
PYTHON FUNDAMENTALS

UNB-GGE PYTHON WORKSHOP SERIES 1

William Liu
Department of Geodesy and Geomatics Engineering

University of New Brunswick
July 2023

2

Agenda

1. Why Python?
2. Python Overview
3. Setting up Your Development Environment
4. Python Basics

4.0 Comments
4.1 Literals
4.2 Variables
4.3 Operators
4.4 Control Structures
4.5 Data Types
 NoneType
 Numeric Types: int, float, bool, complex
 Sequential Types: str, list, tuple,
 Mapping and Set Types: set, dict
4.6 Functions
4.7 Classes, Objects, and Methods
4.8 Packages and Modules

5. Creating Your First Python Program
6. Assignment

Understand why we choose Python

1. Why Python?

4

1. Why Python?

TIOBE Programming Community index: an indicator of the popularity of programming languages.
The index can be used to check whether your programming skills are still up to date or to decide strategically what

programming language should be adopted when starting to build a new software system.

Figure source: https://www.tiobe.com/tiobe-index/

5

1. Why Python?

A recent survey (link) by the “Stack Overflow” website reveals Python’s popularity among professional developers.

Figure source: https://stackoverflow.blog/2023/06/13/developer-survey-results-are-in/

https://stackoverflow.blog/2023/06/13/developer-survey-results-are-in/
https://stackoverflow.blog/2023/06/13/developer-survey-results-are-in/

6

1. Why Python?

Why is Python so popular?

• Readability: Python’s syntax is easy to read and
understand, making it a brilliant choice for all levels
of programmers.

• Simplicity: Python allows developers to express
ideas using fewer lines of code than other
languages.

• Versatility: Python is multi-functional, with
applications for web development, data analysis, AI,
scientific computing, automation, etc.

• Large and Active Community: The Python
programming language benefits from a diverse and
active community of developers who contribute a
wealth of resources, including libraries, frameworks,
and support. This fosters a culture of collaboration,
knowledge sharing, and ongoing improvement of
the language.

7

1. Why Python?

Why is Python so popular?

• Cross-platform Compatibility: Python is available on
various platforms, such as Windows, macOS, Linux,
and has consistent behavior across different
operating systems.

• Extensive Library Ecosystem: Python offers a vast
collection of libraries and frameworks, such as
NumPy, Pandas, Django, TensorFlow, and Flask,
which simplify development tasks and accelerate
the creation of complex applications.

• Integration Capabilities: Python can easily integrate
with other languages and systems, allowing
developers to leverage existing code and
infrastructure seamlessly.

• Career Opportunities: Python's popularity has led
to high demand for Python developers in the job
market, making it a valuable skill for career
advancement.

8

1. Why Python?

An article (link) in the Gogeomatics website ranked Python as the No 1 programming language in the GIS world:
“Python can be compared to the Swiss army knife for GIS.”

Python is the leading programming language in the GIS world and here are some reasons why:

• Wide Range of Geospatial Libraries: Python has many powerful libraries for working with geospatial data,
including GDAL, Fiona, GeoPandas, Shapely, and PyProj. These tools allow for reading and writing spatial
file formats, performing spatial analysis, handling projections, visualizing geospatial data, and processing
remote sensing imagery.

• Data Analysis and Visualization: Python libraries like NumPy, Pandas, and Matplotlib are great for
geospatial data analysis, manipulation, and visualization.

• Integration with GIS Software: Python works well with GIS software like QGIS and ArcGIS, allowing users to
create custom tools, automate workflows, and access APIs.

• Open Source and Community Support: Python is open-source and has a strong community of geospatial
professionals who contribute to its development and provide support through various online resources.

• Cross-Domain Integration: Python is a popular choice for interdisciplinary projects involving geospatial
data as it easily integrates with remote sensing, data science, machine learning, and web development.

Python in the Field of Geomatics

https://gogeomatics.ca/what-are-the-top-programming-languages-in-the-gis-world/

Understand basic Python concepts

2. Python Overview

10

2. Python Overview

Python is an interpreted programming language that differs from the traditional compiled programming language
such as C/C++, C#, and Java.

Figure source: https://medium.com/from-the-scratch/stop-it-there-are-no-compiled-and-interpreted-languages-512f84756664

Compiled
language

Interpreted
language

From a user’s point of view:
Separate compilation process

No separate compilation process, the
interpreter compiles source code on the fly

11

2. Python Overview

Python Concepts

Python program is executed by the interpreter

Hardware

Operating System

Python Interpreter

Python Program

Standard Library Python API C Program

The standard library provides powerful and easy-
to-use functionalities to the Python program

The interpreter can be extended with C programs by
using the Python API for time-critical applications

The interpreter abstracts away from the operating system and the
hardware details by providing a uniform programming interface,
handling low-level operations, and ensuring platform independence

Python Distribution

12

2. Python Overview

Each Python program may contain one or many Python script files. Let’s examine a simple example that only
consists of one Python file:
“Suppose we have a text file named numbers.txt containing multiple lines of integer numbers. We separate the numbers

from others with a space in the file. Write a Python script file to find the maximum number from the file and then output it

to the screen.”

