
INNOVATION 

Since its introduction in 1960, the Kalman 
filter has become an integral component in 
thousands of military and civilian navigation 
systems. This deceptively simple, recursive 
digital algorithm has been an early-on favorite 
for conveniently integrating (or fusing) 
navigation sensor data to achieve optimal 
overall system performance. To provide 
current estimates of the system variables -
such as position coordinates- the filter uses 
statistical models to properly weight each new 
measurement relative to past information. It 
also determines up-to-date uncertainties of the 
estimates for real-time quality assessments or 
for off-line system design studies. Because of 
its optimum performance, versatility, and ease 
of implementation, the Kalman filter has been 
especially popular in GPS/inertial and GPS 
stand-alone devices. In this month's column, 
Larry Levy will introduce us to the Kalman 
filter and outline its application in GPS 
navigation. 

Dr. Levy is chief scientist of the Strategic 
Systems Department of The Johns Hopkins 
University Applied Physics Laboratory. He 
received his Ph.D. in electrical engineering 

-from Iowa State University in 1971. Levy has 
worked on applied Kalman filtering for more 
than 30 years, codeveloped the GPS translator 
concept in SATRACK (a GPS-based missile
tracking system), and was instrumental in 
developing the end-to-end methodology for 
evaluating Trident II accuracy. He conducts 
graduate courses in Kalman filtering and 
system identification at The Johns Hopkins 
University Whiting School of Engineering and 
teaches Navtech Seminars's Kalman Filtering 
short course. 
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"Innovation" is a regular column featuring 
·discussions about recent advances in GPS 
technology and its applications as well as the 
fundamentals ofGPS positioning. The column 
is coordinated by Richard Langley of the 
Department of Geodesy and Geomatics 
Engineering at the University of New 
Brunswick, who appreciates receiving your 
comments as well as topic suggestions for 
future columns. To contact him, see the 
"Columnists" section on page 4 of this issue. 

When Rudolf Kalman formally introduced 
the Kalman filter in 1960, the algorithm was 
well received: The digital computer had suf
ficiently matured, many pressing needs 
existed (for example, aided inertial naviga
tion), and the algorithm was deceptively sim
ple in form. Engineers soon recognized, 
though, that practical applications of the 
algorithm would require careful attention to 
adequate statistical modeling and numerical 
precision. With these considerations at the 
forefront, they subsequently developed thou
sands of ways to use the filter in navigation, 
surveying, vehicle tracking (aircraft, space
craft, missiles), geology, oceanography, fluid 
dynamics, steel/paper/power industries, and 
demographic estimation, to mention just a 
few of the myriad application areas. 

EQUATION-FREE DESCRIPTION 
The Kalman filter is a multiple-input, multi
ple-output digital filter that can optimally 
estimate, in real time, the states of a system 
based on its noisy outputs (see Figure 1). 
These states are all the variables needed to 
completely describe the system behavior as a 
function of time (such as position, velocity, 
voltage levels, and so forth). In fact, one can 
think of the multiple noisy outputs as a multi
dimensional signal plus noise, with the sys
tem states being the desired unknown 
signals. The Kalman filter then filters the 

noisy measurements to estimate the desired 
signals. The estimates are statistically opti
mal in the sense that they minimize the mean
square estimation error. This has been shown 
to be a very general criterion in that many 
other reasonable criteria (the mean of any 
monotonically increasing, symmetric error 
function such as the absolute value) would 
yield the same estimator. The Kalman filter 
was a dramatic improvement over its mini
mum mean square error predecessor, in
vented by Norbert Wiener in the 1940s, 
which was primarily confined to scalar sig
nals in noise with stationary statistics. 

Figure 2 illustrates the Kalman filter algo
rithm itself. Because the state (or signal) is 
typically a vector of scalar random variables 
(rather than a single variable), the state 
uncertainty estimate is a variance-covariance 
matJ.ix- or simply, covariance matrix. Each 
diagonal term of the matrix is the variance of 
a scalar random variable - a description of 
its uncertainty. The term is the variable's 
mean squared deviation from its mean, and 
its square root is its standard deviation. The 
matrix's off-diagonal terms are the covari
ances that describe any correlation between 
pairs of variables. 

