
Alternatively, one may employ a Kalman
filter, which is a recursive least-squares 
algorithm. This process allows for time-
based sequential estimates derived from
observations up to the moment of computa-
tion. Consequently, Kalman filtering is 
particularly suited for (real-time) navigation
applications.

Functional Model. If we are to compute para-
meter values according to the (weighted)
least-squares criterion, we must specify a
deterministic or functional model that pre-
scribes the relationship between observations
(pseudoranges and carrier phases) and the
unknown parameters, including coordinates
and possibly atmospheric delays, as well as
such “nuisance” parameters as clock errors
and carrier-phase ambiguities. Although we
may not be interested in knowing clock-error
or carrier-phase ambiguity values, these
parameters must be explicated in the model
to obtain accurate values for those parame-
ters we wish to determine.

The functional model may take various
forms depending on whether we process
pseudoranges or carrier phases that are undif-
ferenced observations or single, double, or
triple differences.

Stochastic Model. In addition to the functional
model, we need a stochastic model to
describe the observations’ noise characteris-
tics. The variance–covariance matrix (vc-
matrix) serves this purpose. The matrix
describes both the precision and correlation
of GPS pseudorange and carrier-phase obser-
vations. Variances are on the main diagonal
(the square root of the variance gives the
standard deviation), and the off-diagonal ele-
ments are covariances (from which the corre-
lation coefficients are readily obtained). To
achieve optimal estimation results, the
inverse of the observations’ vc-matrix should
function as the weight matrix in the least-
squares algorithm.

Unfortunately, GPS researchers have yet
to concentrate on the stochastic model as
much as the functional model. As a result,
simple and rudimentary stochastic models
are commonly used in practice. If the sto-
chastic model is not completely correct, it
will affect, although usually not dramatically,
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We live in a noisy world. In fact, the
laws of physics actually preclude
complete silence unless the ambient
temperature is absolute zero — the
temperature at which molecules have
essentially no motion. Consequently,
any electrical measurement is affected
by noise. Although minimized by GPS
receiver designers, noise from a variety
of sources both external (picked up by
the antenna) and internal (generated
within the receiver) contaminates GPS
observations. This noise will impact the
results we obtain from processing the
observations. In this month’s column,
we investigate possible ways of
minimizing this impact by considering
the random nature, or stochastics, of
GPS noise.

The authors are staff members at
Delft University of Technology’s
Department of Mathematical Geodesy
and Positioning, directed by professor
Peter Teunissen. Their research
concerns precise-positioning modeling
and data processing with GPS and
GLONASS for surveying, geodesy, and
navigation. The main topics currently
studied include quality control and
integer carrier-phase ambiguity
resolution.

“Innovation” is a regular column 
featuring discussions about recent
advances in GPS technology and 
its applications as well as the 
fundamentals of GPS positioning. 
The column is coordinated by 
Richard Langley of the Department of
Geodesy and Geomatics Engineering
at the University of New Brunswick,
who appreciates receiving your
comments as well as topic suggestions
for future columns. To contact him,
see the “Columnists” section on 
page 4 of this issue.

I N N O V A T I O N

Random noise affects GPS pseudoranges and
carrier phases as it does all observations. In
distilling the desired information from noise-
contaminated measurements, we must
account for the noise’s random behavior. In
processing data, we mathematically formal-
ize a noisy observable as a stochastic quan-
tity, which is just a fancy way of saying the
laws of probability govern some component
of the obtained observations. (The word sto-
chastic comes from the Greek word stokha-
zomai, which means to aim at or guess.) This
article concentrates on the stochastic model-
ing of GPS data and explains the importance
of using an adequate stochastic model in data
processing. Our primary intent is to foster
further investigation and understanding of
stochastic modeling as interest in the topic
emerges.

We have analyzed data samples collected
using dual-frequency, geodetic-quality GPS
receivers to demonstrate several stochastic
aspects of GPS observables. We consider —
as a first step toward developing a better sto-
chastic model — satellite elevation angle
dependence, cross correlation between obser-
vations, time correlation, and data-noise
probability distribution.

It should be noted that we refrain from
giving a mathematical description of the full
measurement process inside a GPS receiver
and deriving the stochastics of the observ-
ables by formal propagation of error. Instead,
we consider the receiver more or less as a
black box providing pseudorange and carrier-
phase observations.