Python Program

Without comments With comments

Read the left script first. If you really need some
explanations, read the right one with comments
(Note: anything following the # symbol on the same line will be considered a
comment and will not be executed by the Python interpreter).

13

2. Python Overview
Compare the corresponding C program implementing the same functionality

Without comments With comments

14

2. Python Overview

Python Program

Now, think about the Readability and
Simplicity of the Python language. Are
you convinced of what we claimed
before?

15

2. Python Overview

Python Interpreter
Popular Python interpreter implementations

• CPython: The default and widely used Python interpreter, known for its performance,
stability, and extensive library support.

• PyPy: A faster and more memory-efficient alternative to CPython, featuring a Just-in-
Time (JIT) compiler for performance improvements.

• Jython: Python implementation running on the Java Virtual Machine (JVM), allowing
seamless integration with Java code and libraries.

• IronPython: Python implementation targeting the .NET Framework, enabling Python
and other .NET languages to work together.

• MicroPython: Lightweight Python implementation for microcontrollers and
embedded systems with a small footprint.

This workshop will focus on the default and reference implementation of the Python interpreter – CPython.

16

2. Python Overview

Python Distribution
A pre-packaged bundle of the Python programming language, along with additional tools, libraries, and
resources that make it easier to develop, run, and distribute Python applications.

The official Python installation file provided by http://www.python.org commonly
referred to as "CPython," can be considered a minimal Python distribution. It includes
the core Python interpreter, the standard library, and essential tools for running Python
code. It serves as the base from which other distributions are built.

Official Python Distribution Components

Python Interpreter
Interactive CMD-line interface

Standard Library
I/O, networking, math…

Development Tools
Python package installer – pip,
virtual environment – venv…

Integrated Development and
Learning Environment (IDLE)

Code editor, Debugging, Python shell…

Comprehensive Documentation
Language reference, STL doc, tutorials…

http://www.python.org/

17

2. Python Overview

Popular Python Distributions

• Anaconda: Comprehensive data science distribution with package management (conda).

• Miniconda: Minimal version of Anaconda with conda package manager.

• Python(x,y): Scientific computing distribution with key packages.

• Enthought Canopy: Python distribution for scientific and analytic computing.

• ActivePython: Commercial distribution with enterprise support.

• WinPython: a free open-source portable Python distribution for Windows and scientific
and educational usage.

This workshop will focus on the most popular Anaconda distribution for data science

18

2. Python Overview

Anaconda Components

• Create isolated environments
• Manage dependencies
• Install/update/remove packages

• Includes the CPython interpreter
• An interactive web-based

environment - Jupyter Notebook
• Spyder IDE
• Popular data science packages
• Additional tools and libraries

• A graphical user interface (GUI)
for Python package management

• A tool helps manage and
reproduce data science projects

Prepare your coding tools

3. Setting up Your Development

Environment

20

3. Setting up Your Development Environment

Install Anaconda

Download a version of Anaconda for your computer:
https://www.anaconda.com/download

• Choose the default options to install Anaconda

Note: this workshop will only focus on the Windows platform

…

https://www.anaconda.com/download

21

3. Setting up Your Development Environment

Test Anaconda Installation

1. Input python on the CMD line and press Enter key

Launch Anaconda CMD.exe Prompt from within Anaconda Navigator:
(alternatively: Windows Start ➔ Anaconda3 ➔ Anaconda Prompt)

Here I launched the command-line interface
of the standard Python interpreter. It’s also
called the interactive mode, which allows
you to interactively write and run Python
code statements, providing immediate
feedback and results.

2. Input print(“Hello World”) and press Enter key

22

3. Setting up Your Development Environment

Test Anaconda Installation

• Open-source IDE for scientific computing and data analysis in Python.
• User-friendly interface with the IPython console and data exploration tools.
• Supports popular scientific libraries, code auto-completion, and debugging.
• Cross-platform compatibility (Windows, macOS, Linux).
• Suitable for beginners and experienced users of scientific computing.

Launch Spyder Integrated Development Environment (IDE) from within Anaconda Navigator:

IPython is an interactive
command-line shell for
Python that provides
enhancements over the
standard Python interpreter.

23

3. Setting up Your Development Environment

Test Anaconda Installation

What is Jupyter Notebook?

• Web-based interface for creating interactive
computational documents.

• Supports multiple programming languages, with Python
being popular.

• Combines code cells and text cells using Markdown.
• Enables interactive data analysis, prototyping, and

storytelling.
• Features syntax highlighting, code execution, and inline

output display.
• Supports creation of interactive visualizations and plots.
• Facilitates collaboration and sharing of notebooks in

various formats.
• Integrates with scientific libraries and data analysis

tools.
• Has a large and active community with extensive

documentation.