The multiple measurements (at each time 
point) are also vectors that a recursive algo
rithm processes sequentially in time. This 
means that the algorithm iteratively repeats 
itself for each new measurement vector, 
using only values stored from the previous 
cycle. This procedure distinguishes itself 
from batch-processing algorithms, which 
must save all past measurements. 

Starting with an initial predicted state esti
mate (as shown in Figure 2) and its associ
ated covariance obtained from past infor
mation, the filter calculates the weights to be 
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Figure 1. The purpose of a Kalman filter 
is to optimally estimate the values of 
variables describing the state of a 
system from a multidimensional signal 
contaminated by noise. 
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used when combining this estimate with the 
first measurement vector to obtain an 
updated "best" estimate. If the measurement 
noise covariance is much smaller than that of 
the predicted state estimate, the measure
ment's weight will be high and the predicted 
state estimate's will be low. 

Also, the relative weighting between the 
scalar states will be a function of how 
"observable" they are in the measurement. 
Readily visible states in the measurement 
will receive the higher weights . Because the 
filter calculates an updated state estimate 
using the new measurement, the state esti
mate covariance must also be changed to 
reflect the information just added, resulting 
in a reduced uncertainty. The updated state 
estimates and their associated covariances 
form the Kalman filter outputs. 

Finally, to prepare for the next measure
ment vector, the filter must project the 
updated state estimate and its associated 
covariance to the next measurement time. 
The actual system state vector is assumed to 
change with time according to a deterministic 
linear transformation plus an independent 
random noise. Therefore, the predicted state 

estimate follows only the deterministic trans
formation, because the actual noise value is 
unknown. The covariance prediction ac
counts for both, because the random noise's 
uncertainty is known. Therefore, the predic
tion uncertainty will increase, as the state 
estimate prediction cannot account for the 
added random noise. This last step completes 
the Kalman filter's cycle. 

One can see that as the measurement vec
tors are recursively processed, the state esti
mate's uncertainty should generally decrease 

(if all states are observable) because of the 
accumulated information from the measure
ments. However, because information is lost 
(or uncertainty increases) in the prediction 
step, the uncertainty will reach a steady state 
when the amount of uncertainty increase in 
the prediction step is balanced by the uncer
tainty decrease in the update step. If no ran
dom noise exists in the actual model when 
the state evolves to the next step, then the 
uncertainty will eventually approach zero. 
Because the state estimate uncertainty 

state estimate Pred;ctw ;o;:~ Compute weights from predicted state 
easurements ~:Now 

& covariance covariance & measurement noise covariance 
each cycle 

t 
I Predict state estimate & covariance I Update state estimates as weighted 
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Figure 2. The Kalman filter is a recursive, linear filter. At each cycle, the state 
estimate is updated by combining new measurements with the predicted state 
estimate from previous measurements. 
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changes with time, so too will the weights. 
Generally speaking, the Kalman filter is a 
digital filter with time-varying gains. Inter
ested readers should consult "The Mathe
matics of Kalman Filtering" sidebar for a 
summary of the algorithm. 

If the state of a system is constant, the 
Kalman filter reduces to a sequential form of 
deterministic, classical least squares with a 
weight matrix equal to the inverse of the 
measurement noise covariance matrix. In 
other words, the Kalman filter is essentially a 
recursive solution of the least-squares prob
lem. Carl Friedrich Gauss first solved the 
problem in 1795 and published his results in 
1809 in his Theoria Motus, where he applied 
the least-squares method to finding the orbits 
of celestial bodies (see the "What Gauss 
Said" sidebar). All of Gauss's statements on 
the effectiveness_ of least squares in analyzing 
measurements apply equally well to the 
Kalman filter. 

A SIMPLE EXAMPLE 
A simple hypothetical example may help clar
ify the concepts in the preceding section. 
Consider the problem of determining the 
actual resistance of a nominal 100-ohrn resis
tor by making repeated ohmmeter measure
ments and processing them in a Kalman filter. 