MATHEMATICAL BACKGROUND
GPS data processing involves computing
unknown parameter values from a set of
measurements or observations, preferably
incorporating some measures that express
the quality of the estimated parameter 
values. Without a doubt, least-squares 
estimation constitutes the most popular 
technique to obtain the desired estimates.
One can implement this method in a 
“batch” algorithm to determine the full 
vector of unknown parameters in a single
mathematical process using all observations
simultaneously.
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obtained with a 1-second sampling interval in
a 10-minute period (which yields 600
epochs). The abbreviations defined in the
Receiver-independent Exchange Format
(RINEX) designate the observation types:

observation time correlation, and noise prob-
ability distribution.

The analysis should be seen in the context
of precise relative positioning in, for instance,
surveying. By default, we used observations

I N N O V A T I O N  

Figure 1. If we ignore stochastic modeling when processing GPS observations, a lower position
precision may result. The position scatter from 28 minutes of dual-frequency, pseudorange data
collected at 1-second intervals on a short 3-meter baseline is significantly greater when a
rudimentary default model is used (a) compared to that obtained using a model that accounts
for the correlations between observations (b). The positions of one end of the baseline are
given in a local north–east coordinate system, with the origin at the antenna’s known position.
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Figure 2. Time series of L1 and L2 least-squares phase residuals for two satellites: (a) L1
residuals for PRN23 at a 17-degree elevation angle; (b) L1 residuals for PRN01 at a 65-
degree elevation angle; (c) L2 residuals for PRN23; (d) L2 residuals for PRN01.
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computed parameter estimates such as
receiver coordinate values.

As an example, Figure 1 shows the posi-
tioning results from a data set processed with
two different vc-matrices. We obtained the
coordinate values in panel (a) by processing
the data with a default (equal-weighting, no-
correlation) vc-matrix. Those in (b) were cal-
culated with a “correct” (in other words, more
realistic) vc-matrix that accounts for data
cross correlation. (We will return to the issue
of cross correlation later.) With the correct
vc-matrix, the empirical spread in computed
positions is clearly smaller than the default
vc-matrix, thus demonstrating the role of the
stochastic model in parameter estimation.

The stochastic model also affects such
important issues as quality description,
integrity monitoring (for which a statistical
testing procedure is used to spot anomalous
data), and ambiguity resolution (for which
uncertainty inferences must be made to vali-
date the integer ambiguity values).

Table 1 lists the precisions of the results
shown in Figure 1, illustrating the issue of
quality description for parameter estimates.
The table includes both the empirical stan-
dard deviation determined from the scatter in

each coordinate and the formal standard
deviation resulting from propagation of the
assumed observation errors through the data-
processing model. With the correct cross-
correlation vc-matrix, the agreement between
the two value sets is quite good. With the
default no-correlation vc-matrix, the formal
precision is much too optimistic. In practice,
we usually do not know the true position
coordinates, so we rely on the formal stan-
dard deviation. And if this description is too
optimistic, as our example indicates, users
may believe their results meet quality
requirements when in fact they do not.

EXPERIMENTS
To more thoroughly investigate the impor-
tance of stochastic modeling in GPS data
processing, we collected and processed sev-
eral data sets and examined the impact on the
computed results of such factors as satellite
elevation angle, observable cross correlation,

Table 1. Position estimator precision in
terms of standard deviation, in meters, for
north and east coordinates shown in Figure 1

vc-matrix type empirical formal

no correlation N 0.26 0.16
E 0.21 0.13

cross-correlation N 0.20 0.23
E 0.16 0.18
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n C1 — pseudorange by C/A-code corre-
lation (in meters);

n P1, P2 — pseudorange on L1 and L2
respectively (in meters), obtained by a code-
less or semicodeless technique to circumvent

channel. Figure 2 shows a time-series of least-
squares residuals derived from observations of
two satellites — one at a low elevation angle
(a and c) and one at a high elevation angle (b
and d). The least-squares residuals should
have a mean of zero, with a random behavior
resulting from propagating the observable’s
noise through the analysis algorithm.

In processing GPS data, we might be
inclined to use a constant standard deviation
for all receiver channels, assuming equally
noisy observations from all satellites and
therefore weighting all data the same. Figure
2, however, clearly demonstrates that obser-
vations from a low-elevation satellite are
subject to substantially more noise. 

Figure 2 also shows a distinct difference in
noise between the L1 (a and b) and L2 (c and
d) phase observations from the same
receiver. The use of a codeless or semicode-
less measurement technique in making L2
signal observations in the presence of AS
causes most of the larger noise in the L2
phase observations.