Launch Jupyter Notebook from within Anaconda Navigator:

24

3. Setting up Your Development Environment

Jupyter Notebook usage examples

25

3. Setting up Your Development Environment

Jupyter Notebook How to use?

Watch the following introduction video to learn the basics of Jupter Notebook (15 mins), and then come back.
Jupyter Notebook Tutorial for Beginners with Python by Dave Gray (https://youtu.be/2WL-XTl2QYI)

https://www.youtube.com/watch?v=2WL-XTl2QYI
https://youtu.be/2WL-XTl2QYI
https://www.youtube.com/watch?v=2WL-XTl2QYI

26

3. Setting up Your Development Environment

Create a new notebook with Python 3

New ➔ Python 3
1. Input your Python code here

2. Click Run

3. The output result

4. Input your new Python code

Please keep this browser window
open while you are attending the
workshop. Try the code examples in
the following sections with this new
notebook.

27

3. Setting up Your Development Environment

For any reason, if you could not use your local version of Jupyter Notebook:

• If you have a UNB ID, you can log in to the cloud-based Jupyter Notebook by Digital Research Alliance of Canada:
https://unb.syzygy.ca/

• Otherwise, you can register an account at Anaconda, and use their cloud-based version.
https://www.anaconda.com/code-in-the-cloud

https://unb.syzygy.ca/
https://www.anaconda.com/code-in-the-cloud

Learn the basics of Python

4. Python Basics

29

4. Python Basics

This script demonstrates:
• Variable assignment and data types
• Conditional statement (if-else)
• Looping statement (for loop)
• Function definition and function call
• Class definition and instantiation
• Method calls

Try to read and understand this simple
Python script.
• If you have prior programming

experience, it will give you an initial
impression of what Python language
looks like.

• If you don’t have any experience at
all, don’t worry. We will cover them
all in the following sessions.

A sample Python script

30

4. Python Basics

Comments can make code more understandable and easier to maintain.

4.0 Comments

1. Single-line comment:

2. Multi-line comment (using triple quotes):

3. Multi-line comment (using multiple single-line comments):

This is a single-line comment

"""
This is a
multi-line comment
"""

This is a
multi-line comment

Calculate the sum of two numbers
num1 = 10
num2 = 20
sum = num1 + num2

def calculate_area(length, width):
"""
Calculates the area of a rectangle.

Parameters:
length (float): The length of the rectangle.
width (float): The width of the rectangle.

Returns:
float: The area of the rectangle.
"""
area = length * width
return area

Example

31

4. Python Basics

In Python, literals are values that are directly represented in code.

4.1 Literals

Basic type literals
1.Numeric Literals:

• Integer literals: Whole numbers (e.g., 5, -10, 0).
• Floating-point literals: Numbers with decimal points (e.g., 3.14, -0.5).
• Complex literals: Numbers with imaginary parts (e.g., 2+3j, -1j).

2.String Literals:
• Enclosed in single quotes ('...') or double quotes ("...").
• Examples: 'Hello', "Python", "123", 'Special characters: !@#$'.

3.Boolean Literals:
• Two possible values: True and False.

4.None Literal:
• The special value None represents the absence of a value or a null value.

Literal Type Example Description

Numeric Literals 5, 3.14, 2+3j Represent numerical values

String Literals 'Hello', "Python" Represent sequences of characters

Boolean Literals True, False Represent logical values (True or False)

None Literal None Represents the absence of a value or null

Note: Python is case-sensitive!
So, True != true != TRUE

32

4. Python Basics

In Python, literals are values that are directly represented in code.

4.1 Literals

Collection literals
1.List Literals:

• Enclosed in square brackets ([]).
• Examples: [1, 2, 3], ['apple', 'banana', 'cherry'], [True, False].

2.Tuple Literals:
• Enclosed in parentheses (()) or without any brackets.
• Examples: (1, 2, 3), 'apple', 'banana', 'cherry'.

3.Dictionary Literals:
• Enclosed in curly braces ({}) with key-value pairs.
• Examples: {'name': 'John', 'age': 25}, {'fruit': 'apple', 'color': 'red'}.

4.Set Literals:
• Enclosed in curly braces ({}) or created using the set() constructor.
• Examples: {1, 2, 3}, {'apple', 'banana', 'cherry'}, set([True, False]).

Literal
Type Example Description

List Literals [1, 2, 3]
Ordered collection
of elements

Tuple
Literals

(1, 2, 3) or 1, 2, 3
Ordered collection
of immutable
elements

Dictionary
Literals

{'name': 'John', 'age': 25}
Collection of key-
value pairs

Set Literals {1, 2, 3}
Unordered
collection of
unique elements

Don’t worry if you don’t understand it for now.
This page is just for the completeness of literals

33

4. Python Basics

When a literal is encountered in a Python program, the Python
interpreter creates the corresponding object in memory. Each object
has three properties:

• Identity: Each object occupies a specific memory address. In
Python, an object’s identity is determined by its memory address.