First, one must determine the appropriate 
statistical models of the state and measure-

What Gauss Said 
If the astronomical observations and other quan
tities, on which the computation of orbits is 
based, were absolutely correct, the elements 
also, whether deduced from three or four obser
vations, would be strictly accurate (so far indeed 
as the motion is supposed to take place exactly 
according to the laws of Kepler), and, therefore, if 
other observations were used, they might be 
confirmed, but not corrected. But since all our 
measurements and observations are nothing 
more than approximations to the truth, the same 
must be true of all calculations resting upon 
them, and the highest aim of all computations 
made concerning concrete phenomena must be 
to approximate, as nearly as practicable, to the 
truth. But this can be accomplished in no other 
way than by a suitable combination of more 
observations than the number absolutely requi
site for the determination of the unknown quanti
ties. This problem can only be properly undertak
en when an approximate knowledge of the orbit 
has been already attained, which is afterwards to 
be corrected so as to satisfy all the observations 
in the most accurate manner possible. 
- From Theory of the Motion of the Heavenly 
Bodies Moving about the Sun in Conic Sections, a 
translation by C.H. Davis of C. F. Gauss's 1809 
Theoria Matus Corporum Coelestium in 
Sectionibus Conicis Solem Ambientium. Davis's 
1857 translation was republished by Dover 
Publications, Inc., New York, in 1963. 
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Recruitment 

Director 
Avionics Engineering Center 

Ohio University 

The School of Engineering and 
Computer Science has reopened its 
search for director of the Avionics 
Engineering Center (AEC). The AEC 
is a recognized leader in the research, 
development, and field engineering 
support of landing and navigation 
systems in the National Airspace 
System (NAS). The Center has a staff 
of 2 8 full-time technical and 
administrative personnel and 3 0 
student interns. Staff and students are 
funded by grants and contracts from 
state and local governments, federal 
sponsors such as FAA, NASA, DOD, 
and industrial firms. Research facilities 
include extensive laboratories and 
single and multi-engine aircraft. 

The Director is responsible for all 
aspects of AEC operations including 
technical, administrative, and 
·promotional activities. In addition, the 
Director is expected to advise graduate 
students on thesis and dissertation 
activities. To facilitate these academic 
duties, appointment as a part-time 
faculty member in the School of 
Electrical Engineering and Computer 
Science at the rank of Professor is 
anticipated. 

Minimum qualifications: earned 
Ph.D. in electrical engineering or 
closely related discipline; 10 years 
direct experience in research, 
engineering, and project management 
in electrical engineering and aviation 
fields; demonstrated capability for 
effective interaction with government 
and industry leaders at all levels; broad 
knowledge of civil aviation operations, 
the NAS infrastructure, and the federal 
agencies involved in developing and 
operating the NAS. It is desirable that 
the Director be a rated pilot with 
instrument certificate. Salary will be 
commensurate with background and 
experience. 

Send resume, letter of application, 
and names and contact information of 
three professional references to Dr. 
Dennis Irwin, Chair, School of 
Electrical Engineering and Computer 
Science, Ohio University, Athens, OH 
45701. Screening of applications will 
begin on September 2, 1997 and 
continue until the position is filled. 
Ohio University is an affirmative action 
and equal opportunity employer. 
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Figure 3. The individual resistance 
measurements of a nominally 100-ohm 
resistor are scattered about the true 
value of slightly less than 102 ohms. 
The Kalman filter estimate gradually 
converges to this value. 

ment processes so that the filter can compute 
the proper Kalman weights (or gains). Here, 
only one state variable- the resistance, x
is unknown but assumed to be constant. So 
the state process evolves with time as 

[1] 

Note that no random noise corrupts the 
state process as it evolves with time. Now, 
the color code on a resistor indicates its pre
cision, or tolerance, from which one can 
deduce - assuming that the population of 
resistors has a Gaussian or normal histogram 
-that the uncertainty (variance) of the 100-
ohrn value is, say, (2 ohrnf So our best esti
mate of x, with no measurements, is x01_ = 
100 with an uncertainty of P01_ = 4. Repeated 
ohmmeter measurements, 

zk = xk + vk , [2] 

directly yield the resistance value with some 
measurement noise, vk (measurement errors 
from tum-on to turn-on are assumed uncorre
lated). The ohmmeter manufacturer indicates 
the measurement noise uncertainty to be Rk = 
(1 ohrn)2 with an average value of zero about 
the true resistance. 