The observation noise’s dependence on
elevation angle can be distinctly different for
different makes of receivers as well. For
example, we estimated the standard deviation
of the residuals on a satellite-by-satellite
basis using two different receivers, each
tracking the same six satellites. Figure 3
shows the results. One receiver (a) shows
practically no elevation-angle dependence
for L1 observations but a strong dependence
for L2. In comparison, the second receiver
(b) indicates an elevation-angle dependence
for both L1 and L2 observations, with less
noise in low–elevation angle, L2 observa-
tions than those from receiver (a).

The elevation-angle dependence of a mea-
surement’s noise is induced mainly by the
receiver antenna’s gain pattern, with other
factors such as atmospheric signal attenuation
contributing to a lesser degree. (We’ll discuss
multipath and scattering in conjunction with
elevation angle–dependent effects later.)

The results shown in Figure 3 also suggest
a direct relationship between elevation angle
and measurement precision. Some data-
processing computer programs use mathe-
matical functions, such as the sine of the ele-
vation angle, to weight observations
accordingly. Alternatively, because observa-
tion noise directly relates to the receiver’s
measured signal-to-noise ratio (SNR), we
may use SNR values in constructing a sto-
chastic model.

Cross Correlation. Looking at the correlation
between different observation types, we
found that a significant positive correlation
may exist between observations from the

antispoofing (AS); and
n L1, L2 — carrier phase on L1 and L2 (in

millimeters).
Elevation Angle. We first concentrated on the

noise of the observables from a single receiver

I N N O V A T I O N

Figure 3. The standard deviations of undifferenced carrier phases depend on
elevation angle, carrier frequency, and receiver model. These plots show the L1 (*)
and L2 (o) standard deviations from two different receivers.
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Figure 4. For some receivers, the noise on the L2-frequency observables is corre-
lated with the noise on the L1-frequency observables. Shown here are time series of
pseudorange least-squares residuals from receiver (a) and receiver (b) for satellite
PRN15 at a 38-degree elevation angle. The three series in each graph are C1
(intentionally offset by 1.5 meters), P2, and P2–C1 (offset by –1.5 meters). The
empirical standard deviations for C1, P2, and P2–C1 are 0.09, 0.14, and 0.12 meter
for receiver (a) and 0.27, 0.24, and 0.36 meter for receiver (b).
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Figure 5. The observations from a particular receiver may exhibit temporal correla-
tion, which may vary between different observables. This figure displays the auto-
correlation coefficients for C1 (a) and P2 (b) pseudoranges as derived from the
same receiver for four different satellites.
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same receiver at the two carrier frequencies.
This implies that, although the receiver out-
puts two apparently distinct observables, the
actual “information content” provided by the
additional second observable is less than that
supplied by the first alone.

Figure 4 illustrates this effect by showing
several time series of pseudorange least-
squares residuals from two different receivers
(a and b) observing the same satellite simulta-
neously. The top trace shows C1 (a) or P1 (b)
residuals and the middle trace portrays the P2
residuals. The plots give an impression of the
noise characteristics for each receiver’s two
pseudorange observables. 

In addition, the bottom trace in each panel
illustrates the algebraic difference between
the two pseudorange time series. Following
the error propagation law, the variance
(noise) of the difference should be the sum of
C1 or P1 and P2 variances in the absence of
correlation between the two pseudorange
observables. Thus, the noise in the pseudo-
range difference should be larger than the
noise in either of the two pseudoranges. 
Figure 4a indicates that this is not the case for
the first receiver.

For our example, we expect a standard
deviation of 0.17 meter for the difference,
whereas 0.12 meter is actually observed. The
difference noise is even somewhat smaller
than the P2 series noise, indicating the pres-
ence of a positive correlation between the
two pseudorange observables. A different
measurement technique for the P2 pseudo-
range, implemented in the second receiver
(Figure 4b), appears to produce uncorrelated
P1 and P2 pseudoranges. Applying the error
propagation law to the variances yields a
0.36-meter standard deviation for the differ-
ence, as is indeed observed.

The effect illustrated in Figure 4a occurs
in receivers that use cross-correlation mea-
surement, a so-called codeless technique, for
obtaining an L2 pseudorange measurement in
the presence of AS, P-code encryption. Such
a receiver constructs the L2 pseudorange
using the C1 pseudorange, thereby inducing
a strong correlation between the two observ-
ables. Figure 1 has already shown the conse-
quences of neglecting such correlation.