• Type: The type determines the behavior and allowed values of
the object.

• Value: The literal’s content

4.1 Literals

What will happen to a literal declared in Python?

Identity 1349065

Type int

Value 25

Memory

An integer literal: 25

Identity 1349050

Type str

Value John

A string literal: “John”

34

4. Python Basics

To access the created literals in memory, we need to reference them to
continue using their values. We can use the assignment operator = to
create a reference to the object.

name and age are the symbolic identifiers used for referencing objects
and are usually called variable names.

Variable in Python is the conceptual container or entity that holds a
reference to an object.

Although variable and variable name are often used interchangeably,
it’s helpful to be aware of this distinction.

4.1 Literals

What will happen to a literal declared in Python?

Identity 1349065

Type int

Value 25

Memory

age

Identity 1349050

Type str

Value John

name

name = "John"
age = 25

35

4. Python Basics

4.2 Variables

In Python, valid variable names should follow:
1. Valid Characters:

• Variable names can consist of letters (both uppercase and lowercase), digits, and underscores (_).
• The first character of a variable name cannot be a digit. It must be a letter or an underscore.

2. Case-Sensitivity:
• Python is case-sensitive, so variable names such as myVar, myvar, and MYVAR are all considered different.

3. Reserved Keywords:
• Variable names cannot be the same as Python-reserved keywords. Reserved keywords are special words in

the Python language with predefined meanings and cannot be used as variable names. Examples of
reserved keywords include if, for, while, def, class, import, and others.

4. Descriptive and Meaningful:
• It is good practice to choose variable names that are descriptive and convey the purpose or meaning of the

variable. This improves code readability and maintainability.
5. Avoid Starting with Underscore:

• Variable names starting with a single underscore (_) have a conventional meaning in Python. They are
considered "weak internal use" and are typically used for special cases or as a hint to indicate that the
variable is intended for internal use within a class or module.

6. Style Conventions:
• Python has style conventions defined in PEP 8 (Python Enhancement Proposal) that recommend using

lowercase letters for variable names and separating words with underscores (snake_case). This
convention helps to improve code readability and consistency.

name
age
my_var
total_count
student1

Valid variable
name examples:

23name
totalCount
class
nnnnn

Invalid or not
recommended
variable names:

?

36

4. Python Basics

4.2 Variables

Reserved keywords that can’t be used as variable names:

Reserved Keywords

False await else import pass

None break except in raise

True class finally is return

and continue for lambda try

as def from nonlocal while

assert del global not with

async elif if or yield

37

4. Python Basics

4.2 Variables

• Python has no command for declaring a variable
A variable is created the moment you first assign a value to it. (as we mentioned
before, in the background, a value/object is referenced by a variable name)

name = "John"
age = 25

• Python is a dynamically typed language, meaning that variables are not explicitly declared with a specific type.
When you create a literal and assign it to a variable, Python infers the variable’s type based on the literal value.
E.g., age = 25, 25 is an integer literal, so Python assigns the int type to the variable age.

• A variable’s type may even be changed later after its initialized
Python infers the variable’s new type based on the new literal value, or the new variable assigned to it. Try
the following statements with your Anaconda CMD.exe Prompt.

Notice that the variable name was
changed to reference an integer variable
after the assignment statement:
name = age

38

4. Python Basics

4.3 Operators

Python operators enable you to perform various operations, such as performing mathematical operations,
assigning values, comparing values, evaluating logical conditions, manipulating bits, checking membership,
testing identity, and applying unary operations.

Operator Category Operators

Arithmetic Operators +, -, *, /, //, %, **

Assignment Operators =, +=, -=, *=, /=, //=, %=, **=

Comparison Operators ==, !=, >, <, >=, <=

Logical Operators and, or, not

Bitwise Operators &, |, ^, ~, <<, >>

Membership Operators in, not in

Identity Operators is, is not

Unary Operators +, -

39

4. Python Basics

4.3 Operators

Arithmetic operators

Operator Description Example

+ Addition 2 + 3 equals 5

- Subtraction 7 - 4 equals 3

* Multiplication 5 * 6 equals 30

/ Division 10 / 2 equals 5.0

// Floor Division 10 // 3 equals 3

%
Modulo
(Remainder)

10 % 3 equals 1

** Exponentiation 2 ** 4 equals 16

Operator Description Example

= Assigns a value to a variable x = 5 assigns 5 to x

+= Adds a value and assigns it x += 3 is equivalent to x = x + 3

-= Subtracts a value and assigns it x -= 2 is equivalent to x = x - 2

*= Multiplies by a value and assigns it x *= 4 is equivalent to x = x * 4

/= Divides by a value and assigns it x /= 2 is equivalent to x = x / 2

//= Performs floor division and assigns it x //= 3 is equivalent to x = x // 3

%= Performs modulo operation and assigns it x %= 5 is equivalent to x = x % 5

**= Performs exponentiation and assigns it x **= 2 is equivalent to x = x ** 2

Assignment operators

Note: in Python, the result of division / is always a float
number, which is different from C/C++ programs. Floor
division // in Python is like the division / in the latter.