Starting the Kalman filter at k = 0, with the 
initial estimate of 100 and uncertainty of 4, 
the weight for updating with the first mea
surement is 

K - Pot- - 4 [3] 
o-po,_+Ro -4+1 

with the updated state estimate as 

Xoto = (1-Ko)xot- + KoZo 

=(4l1)100 +(4! 1)zo 
[4] 
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Figure 4. Initially, the predicted uncer
tainty (variance) of the resistor's value 
is 4 ohms2 and is simply based on the 
manufacturer-provided tolerance value. 
However, after six measurements, the 
estimated variance drops to below 
0.2 ohms2. 

where x010 denotes the best estimate at time 0, 
based on the measurement at time 0. Note 
that the measurement receives a relatively 
high weight because it is much more precise 
(less uncertain) than the initial state estimate. 
The associated uncertainty or variance of the 
updated estimate is 

PolO= (1 - KolPot-

=(4l1)4=l [5] 

Also note that just one good measurement 
decreases the state estimate variance from 4 
to 4/5. According to equation [1], the actual 
state projects identically to time 1, so the esti
mate projection and variance projection for 
the next measurement at time 1 is 

xllo = xoto; Plio= PolO=~ · [6] 

Repeating the cycle over again, the new gain 
is 

Plio _ 4/5 
Plio+ R1 - 4/5 + 1 

and the new update vari.ance is 

P111 = (1- K1)Pllo 

-( 1 \1_4 
-415+1}5_9. 

[7] 

[8] 

Figure 3 represents a simulation of this 
process with the estimate converging toward 
the true value. The estimation uncertainty for 
this problem, which the Kalman filter pro
vides, appears in Figure 4. One can see that 
the uncertainty will eventually converge to 
zero. 

A New Set of Conditions. Let's now change the 
problem by assuming that the measurements 
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Figure s. The true resistance of a 
resistor in an environment with a widely 
varying temperature is not quite con
stant. If this is modeled assuming a 
variation with an average of zero and a 
variance of 0.25 ohms2 , the Kalman 
filter estimate of the resistance variance 
converges to 0.4 ohms2 after only a few 
measurements. 

are taken one year apart with the resistor 
placed in extreme environmental conditions 
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Figure 6. An integrated GPS receiver 
and inertial navigator use a Kalman 
filter to improve overall navigation 
performance. 

GPS/INS INTEGRATION 
We can see that the Kalman filter provides a 
simple algorithm that can easily lend itself to 
integrated systems and requires only ade
quate statistical models of the state variables 
and associated noises for its optimal perfor
mance. This fact led to its wide and enthusi-

INNOVATION 

astic use in aided inertial applications . 
Integrating GPS with an inertial naviga

tion system (INS) and a Kalman filter pro
vides improved overall navigation perfor
mance. Essentially, the INS supplies virtually 
noiseless outputs that slowly drift off with 
time. GPS has minimal drift but much more 
noise. The Kalman filter, using statistical 
models of both systems, can take advantage 
of their different error characteristics to opti
mally minimize their deleterious traits . 

As shown in the "The Mathematics of 
Kalman Filtering" sidebar, the Kalman filter 
is a linear algorithm and assumes that the 
process generating the measurements is also 
linear. Because most systems and processes 
(including GPS and INS) are nonlinear, a 
method of linearizing the process about some 
known reference process is needed. Figure 6 
illustrates the approach for integrating GPS 
and inertial navigators. Note that the true val
ues of each system cancel out in the measure
ment into the Kalman filter so that only the 
GPS and inertial errors need be modeled. 
The reference trajectory, one hopes, is suffi
ciently close to the truth so that the error 
models are linear and the Kalman filter is 

so that the true resistance changes a small !--;::==============================~ 
amount. The manufacturer indicates that the 
small change is independent from year to 
year, with an average of zero and a variance 
of 114 ohms2. Now the state process will 
evolve with time as 