A significant correlation is similarly pre-
sent between the first receiver’s L1 and L2
carrier-phase observations. Again, we can
explain this correspondence as a result of the
cross-correlation measurement technique,
although the L2 phase construction is slightly
different. 

Interestingly, we found a positive correla-
tion between the L1 and L2 carrier phases for
all the receivers we analyzed, including those

correlated with a residual at any other epoch.
(There will be some small variability because
the time series is of finite length.)

As shown in Figure 5, we computed cor-
relograms on a satellite-by-satellite basis for
C1 and P2 pseudorange samples. The correl-
ograms shown in Figure 5a indicate that the
C1 pseudorange noise is more or less consis-

that do not use cross correlation for L2
pseudorange construction. Numerical values
for the different receivers’ correlation coeffi-
cients range from 0.3 to 0.7.

Correlation between a pseudorange and
carrier-phase observable turned out to be neg-
ligible. Mutual correlation between channels
(that is, between observations to different
satellites for one observable type) may exist.
Such correlation is often referred to as spatial
correlation. And, although several researchers
have identified it, how to effectively account
for spatial correlation remains unclear.

Time Correlation. To simplify processing,
most GPS users assume that observations
possess only white noise — that they are not
correlated from epoch to epoch. To verify
this assumption, we examined time-series
correlograms of least-squares residuals. A
correlogram portrays the autocorrelation
coefficient versus lag (the interval between
two samples). The coefficient at lag zero
equals one by definition. If a white noise
process can describe the residuals, then all
other coefficients should be approximately
zero because a residual at one epoch is not

I N N O V A T I O N  

Figure 6. Histograms of the P1 (a) and L1 (b) least-squares residuals for satellite
PRN21 (at a 53-degree elevation angle) indicate that the observation noise is
essentially distributed normally.
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Figure 7. Normal probability plots of the least-squares residuals for those
histograms shown in Figure 6 further support the conclusion that P1 (a) and L1 (b)
observation noise closely follows a normal distribution.
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Figure 8. Multipath is evident in these
L2, least-squares, phase residuals from
PRN29 short-baseline observations at a
17-degree elevation angle.
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FURTHER READING
For an overview of GPS noise sources, see

n “GPS Receiver System Noise,” by R.B.
Langley, in GPS World, Vol. 8, No. 6, June
1997, pp. 40–45.

For a discussion about correlograms and
other aspects of time-series analysis, see

n The Analysis of Time Series: An Introduc-
tion, 4th edition, by C. Chatfield, published by
Chapman & Hall, London, 1989.

For RINEX format details, see
n “RINEX: Receiver-independent Exchange

Format,” by W. Gurtner, in GPS World, Vol.
5, No. 7, July 1994, pp. 48–52.

n <ftp://igscb.jpl.nasa.gov/igscb/data/
format/rinex2.txt>

For an introduction to Kalman filtering, see
n “The Kalman Filter: Navigation’s Integra-

tion Workhorse,” by L.J. Levy, in GPS World,
Vol. 8, No. 9, September 1997, pp. 65–71.

For a discussion about the importance of
stochastic modeling in ambiguity resolution,
see

n “Weighting GPS Dual-Frequency Obser-
vations: Bearing the Cross of Cross-correla-
tion,” by P.J.G. Teunissen, N.F. Jonkman,
and C.C.J.M. Tiberius, in GPS Solutions, Vol.
2, No. 2, 1998, pp. 28–37.

For related work regarding GPS stochastic 
modeling, see

n “Stochastic Modelling for Very High
Precision Real-time Kinematic GPS in an
Engineering Environment,” by J.B. Barnes,
N. Ackroyd, and P.A. Cross, published in the
Proceedings of the Fédération Internationale
des Géomètres (FIG) XXI International
Congress, Brighton, England, July 19–25,
1998, Commission 6, Engineering Surveys,
pp. 61–76.

n “Stochastic Modeling for Static GPS
Baseline Data Processing,” by J. Wang, M.P.
Stewart, and M. Tsakiri, in Journal of Survey-
ing Engineering, Vol. 124, No, 4, November
1998, pp. 171–181.

tent with the assumption of white noise, but
this is certainly not the case for the P2 correl-
ograms (Figure 5b). For the P2 observable,
the autocorrelation coefficient approaches
zero after approximately 10 seconds.
Because AS encryption causes quite noisy
“raw” P2 pseudoranges, the receiver proba-
bly applies some smoothing or filtering that
induces a slight time correlation.