Note: in Python, there is no
increment ++ and decrement
operators --. You can use the
assignment operator += and -=
to achieve the same results.

40

4. Python Basics

4.3 Operators

Comparison operators

Unary operators

Operator Description Example

== Equal to 5 == 5 evaluates to True

!= Not equal to 7 != 3 evaluates to True

> Greater than 10 > 5 evaluates to True

< Less than 2 < 6 evaluates to True

>= Greater than or equal to 8 >= 8 evaluates to True

<= Less than or equal to 4 <= 3 evaluates to False

Operator Description Example

and Returns True if both are True True and False evaluates to False

or Returns True if at least one is True True or False evaluates to True

not Returns the opposite not True evaluates to False

Logical operators

Operator Description Example

+ Unary positive +5 returns 5

- Unary negative -7 returns -7

Operator Description Example (Binary)

& Bitwise AND 0b1100 & 0b0111 returns 0b0100

| Bitwise OR 0b1100 | 0b0111 returns 0b1111

^ Bitwise XOR (exclusive OR) 0b1100 ^ 0b0111 returns 0b1011

~ Bitwise NOT (complement) ~0b1100 returns -0b1101

<< Bitwise left shift 0b1010 << 2 returns 0b101000

>> Bitwise right shift 0b1010 >> 2 returns 0b10

Bitwise operators

41

4. Python Basics

4.3 Operators

Membership operators

Identity operators

Operator Description Example

in Evaluates if a value is present in a sequence 'a' in ['a', 'b', 'c'] returns True

not in Evaluates if a value is not present in a sequence 'd' not in ['a', 'b', 'c'] returns True

Operator Description Example

is Evaluates if two objects are the same object
x = 5
y = x
x is y returns True

is not Evaluates if two objects are not the same
x = 5
y = 10
x is not y returns True

42

4. Python Basics

4.3 Operator Precedence

Python operator precedence determines the order in which operators are evaluated in an expression. When
multiple operators exist in an expression, Python follows a specific order of precedence to evaluate them.
Here's a summary of the operator precedence in Python, from highest to lowest precedence:

Precedence Operators

1 () (Parentheses)

2 ** (Exponentiation)

3 *, /, //, % (Multiplication, Division, Floor Division, Modulo)

4 +, - (Addition, Subtraction)

5 <<, >> (Bitwise Shifts)

6 & (Bitwise AND)

7 ^ (Bitwise XOR)

8 |(Bitwise OR)

9 ==, !=, >, <, >=, <=, is, is not, in, not in (Comparison Operators)

10 not (Logical NOT)

11 and (Logical AND)

12 or (Logical OR)

43

4. Python Basics

4.3 Operator Precedence

Ensure that your code is more readable, maintainable, and less prone to operator precedence-related errors,
follow the best practice:

Best practice:
• Use parentheses for clarity in complex expressions.

• Follow Python's operator precedence rules.
• Add whitespace for readability.

• Break down complex expressions when necessary.

• Comment on unusual or non-intuitive precedence.

Complex expression without parentheses
result = 2 + 3 * 4 / (5 - 1) ** 2
Preferred: Complex expression with parentheses for clarity
result = 2 + ((3 * 4) / ((5 - 1) ** 2))

result = 2+3*4 # Less readable
result = 2 + 3 * 4 # More readable with whitespace

complex_result = (2 + 3 * 4) / (5 - 1) # Complex expression
Preferred: Breaking down the expression
intermediate_result = 3 * 4
complex_result = (2 + intermediate_result) / (5 - 1)

Non-intuitive precedence: Comment to clarify the order of evaluation
result = (2 + 3) * 4 # Add 2 and 3 first, then multiply by 4
Unusual precedence: Comment to explain the order of operations
result = (2 + 3) ** 4 # Add 2 and 3 first, then raise the sum to the power of 4

44

4. Python Basics

4.4 Control Structures

Python provides various control structures that enable you to control the flow and execution of your code.

Conditionals

The if statement

if condition:
Code to be executed if the condition is true
statement1
statement2
...

else:
Code to be executed if the condition is false
statement3
statement4
...

if condition1:
Code to be executed if condition1 is true
statement1
statement2
...

elif condition2:
Code to be executed if condition1 is false and
condition2 is true
statement3
statement4
...

elif condition3:
Code to be executed if both condition1 and condition2
are false and condition3 is true
statement5
statement6
...

else:
Code to be executed if none of the above conditions are
true
statement7
statement8
...

The if elif statement

45

4. Python Basics

4.4 Control Structures

Python provides various control structures that enable you to control the flow and execution of your code.

Conditionals

A nested if statement
if condition1:

Outer if block
statement1
statement2
...

if condition2:
Nested if block
statement3
statement4
...

else:
Nested else block
statement5
statement6
...