[9] 

where the random noise, wk, has a variance of 
Qk = 114. In the previous case, the variance 
prediction from time 0 to time 1 was constant 
as in equation [6]. Here, because of the ran
dom noise in equation [9], the variance pre
diction is 

Puo=Poto+Qo=~+!=l.05 · [10] 

Now the gain and update variance calcula
tions proceed on as in equations [7] and [8] 
but with larger values for the predicted vari
ance. This will be repeated every cycle so 
that the measurement update will decrease 
the variance while the prediction step will 
increase the variance. Figure 5 illustrates this 
tendency. Eventually, the filter reaches a 
steady state when the variance increase in the 
prediction step matches the variance decrease 
in the measurement update step, with P k+ Ilk= 

0.65 and P klk = 0.4. The Qk represents a very 
important part of the Kalman filter model 
because it tells the filter how far back in time 
to weight the measurements. An incorrect 
value of this parameter may dramatically 
affect performance. 

Circle 53 
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The Mathematits of Kalman Filtering 
The Kalman filter assumes that the system state 
vector, xk, evolves with time as 

. xk+1 = <l>kxk + wk 

with the measurement vector given by 

zk = Hkxk + vk 
where x0, wk. and vk are mutually uncorrelated 
vectors: The latter two are white noise sequences, 
with means of J.Lo• 0, and 0 and nonnegative defi
nite covariances of 1:0, Qk, and Rk, respectively. 
The corresponding optimal Kalman filter is given 
by thb recursive algorithm of Figure 7, which cor
responds to the block diagram of Figure 2. The 
vect<;>r xklj denotes the optimal estimate of x at 

Xo/-= J-l.o 
Pot-= :Eo 

Prediction 
xk+11k = <1\Xk/k 

Pk +11k = <1\Pk tk<l>~ + Ok 

time tk, based on measurements up to ti, and Pklj 
is the corresponding "optimal" estimation error 
covariance matrix when the implemented 
filter model matches the real-world system that is 
actually generating the data. 

One can derive the filter equations using a 
number of methods. Minimizing the generalized 
mean square error, E[e1kljAe

10
], where eklj = xk

xklj and A is any positive semtdefinite weighting 
matrix, results in the Kalman equations if all vari
ables and noises are Gaussian. For non-Gaussian 
cases, an additional restriction requires that there 
be a linear relationship between the state esti
mate, the measurements, and the predicted state. 

Update estimate 

x klk = xklk- 1 + Kk[zk- Hkxklk-1J 

Update covariance 

Pklk = ~ - KkHJ Pk/k- 1 x klk 

Figure 7. The Kalman filter algorithm involves four steps: gain computa
tion , state estimate update, covariance update, and prediction. 

optimal. For most GPS applications this is 
the case. 

So, even though the overall systems are 
nonlinear, the Kalman filter still operates in 
the linear domain. Of course, the state vari
ables for the Kalman filter must adequately 
model all error variables from both systems. 
GPS errors could include receiver clock, 
selective availability, ionospheric, tropos
pheric, multipath, and satellite ephemeris and 
clock errors. Inertial inaccuracies, on the 
other hand, could include position, velocity, 
orientation, gyro, accelerometer, and gravity 
errors. The equipment quality and the appli
cation requirements will determine how 
extensive the error models must be. 

If the GPS outputs are user position, one 
terms the integration architecture as loosely 
coupled. A tightly coupled architecture 
depicts one in which the GPS outputs are 
pseudoranges (and possibly carrier phases) 
and the reference trajectory is used (along 
with the GPS ephemeris from the receiver) to 
predict the GPS measurements. In the tightly 
coupled system, the measurement errors 
would be in the range domain rather than the 
position domain. Usually, the tightly coupled 
arrangement is preferred because it is less 
sensitive to satellite dropouts, and adequate 
Kalman filter models are simpler and more 
accurate. One must employ the loosely cou-
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pled arrangement when the receiver outputs 
provide position without raw measurements. 

The open-loop correction approach of Fig
ure 6 is termed linearized Kalman filtering. 
An alternate approach in which the algo
rithm feeds the estimates back to the inertial 
system to keep the reference trajectory close 
to the truth is an example of extended Kal
man filtering. 

