Age Incidence of Cancers, Evolutionary Dynamics, Unlucky Events \& Numbers

Daniel S. Fisher

Stanford University

First Biannual international Evolution and Cancer Conference, UCSF, June 3-5, 201I

Outline:
History: inferences from age incidence
Basic dynamics and numbers
Stochasticity and unlucky events
Simple mutation + selection scenarios
Prospects?

BRITISH JOURNAL OF CANCER

VOL. VIII
MARCH, 1954
NO. 1

THE AGE DISTRIBUTION OF CANCER AND A MULTI-STAGE THEORY OF CARCINOGENESIS.
P. ARMITAGE and R. DOLL.

Pancreas (M)
Pancreas (F)

Cumulative cancer
mortality ~ (age) ${ }^{\mathrm{K}}$
ii => ?? K mutations
K~ 7 for many cancers

"The age incidence of chronic myeloid leukemia can be explained by a one-mutation model"

Franziska Michor*t, Yoh Iwasa $\ddagger \S$, and Martin A. Nowak§ PNAS 2006;103:14931-14934

Power law fit:
Cumulative cancer probability to age T $\mathrm{P}_{\mathrm{C}}(\mathrm{T}) \sim \mathrm{T}^{\mathrm{K}} \mathrm{w} / \mathrm{K} \sim 3$

Parameters:
Mutation rate
Population size:
Selective advantage
Cell division rate
Detection probability
(a)

$$
\begin{gathered}
m=3 \times 10^{-8}, \\
N=10^{5} \\
s=1 \% \\
r=60 / y r \\
10^{-3}
\end{gathered}
$$

(b)
5×10^{-10}
10^{6}
10^{6}
2\%
100
10^{-1}

Mutation, Selective Sweep, and Time Scales

Original population no mutates at rate μ to $n_{\text {। }}$ population Mutant population grows faster by selective advantage s $=>e^{\text {st }}$

Stochastic mutations at rate $N \mu$ but die out with prob.l-s $=>t_{\text {est }} \sim 1 /(N \mu s)$
Deterministic selective sweep $=>t_{f i x} \sim 1 / s \log N s$

What are the Numbers that Determine Cumulative Cancer Incidence, $\mathrm{PC}_{\mathrm{C}}(\mathrm{T})$?

N Population size of susceptible cells (stem cells? others?): Hematapoetic stem cells: $\mathrm{N} \sim 10^{7}-10^{8}$ Solid tissues: up to 10^{12} total cells

Mutation rates per somatic cell division:
Point mutations: $\sim 10^{-9}$ Deletions? Copy \# changes?
Target sizes? For one gene knockout: $10^{2}-10^{3}$
m Total rate for pre-oncogenic genetic changes?
s Selective advantage of mutants beneficial, neutral, or deleterious
r Rates of cell division: $10^{-2}-10^{3} / \mathrm{yr}$
T Age
Drastically simplified: global competition, no niches, etc.

Processes that give $\mathrm{P}_{\mathrm{C}} \sim \mathrm{T}^{\mathrm{K}}$?

K sequential sweeps of "beneficial" mutations
Mutation limited: time between sweeps $\sim \mathrm{I} /(\mathrm{Nms})$ with fixation time of sweep $1 / s \log (N s)$ shorter
$\operatorname{Pc} \approx \operatorname{Prob}(\mathrm{K}$ sweeps before T$) \sim(\mathrm{NmsrT})^{\mathrm{K}} \mathrm{e}^{-\mathrm{NmsrT} / \mathrm{K}!}$
But: for $K=7$ would need

$$
\operatorname{srT}>\mathrm{K} \log (\mathrm{Ns}) \sim 10^{2}=>\mathrm{Nm}<10^{-2}
$$

unreasonably small mutation rate
Cf:. single mutation and single sweep (Michor, Iwasa, Nowak)
Can have slow fixation with s very small, but: need $\mathrm{Nm} \sim 10^{-3}$ unreasonably small

Processes that give $\mathrm{P}_{\mathrm{C}} \sim \mathrm{T}^{\mathrm{K}}$?