More statements after the nested if-else blocks
statement7
statement8
...

else:
Outer else block
statement9
statement10
...

Python control structure formatting:

• Indentation: Python defines code blocks using
indentation (usually 4 spaces) instead of curly braces ({ }).
Consistent indentation with spaces or tabs is crucial for
proper code structure and readability. (If you use tab,
make sure to set one tab equal to 4 spaces in your editor
settings)

• Indentation Block Marker: The colon (:) indicates the
beginning of an indented code block. It is typically used
after a statement that requires an indented block, such as
in if, else, elif, for, while, and function definitions.
The code block following the colon must be indented
consistently to maintain the block structure.

46

4. Python Basics

4.4 Control Structures

Conditionals

x = 5

if x > 0:
print("The value of x is positive.")

else:
print("The value of x is non-positive.")

Example 1
Learning by doing is an effective way to master a language. Try
each example with your new notebook created before.

47

4. Python Basics

4.4 Control Structures

Conditionals

x = 5
y = 3.14

Comparing an integer and a float
if x > y:

print("x is greater than y")
elif x < y:

print("x is less than y")
else:

print("x is equal to y")

Example 2

When comparing an integer with a float, Python will
automatically perform type conversion and convert
the integer to a float for comparison.

x = 0.1 + 0.1 + 0.1 # 0.3
y = 0.3

tolerance = 1e-10 # Set your desired tolerance level

if abs(x - y) < tolerance:
print("x is approximately equal to y")

else:
print("x is not equal to y")

Example 3

Avoid using simple equality comparisons (== or !=) due to
potential precision issues when comparing close float numbers.
Instead, use a tolerance-based approach by checking if the
absolute difference falls within an acceptable range. This accounts
for floating-point limitations and provides more reliable
approximate equality comparisons.

Automatic type conversion Comparing two close float numbers

48

4. Python Basics

4.4 Control Structures

Conditionals

if x == 1:
var = 20

else:
var = 30

How to simplify this block?

value_if_true if condition else value_if_false

Conditional expression template

Conditional expressions

var = (20 if x == 1 else 30)

The conditional expression provides a concise
way to express a simple conditional statement.
It allows you to make a decision and return
different values based on the outcome of the
condition in a single line of code.

In this template:

• condition represents the expression or condition
that is evaluated.

• value_if_true is the value to be returned if the
condition evaluates to True.

• value_if_false is the value to be returned if the
condition evaluates to False.

49

4. Python Basics

4.4 Control Structures

Loops

while condition:
Code to be executed while the condition is true
statement1
statement2
...

while statement

count = 0

while count < 5:
print("Count:", count)
count += 1

print("Loop finished.")

Example 1

Note: print() is a Python
built-in function to display
or output text or values to
the console. We will
introduce functions later.

for item in iterable:
Code to be executed for each item in the iterable
statement1
statement2
...

for statement

In this template:
• item represents a variable that takes on the value of each item in the iterable object during each iteration

of the loop.
• iterable is an object that can be looped or iterated over. It's like a container or a sequence with multiple

elements, such as a list of items, a string of characters, or even a range of numbers.

my_string = "Hello!"

for char in my_string:
print(char)

Example 2

Output

50

4. Python Basics

4.4 Control Structures

Loops

Terminate a loop: use the break keyword

count = 0

while True:
print("Count:", count)
count += 1

if count >= 5:
break

print("Loop finished.")

Example 1 Example 2

When the break statement is encountered within a
loop, the program flow immediately exits the loop,
skipping any remaining iterations or code within the loop.

outer_string = "XYZ"
inner_string = "abc"

for outer_char in outer_string:
 print("Outer loop:", outer_char)

 for inner_char in inner_string:
 print("Inner loop:", inner_char)

 if inner_char == "b":
 break

print("Loop finished.")

Note: The break statement only exits the innermost loop in
nested loops. If you have multiple nested loops, the break
statement will break out of the innermost loop and resume the
execution from the next statement outside that loop.

51

4. Python Basics

4.4 Control Structures

Loops

The while-else block to detect a loop break

Example

The while-else block allows you to handle scenarios where you want to perform certain actions if a while loop
completes normally without encountering a break statement.

my_string = "Hello, World!"
target = “Z"

index = 0
while index < len(my_string):

if my_string[index] == target:
break

index += 1
else:

print("Target not found in the string.")

while condition:
Code to be executed inside the loop
statement1
statement2
...

if break_condition:
Code to be executed if break
condition is met
break

else:
Code to be executed if the loop
completes without encountering a break
statement3
statement4
...

my_string[index]
means taking the nth
character of the string.
Don’t worry about the
syntax here and the
len() function,
which means taking
the length of
my_string.

52

4. Python Basics

4.4 Control Structures

Loops

Use the continue keyword to abort the current iteration

Example

The continue keyword allows you to skip certain iterations of a loop when a particular condition is met. It effectively
aborts the current iteration and proceeds to the next iteration without executing the remaining code within the loop
for that iteration.

my_string = "Hello, World!"

for char in my_string:
if char == ",":

continue
print(char)

print("Loop finished.")