Further Reading 
The literature on Kalman filtering abounds, with appli
cations ranging from spacecraft navigation to the 
demographics of the French beef cattle herd. To ease 
you into it, here are a few suggestions. 

For the seminal introduction of the Kalman filter 
algorithm, see 

• "A New Approach to Linear Filtering and 
Prediction Problems," by R.E. Kalman in the Journal 
of Basic Engineering, the Transactions of the 
American Society of Mechanical Engineers, Series D, 
Vol. 83, No. 1, pp. 35-45, March 1960. 

For an excellent, comprehensive introduction to 
Kalman filtering, including a GPS case study, see 

• Introduction to Random Signals and Applied 
Kalman Filtering (with Matlab exercises and solutions), 
3d edition, by R.G. Brown and P.Y.C. Hwang, pub
lished by John Wiley & Sons, Inc., New York, 1997. 

For discussions about various Kalman filter appli
cations, see 

• IEEE Transactions on Automatic Control, Special 
issue on applications of Kalman filtering, Vol. AC-28, 
No. 3 published by the Institute of Electrical and 
Electronics Engineers (IEEE}, March 1983. 

GPS·ONLY NAVIGATION 
In some applications, an INS is not desired or 
may not be available, as in a stand-alone GPS 
receiver. In such cases, the Kalman filter 
resides within the receiver, and some known 
(or assumed) receiver equations of motion 
will replace the inertial system in a tightly 
coupled version of Figure 6. The extent to 
which the equations of motion (usually dead 
reckoning, for a moving receiver) faithfully 
model the receiver trajectory will determine 
the error model needed in the Kalman filter. 

Simple equations of motion generally 
exhibit large errors that cause degraded per
formance relative to inertial-based reference 
trajectories in moving-receiver scenarios. Of 
course, fixed location equations of motion 
are trivial and very accurate. Here, the advan
tage of using Kalman filtering versus a sin
gle-point, least -squares fix is that the equa
tions of motion can smooth the GPS noise, 
improving the performance. 

PRACTICAL DESIGNS 
Regardless of an application's equipment
be it GPS, INS, or other devices- develop
ing a practical Kalman filter-based naviga
tion system requires attention to a variety of 
design considerations. 

The filter's covariance analysis portion 
(not requiring real data; see Figures 2 and 7) 
uses predetermined error models of potential 
systems (GPS, inertial, and so forth) to pre
dict the particular configuration's perfor
mance. The filter designer repeats this for 
different potential equipment (models) until 
the requirements are satisfie~ . In some cases, 
one must implement the Kalman filter in a 
"small" computer with only a few states to 

For a comprehensive selection of reprints of 
Kalman filter theory and application papers, including 
some of the germinal ones from the 1960s and those 
from the IEEE Transactions on Automatic Control 
special issue, see 

• Kalman Filtering: Theory and Application, edited 
by H.W. Sorenson, published by IEEE Press, New 
York, 1985. 

For a discussion about speCial covariance analy
sis and numerically robust algorithms, see the lecture 
notes 

• Applied Kalman Filtering, Navtech Seminars, 
Course 457, presented by L.J. Levy, July 1997. 

For an introductory discussion about GPS and 
inertial navigation integration, see 

• "Inertial Navigation and GPS," by M.B. May, in 
GPS World, Vol. 4, No.9, September 1993, pp. 
56-66. 

Several good Web sites devoted to Kalman filter
ing exist, including 

• "The Kalman Filter," a site maintained by G. 
Welch and G. Bishop of the University of North 
Carolina at Chapel Hill's Department of Computer 
Science: <http://www.cs.unc.edu/ 
-welch/kalmanlinks.html>. 
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model the process. This suboptimal filter 
must be evaluated by special covariance 
analysis algorithms that recognize the differ
ences in the real-world model producing the 
measurements and the implemented filter 
model. Finally, once the filter meets all per
formance requirements, a few simulations of 
all processes should be run to evaluate the 
adequacy of the linearization approach and 
search for numerical computational errors. 

