be input into the
parameter distributions in the model if it is known.
Biodistribution. Just as drug-1 and drug-2 are optimized combi-
nations if necessary to deal with nongenetic resistance mecha-
nisms, the dose and schedule of drug-1 or drug-2 given as a single
agent are assumed to be optimized with respect to drug delivery.
To the extent that the continuum of intratumoral concentrations
corresponding to a dose is known, this information can be fed into
the core model’s efficacy parameter distribution. We are actively
researching the problem of determining the optimal dose for
antibodies as a function of their biodistribution (19) and the
biophysical factors that determine this (20). These problems are
largely unsolved, but information can be fed from complex
models of this phenomenon into the core model if available.
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Fig. S1. Supplementary illustrative case treated by the current personalized medicine strategy. Time (months) is on the x axis, and cell number is on the y axis.
The total number of cells (N) is shown in blue (multiplied by 1.5 to create separation from the predominant population for clarity), S cells are shown in green,
R1 cells are shown in red, R2 cells are shown in light blue, and R1–2 cells are shown in magenta. Treatments are indicated by the solid bars at the top: green is
drug-1, blue is drug-2, and both colors indicate a combination. The patient is treated with drug-1 and experiences a complete response, only to relapse 25 mo
after diagnosis with R1 cells. He/she is then treated with drug-2, experiencing a cure 32 mo after initial diagnosis.
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Fig. S2. Supplementary illustrative case treated by the nonstandard personalized medicine strategy. Time (months) is on the x axis, and cell number is on the
y axis. The total number of cells (N) is shown in blue (multiplied by 1.5 to create separation from the predominant population for clarity), S cells are shown in
green, R1 cells are shown in red, R2 cells are shown in light blue, and R1–2 cells are shown in magenta. Treatments are indicated by the solid bars at the top:
green is drug-1, blue is drug-2, and both colors indicate a combination. The patient is treated with drug-1 for 4 mo and then with an equal combination of
drug-1 and drug-2, experiencing a rapid cure in 10 mo.

Fig. S3. Graphical representation of phenotypic states in genetic space, illustrating a nonstandard personalized medicine scenario. The large dashed circle
represents the genetic space that is treatable by available therapies. The three solid circles represent genetic states that can correspond to phenotypic states.
The large yellow circle is the predominant state of the majority of cells at initial diagnosis (“initial-predominant state”). The black circle, outside the treatable
space, is a lethal incurable state (“end state”). The small red circle within the treatable space is a “penultimate treatable state.” It is treatable because it is still
within the dashed circle, but it is a penultimate treatable state in that it is genetically close to the end state. Its smaller size indicates that at initial diagnosis, it
had fewer cells and perhaps was even undetectable. The threat from the initial-predominant state is significant (yellow) because it contains the largest tumor
burden. However, the threat from the penultimate-treatable state is greater (red) because of its proximity to the end state. Black arrows represent genetic
transitions, the dashed black arrow indicates that several steps are required, and solid arrows represent single-step transitions. The thick arrow denotes a faster
transition, either because there are multiple parallel genetic pathways to the phenotype or because the starting state has a mutator phenotype. The pen-
ultimate-treatable state may be preexisting at diagnosis (small red circle inside initial-predominant state) and undergo clonal expansion (red arrow), or it may
arise from the initial predominant state by mutation (black arrow).
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Table S1. Conditions under which strategy 1 is significantly inferior

No. of cases strategy 1 significantly
worse* than strategy 2, 3, or 4

No. of cases strategy 1 not significantly
worse* than strategy 2, 3, or 4

τ1–2 strictly minimum 36,670 236,056
τ1–2 not strictly minimum 4,532 176,188

*A strategy is defined as significantly better than another if it provides at least 8 wk of absolute and 25% relative
improvement in overall survival.

Table S2. Comparison of current personalized medicine strategy and nonstandard personalized medicine strategy

Current personalized medicine strategy Nonstandard personalized medicine strategy

Molecular characteristics Focus on average or consensus characteristics Minority characteristics may be important
Disease course Focuses on initial or current states Focuses on end game, especially penultimate

treatable states*
Strategy horizon Current and (sometimes) next maneuver Attempts to think several steps ahead
Mathematical optimization May contribute to predictive markers

for current step
Global or piecewise optimization over treatment course

*Penultimate treatable states are defined in the legend for Fig. S3.
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