Notice there is an
empty row, and the
“,” sign never got
printed here

if condition:
pass # Placeholder, no action needed for now

else:
Some code here
statement1
statement2

Purpose: The pass statement is used as a placeholder when you need a statement syntactically but don't want to
perform any specific action at that point.
Usage: It is commonly used in situations where you are defining a code block, such as in function or class definitions,
conditional statements, or loops, but you want to skip that block without causing a syntax error.

53

4. Python Basics

4.4 Control Structures

Loops

Use the pass statement as a placeholder for an unimplemented code block

Example

my_string = "Hello, World!"

for char in my_string:
if char == ",":

pass # No action needed for commas
else:

print(char)

print("Loop finished.")

54

4. Python Basics

4.5 Data Types

A data type refers to the category of values that a particular object can have. It determines the kind of operations
that can be performed on the object and the storage format for the data. Some built-in data types in Python
include numeric types (int, float, complex), string (str), boolean (bool), list, tuple, dict, set, and more.

Data Type Description Example Mutability

NoneType Represents the absence of a value result = None Immutable

Numeric Types

int Represents whole numbers x = 5 Immutable

float Represents floating-point numbers pi = 3.14 Immutable

bool Represents binary values of either True or False is_valid = True Immutable

complex Represents complex numbers with real and imaginary parts z = 2 + 3j Immutable

Sequential Types

str Represents a sequence of characters message = "Hello, World!" Immutable

bytes Represents immutable sequences of bytes data = b'Hello' Immutable

tuple Represents an ordered collection of elements coordinates = (10, 20) Immutable

list Represents an ordered collection of elements numbers = [1, 2, 3, 4] Mutable

bytearray Represents mutable sequences of bytes data = bytearray(b'Hello') Mutable

Set and Mapping Types

set Represents an unordered collection of unique elements unique_numbers = {1, 2, 3} Mutable

dict Represents a collection of key-value pairs person = {'name': 'John', 'age': 25} Mutable

frozenset Represents an immutable, unordered collection of unique elements frozen_numbers = frozenset({1, 2, 3}) Immutable

55

4. Python Basics

4.5 Data Types

Objects and Data Types

• In Python, everything is an object, which refers to the concept that all entities in the language, including
values, data structures, functions, and even classes, are objects.

• Every object in Python is an instance of a specific data type or class, and objects are created based on those
data types.

❑ In this example, all these numbers are the instances of the int
type (integer)

❑ The int type specifies the storage format and behaviors of the
instances (numbers)
• Storage Format: The int type specifies the specific format used to

represent integer numbers in memory. Internally, integer numbers
are stored using a fixed amount of memory, typically 32 bits or 64
bits, depending on the platform.

• Behaviors: The int type defines the behaviors and operations
that can be performed on integer numbers. For example, the int
type supports mathematical operations like addition, subtraction,
multiplication, and division and comparison operations like
equality and inequality checks.

int

0

200

13869

-137

56

4. Python Basics

4.5 Data Types

NoneType

The NoneType is a special data type in Python that represents the absence of a value or the lack of a value. It
is commonly associated with the singleton object None, which is a built-in constant. It is often used in
conditional statements or function returns to handle cases where a value is missing or not applicable.

• Singleton Object: None is a unique instance of NoneType in the system.
• Comparisons: Use is operator to check if a variable refers to None.
• Usage: Commonly used to handle missing or non-applicable values.
• Immutable: The value of None cannot be changed once assigned.

name = None
if name is None:

print("No name provided")

In this example, we initialize the variable name with
None, indicating that no specific value has been
assigned yet. We then use the is operator to check if
name is None.

Example

57

4. Python Basics

4.5 Data Types

Numeric Types

All numeric types (int, float, bool, complex) are immutable, meaning that their value cannot be changed
once related objects are created.

import sys

largest_int = sys.maxsize
smallest_int = -sys.maxsize - 1

Output: 9223372036854775807 (or platform-dependent)
print(largest_int)
Output: -9223372036854775808 (or platform-dependent)
print(smallest_int)

Example: access the largest and smallest integer constant on your system

Numeric Types: int

Range: The int type can represent a wide range of integer values, limited only by the available memory in the
system. On most platforms, the range of int values is approximately -2^31 to 2^31-1 for 32-bit systems and -
2^63 to 2^63-1 for 64-bit systems.

• If a memory can hold an integer value
up to 2^31-1, it would require a
memory capacity of approximately 2
gigabytes (GB) on a 32-bit system;

• To hold an integer up to 2^63-1 on a
64-bit system, the memory capacity
must be around 1,048,576 TB !!!!!