K-I neutral then one beneficial
$\mathrm{N}=$ total pop'n $\quad \mathrm{n}_{\mathrm{j}}=$ popul'n w / j neutral mut'ns
$\mathrm{m}_{\mathrm{j}}=$ mut'n rate for $\mathrm{j}^{\text {th }}$ mut'n
$s=$ selective advantage of $K^{\text {th }}$ (cancerous) mutant
Simple deterministic approximation for intermediaries

$$
\begin{array}{ll}
d n_{1} / d t=m_{1} N & \Rightarrow n_{1}=N m_{1} t \\
d n_{2} / d t=m_{2} n_{1} & \Rightarrow n_{2}=1 / 2 N m_{1} m_{2} t^{2}
\end{array}
$$

$\mathrm{dn}_{\mathrm{K}} / \mathrm{dt} \approx \mathrm{s} \mathrm{n}_{\mathrm{K}}+\mathrm{m}_{3} \mathrm{n}_{2}$ stochastic w/fixation prob. $\propto \mathrm{s}$
$=>\operatorname{Pc}(T) \equiv \operatorname{Prob}($ cancer by $T) \approx^{1 / k!} \mathrm{Nm}_{1} \mathrm{~m}_{2} \ldots \mathrm{~m}_{\mathrm{K}}(\mathrm{r} T)^{\mathrm{K}} \mathrm{s}$
But: Need enormous N for det'c approx'n
Need unreasonably large m's for K=7
Need almost exact neutrality

Stochastic Dynamics with Neutral Mutations

Deterministic Approx'n

Stochastic

Rare events:
least unlikely ones => early onset cancer

4-Mutation Neutral Scenario: for CM Leukemia?

Unlucky individual with age at onset 65 yrs when cumulative prob. $\mathrm{Pc}_{\mathrm{c}} \sim 2 \%$
$\mathrm{N}=3 \cdot 10^{7}$ stem cells $r=20$ cell divisions/yr neutral 1,2,3
s of 4th mutant: 20\%
mut'ns: 1 st: $m_{1}=10^{-7}$ breaks DNA repair mut'ns $2,3,4: m=10^{-4}$

Age incidence looks approx like $\mathrm{K}=3$

Multiple Regimes:

\& different unlucky events
A"common cancer"

2 neutral + | beneficial
Mutation limited: $\mathrm{Nm}_{1} \ll 1$

Regime:
A
B
C
D
$\operatorname{Pr}\left(\mathrm{m}_{1} \mathrm{~m}_{\mathrm{I}} \mathrm{I}\right) \quad \mathrm{Nm} \quad \mathrm{Nm}_{1} \quad \mathrm{Nm}_{1} \mathrm{~m}_{2}^{1 / 2}\left(\mathrm{~m}_{3} \mathrm{~s}\right)^{1 / 4} \mathrm{rt} \quad$ likely $\operatorname{Pr}(m u t ' n 2) \quad m_{2} r t \quad m_{2}\left(m_{3} s\right)^{1 / 2}(r t)^{2} \quad$ likely likely $\operatorname{Pr}(m u t ' n 3) \quad m_{3}(r t)^{2} s \quad$ likely likely

Cumulative:
$\mathrm{P}_{\mathrm{C}} / \mathrm{Nm}_{1} \quad \mathrm{~m}_{2} \mathrm{~m}_{3} \mathrm{~s}(\mathrm{rt})^{3} \quad \mathrm{~m}_{2}\left(\mathrm{~m}_{3} \mathrm{~s}\right)^{1 / 2}(\mathrm{rt})^{2} \quad \mathrm{~m}_{2}^{1 / 2}\left(\mathrm{~m}_{3} \mathrm{~s}\right)^{1 / 4} \mathrm{rt}$

4-Mutation Overlapping Sweep Scenario: for CML?

Unlucky individual with age at onset 65 yrs when cumulative prob. $\mathrm{P}_{\mathrm{C}} \sim 2 \%$

Almost the same quantitatively if $\mathrm{m} \sim 10^{-8}$

Complications -- Even When "Simple"

Interplays: selection limited \& mutation limited. Hard to infer
Stochastic \& deterministic aspects
Different for unusually early incidences
Numbers crucial, but still many plausible scenarios
Multiple overlapping sweeps
Valley crossing
Neutral wandering and selection on genomes
And in real life ... Phenotypes crucial, niches, heterogeneties
Local or global competition
Spatial and temporal dependence
Aggravating factors, etc, etc.
Some hopes?
Delicate balance cancer vs normal cells and rare events
=> small subtle changes could be crucial
For understanding: Big and small numbers limit viable scenarios