of choice in GPS-based navigation systems. 
It requires sufficiently accurate multidimen
sional statistical models of all variables and 
noises to properly weight noisy measurement 
data. These models enable the filter to 
account for the disparate character of the 
errors in different systems, providing for an 

optimal integrated combination of large
scale systems. The recursive nature of the fil
ter allows for efficient real-time processing. 
Off-line covariance studies enable the inte
grated system performance to be predicted 
before development, providing a convenient 
and easy-to-use system design tool. • 

In most cases, the extended Kalman filter 
(with resets after every cycle) will ameliorate 
any linearization errors. Numeric computa
tional errors caused by finite machine word 
length manifest themselves in the covariance 
matrices, which become nonsymmetric or 
have negative diagonal elements, causing 
potentially disastrous performance. This 
problem can be alleviated by increasing the 
computational precision or by employing a 
theoretically eq-uivalent but more numeri
cally robust algorithm. 

Corredion Table 4. Defining parameters of the PZ·90 datum 

Parameter Value 

Some of the Parametry Zemli 1990 (PZ-

90) datum parameter values listed in 

Table 4 of this column's July 1997 article, 

"GLONASS: Review and Update," are 

incorrect. Although these values are iden

tified as pertaining to PZ-90 in the latest 

version of the GLONASS Interface 

Control Document (dated October 4, 

1995), they actually pertain to its prede

cessor, the Soviet Geodetic System 1985. 

The correct PZ-90 parameter values, to be 

used with GLONASS ephemerides, are 

listed to the right. The inverse ellipsoid 

flattening is a rounding of the full preci

sion value of 298.257 839 303. Note also 

that the sign of the geopotential second 

zonal harmonic, 12, is given here as posi

tive in keeping with convention. 

Earth rotation rate 

Gravitational constant 

Gravitational constant of 

72.921 15 x 10·6 radians s·1 

398 600.44 x 109 m3s-2 

CONCLUSIONS 
Because of its deceptively simple and easily 
programmed optimal algorithm, the Kalman 
filter continues to be the integration method 
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and SATCOM, as well as a broadband VHF/UHF antenna 
for DGPS. We'll even custom-design a housing for you. 
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atmosphere 

Speed of light 

Second zonal harmonic 
of the geopotential 

Ellipsoid semimajor axis 

Ellipsoid flattening 

Equatorial acceleration 
of gravity 

0.35 x 109 m3s·2 

299 792 458 ms·1 

1082.6257 x w-s 

6378136m 

1/298.257 84 

978 032.8 mgal 

Correction to acceleration 
of gravity at sea level 
because of atmosphere --0.9 mgal 

) 
Equipment: Navtech may be the 
only place in the world where you 
can compare such a wide variety of 
GPS products by different 
manufacturers. We specialize in 
choices, and in mixing and 
matching system components. We 
even integrate GPS equipment! 
Defme your precision requirements 
to a GPS equipment expert who can 
match the products to your needs. 

Books & Software: Navtech 
carries the world's most 
comprehensive list of GPS books, 
documents, and software. Our 
home page details more than 160 
books and software products. 

Seminars & Thtorials: Navtech is 
the world leader in GPS education, 
offering more than a dozen 
comprehensive technical courses on 
an openly-advertised basis, as well 
as customized on-site programs. 
We also offer technical tutorials 
prior to GPS-related meetings 
around the world. 

Our ION GPS-97 Tutorials: 
• GPS Fundamentals 1/11 
• GLONASS, GPS/GLONASS 
• Differential GPS 1111 
• Multipath Effects 
• Data Links for Differential GPS 
• GPS-Based Attitude Determination 
• Dynamic Real Time Kinematic Positioning 
• Receiver Technology & Trends 
• Fundamentals of GPS Integrity 
• Wide Area Augmentation Sys. (WAAS) 
• Pseudolite Technology 
• Loca Area Augmentation Sys. (LAAS) In! 
• Integration of GPS with INS I-IV 
• Precise Timing Technologies 
• High Accuracy GPS Pos itioning I-IV 
• Selective Availibility & Anti-Spoof 
• System Identification with GPS I-III 
• The International GNSS 
• U.S. & International GPS Policy 
• RFI & Jamming Concerns 
• GPS for the Military 
• The Business of GPS 

Serving the GPS community since 1984 

Ri Navtech Seminars & GPS Supply. 
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