We could already see this correlation in
the time series of Figure 4a. For this receiver,
the C1 pseudorange can thus be modeled as a
white noise random variable, but the P2
pseudorange cannot; modeling this P2
pseudorange as white noise would require
increasing the sampling rate interval to 15 or
30 seconds. For this receiver’s corresponding
L1 and L2 carrier phases, the findings are
similar. With regard to time correlation,
though, various receivers may possess dis-
tinctly different characteristics.

Probability Distribution. The least-squares crite-
rion typically used for parameter estimation
does not require any assumption about the
observables’ noise distribution type. Yet,
subsequent statistical testing procedures for
quality control, such as those used to assess
outliers and cycle slips, will necessitate this
information. For those procedures, a normal
or Gaussian distribution is commonly 
presumed.

We examined a distribution set of 600 data
residuals to test this supposition’s validity.
We grouped the residuals into intervals, or
bins, counting the number of residuals in
each bin to create histograms. Figure 6a
shows the histogram of the P1 residuals, and
Figure 6b displays the histogram for the L1
residuals. Visual inspection of the histograms
indicates that the residuals appear consistent
with the assumption of normality.

The normal probability plot of Figure 7
shows the cumulative distribution of the
residuals. The horizontal axis is linear in the
residual value. Note that the vertical axis
scale indicating probability is not uniform, as
the tickmarks correspond to quantiles of a
normal distribution. Sorted in ascending
order, normal distribution samples will tend
to form a straight line and pass through value
0.0 (indicating an unbiased or zero-mean
sample set) at probability 0.50 (indicating a
symmetrical distribution). 

The data displayed in Figure 7 nicely
resemble these normal distribution character-
istics. For the most part, deviations at the
beginning and end of the line are relatively
insignificant as they represent only a few
tenths of a percent of the total data set. The
standard deviations of the least-squares resid-
uals are 0.14 meter (P1) and 0.21 milli-

meter (L1). The maximum deviation between
the empirical and theoretical cumulative dis-
tribution is small for both examples, indicat-
ing with a high degree of probability that the
assumed theoretical, normal distribution is
likely correct.

We initially conclude that the normal dis-
tribution is a reasonable model for the
observables of several geodetic-quality GPS
receivers; however, this may not hold true for
all receivers. We recommend further
research to verify this conclusion.

Further Considerations. We would like to point
out that for our analyses we used (static)
zero-baseline data to better assess receiver
noise (antenna preamplifier noise, for exam-
ple, was not considered). In other words, we
were interested in “nominal” correlation and
noise. Such a zero-baseline arrangement does
not necessarily allow a full valuation of a
receiver’s practical performance. For a zero
(distance) baseline, differential atmospheric
delays are completely absent. In practice,
environmental effects and especially multi-
path (and the related phenomenon of scatter-
ing) may also affect observations.

Of these two effects, multipath is by far
the most difficult to incorporate in an obser-
vation model. Figure 8 illustrates the extent
to which multipath may prohibit a proper
match between actual data and a theoretical
model. The figure displays the L2 phase
residuals for satellite PRN29 as it rises over
the horizon. The residuals’ large magnitude
and periodicity clearly indicate the occur-
rence of (phase) multipath. Other satellites on
this short (nonzero) baseline show more typ-
ical noise characteristics at only the 1–2-mil-
limeter level. Therefore, multipath may
significantly increase the observation noise
level and induce time correlation between
observations, as well as introduce a bias that
can propagate into parameter estimates.

CONCLUDING REMARKS
To obtain optimal results, it seems obvious
that any observations’ vc-matrix should ade-
quately reflect the noise characteristics of the
GPS data being processed. Some GPS users,
however, commonly use a rather simple and
rudimentary vc-matrix or even a scaled-iden-
tity matrix. In this article, we attempted to
demonstrate the need for a more sophisti-
cated stochastic model.

Nonetheless, from the receiver side, we
think it should be possible (technically) to
deliver white noise observables even at a 1-
second sampling interval. In addition, we are
not yet concerned with the probability distrib-
ution type for GPS data. Most observable
noise seems more or less normally distributed.

We have some reason for concern, though,
regarding measurement precision depen-
dence on satellite elevation angle and the
cross correlation between observation types.
We feel that in developing a new stochastic
model it is most important to account for both
these aspects. ■
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