Drugs are bad...for pathogens

Testing an alternative to the reward model of recreational drug use and its implications for smoking cessation.

Edward H. Hagen¹, Casey Roulette¹, Mark Remiker¹, Jennifer Wilcox¹, Roger J. Sullivan², Didier Monchy³

> ¹Washington State University, Vancouver ²California State University, Sacramento ³Institut Pasteur de Bangui, CAR

Most recreational drugs are plant neurotoxins

Drug	Plant	Toxin	Neurotransmitter	Receptor
Tobacco, Pituri	Nicotiana, Duboisia	Nicotinea	Acetylcholine	Nicotinic receptor
Betel nut	Areca catechu	Arecolinea	Acetylcholine	Muscarinic receptor
Coca	Erythroxylum	Cocaine ^e	Norepinephrine, epinephrine	Adrenergic receptors
Khat	Catha edulis	Ephedrine ^e , cathinone ^{a,c}	Norepinephrine, epinephrine	Adrenergic receptors
Cactus	Lophophora	Mescaline	Serotonin	Serotonin receptor
Coca	Erythroxylum	Cocaine	Dopamine	Dopamine receptor
Khat	Catha edulis	Cathinonea.e	Dopamine	Dopamine receptor
Coffee, Cola nut	Coffea, Cola nitida	Caffeineb	Adenosine	Adenosine receptor
Tea	Camellia sinensis	Caffeine ^b , theophylline ^b , theobromine ^b	Adenosine	Adenosine receptor
Chocolate	Theobromine cacao	Theobromine ^b	Adenosine	Adenosine receptor
Opium	Papaver somniferum	Codeine", morphine"	Endorphins	Opioid receptor
Cannabis	Cannabis sativa	Δ9-THC ^e	Anandamide	Cannabinoid receptor

Relationships between plant neurotoxins commonly used as drugs and CNS receptors.

"receptor agonist, "receptor antagonist, "reuptake inhibitor

The reward model

Drugs of abuse stimulate reward circuitry in the brain

The paradox of drug reward

Nicotine, caffeine, and other drugs only exist because they deterred herbivores, not rewarded them.

Herbivores, in turn, have evolved to avoid, expel, and neutralize toxins – reactions to toxins should generally be aversive, not be rewarding.

Sullivan et al. 2008 *Proc R Soc.* Hagen et al. 2009 *Neuroscience*.

Tobacco Hornworm Manduca sexta

Nicotine is extremely toxic to humans

Toxin	Recreational dose	Lethal dose
Hydrogen cyanide		50 mg
Nicotine	1-4 mg	30-60 mg

But, this acute toxicity plays almost no role in mainstream drug use theory

(Nicotine is not a carcinogen)

Why no nicotine overdoses?

~ 1 billion tobacco users

~15 billion cigarettes smoked every day

Acute mortality from recreational tobacco use is essentially non-existent

Why?

Nicotine activates many toxin defense mechanisms

- Bitter taste receptors
- Gastrointestinal "taste" receptors
- Xenobiotic-sensing nuclear receptors
- Xenobiotic metabolizing enzymes
- Aversion circuitry in the CNS

Is the brain regulating exposure to plant neurotoxins?

The pharmacophagy model

Psychoactivity is a reliably cue of neurotoxicity, and although neurotoxins are bad for us they might be worse for pathogens with nervous systems.

The brain is regulating exposure to psychoactive substances as a form of:

- Chemoprophylaxis: recreational drug use deters infection by pathogens with nervous systems
- Chemotherapy: recreational drug use treats infection by pathogens with nervous systems

Psychoactive drugs

Hypothesis

Recreational tobacco use is an (unconscious) form of self-medication against helminths

Efficacy of nicotine against helminths

- Many commercial anthelmintics (e.g., levamisole, pyrantel) attack same neuroreceptor system as nicotine (nAChRs).
- Nicotine sulfate was widely used to de-worm livestock.
- Aqueous tobacco extracts still used in developing world to deworm livestock.
- Tobacco widely reported as an anthelmintic in the ethnomedical literature.

Testing the chemotherapy hypothesis with a randomized control trial

Predictions

Infection with helminths should increase smoking

Elimination of helminths should decrease smoking

Study population: Aka foragers of the Central African Republic

- Heavy tobacco use
- Almost no access to commercial anthelmintics.

Study population

- Three neighboring populations
 of Aka
- 191 males (most Aka women do not smoke)

Worm burden

Measure worm burden

- Appreciable levels of 3 (4) species
 - Hookworm Ancylostoma duodenale, Necator americanus (99%)
 - Ascaris lumbricoides (57%)
 - Whipworm Trichuris trichiura (56%)
- Semi-quantified total egg count of all species

Stool collection kit Formalin/PVA

Randomize into treatment and placebo control groups (double-blind)

400 mg albendazole

Placebo

Outcome variable

Measure salivary cotinine

Barry Hewlett and Casey Roulette interviewing Aka about tobacco use

- Nicotine metabolite
- Half life ~ 18 hrs (nicotine half life ~ 2 hrs)
- Indexes intensity of recent nicotine exposure

Saliva collection tube

Randomized control trial

Prediction

Albendazole treatment group will have reduced salivary cotinine relative to placebo control group

Manipulation check

Worm burden

Distribution of Δ cotinine/cotinine in treatment vs control groups

Δcotinine = post-treatment cotinine conc. - pretreatment cotinine conc.

Means not significantly different

Distributions are significantly different

Two-sample Kolmogorov-Smirnov test

 $D^{-} = 0.32$, p-value = 0.019

Self-reported cannabis use

Adding age to the model

Limitations: Altered behavior or altered metabolism?

- Cotinine biomarker conflates smoking behavior and nicotine metabolism
- Drugs, including albendazole, induce & inhibit metabolic enzymes
 - Nicotine largely metabolized by CYP2A6
 - No evidence that albendazole induces or inhibits CYP2A6 (?)
 - Post-treatment saliva collected ~ 2 weeks after treatment
- Infections & inflammation alter xenobiotic metabolism (usually down-regulate)

Conclusions

- Hypothesis
 - Humans might have an evolved (but unconscious) propensity to consume plant neurotoxins to kill pathogens: plant neurotoxins are bad for us but worse for our pathogens.
 - If so, treating helminths might decrease smoking behavior
- In support, we found
 - Albendazole treatment skewed ∆cotinine to lower values relative to placebo.
 - Significant mean effect of treatment depended on selfreported cannabis use and/or age
- Limitation
 - Study design cannot disentangle behavioral changes from metabolic changes

Acknowledgements

Casey Roulette PhD project

Thanks to the WSU Alcohol and Drug Abuse Research Program for funding, and to our research assistants: Nicaise, and Mesmin.