58

4. Python Basics

4.5 Data Types

import sys

largest_float = sys.float_info.max
smallest_float = -sys.float_info.max
Output: 1.7976931348623157e+308 (or platform-dependent)
print(largest_float)
Output: -1.7976931348623157e+308 (or platform-dependent)
print(smallest_float)

Example: access the largest and
smallest float number constant on
your system

Numeric Types: float

Finite Range: The range of finite float numbers is limited by the specific implementation and the floating-point
format used. In Python, the range is typically from approximately 2.2 x 10^-308 to 1.8 x 10^308 for positive and
negative values.
Not-a-Number (NaN): The floating-point format includes a special NaN (Not-a-Number) value. NaN represents
the result of mathematically undefined or indeterminate operations, such as dividing zero by zero or taking the
square root of a negative number.
Precision limitations: floating-point arithmetic is subject to precision limitations due to the nature of
representing real numbers in a finite format. This can lead to rounding errors and small discrepancies when
calculating float numbers.

59

4. Python Basics

4.5 Data Types

Numeric Types: bool

In Python, the bool type is considered a numeric type because it shares certain characteristics and behaviors
with other numeric types. It can participate in numeric operations, is internally represented as integers (True
as 1, False as 0), and can be converted to other numeric types.

For each other data type, a specific value is defined as bool False, as listed below. Except these, all other
values are defined as True.

Objects Example Description

False False The boolean value False.

None None The special object representing absence of a value.

Numeric Zero 0, 0.0, 0j Numeric values equal to zero.

Empty Sequences '', [], (), set(), {} Empty sequences like strings, lists, tuples, sets, and dictionaries.

Empty Objects Custom objects with special "empty" state
Custom objects that define their own truthiness behavior. They
evaluate as False when their length or internal state is empty.

60

4. Python Basics

4.5 Data Types

Numeric Types: bool

string = ""

if bool(string) == False:
print("The string is empty.")

else:
print("The string is not empty.")

Other objects can also be converted to
bool type using the built-in function
bool().

Example 1

string = ""

if not string:
print("The string is empty.")

else:
print("The string is not empty.")

By using a logical operator not, the
operand that is defined as False will be
automatically interpreted as a truth value.

Example 2

61

4. Python Basics

4.5 Data Types

Numeric Types:

Built-in functions in Python that can be used for converting between numeric data types:

Function Description Example Usage Result

int(x) Converts x to an integer int(3.14) 3

float(x) Converts x to a float float(5) 5.0

complex(real, imag) Creates a complex number with the given real and imaginary parts complex(2, 3) (2+3j)

bin(x) Converts an integer x to a binary string representation bin(10) '0b1010'

oct(x) Converts an integer x to an octal string representation oct(20) '0o24'

hex(x) Converts an integer x to a hexadecimal string representation hex(15) '0xf'

round(x, n) Rounds x to n decimal places round(3.14159, 2) 3.14

abs(x) Returns the absolute value of x abs(-10) 10

divmod(a, b) Returns the quotient and remainder of a divided by b as a tuple divmod(10, 3) (3, 1)

bool(x) Converts x to a boolean value bool(0) False

62

4. Python Basics

4.5 Data Types

Sequential Types

In Python, a sequential type is a data type that represents an ordered sequence of elements. Sequential types
allow accessing and manipulating individual elements within the sequence based on their positions or indices.

Sequential Types

Data Type Description Example Mutability

str Represents a sequence of characters message = "Hello, World!" Immutable

tuple Represents an ordered collection of elements (could be in different types) coordinates = (10, 20) Immutable

list Represents an ordered collection of elements (could be in different types) numbers = [10, 23, 30, 4] Mutable

range Represents a sequence of numbers within a specified range range1 = range(0, 10) Immutable

• str, tuple, and list are general-purpose sequential types used for different purposes. str is used for
working with text, tuple for fixed collections, and list for dynamic collections that can be modified.

• The range type in Python is a special sequential data type that serves a specific purpose. It generates
numbers on-the-fly as they are needed, rather than storing all the numbers explicitly in memory. This makes
range objects memory-efficient, particularly for large ranges. Used primarily for iterating over a specific
range of numbers.

63

4. Python Basics

4.5 Data Types

Sequential Types: Creating new objects

Creating a string
greeting = "Hello"
sentence1 = 'Python is a versatile programming language.'
Sentence2 = 'Python is a "versatile" programming language.'

Creating a tuple
my_tuple = (1, 2, 3, 4, 5)
mixed_tuple = ('apple', 3.14, True)

Creating a list
my_list1 = [1, 2, 3, 4, 5]
my_list2 = [True, False, True]
mixed_list = [True, 'apple', 3.14]

Creating a range
my_range = range(1, 6)
custom_range = range(0, 10, 2)

The range() function accepts one, two, or three arguments, and
returns an object of the range type, representing a sequence of
numbers that can be iterated over.
• range(stop): Generates numbers starting from 0 up to

stop (exclusive) with a default step size of 1.
• range(start, stop): Generates numbers starting from

start up to stop (exclusive) with a default step size of 1.
• range(start, stop, step): Generates numbers

starting from start up to stop (exclusive) with a specified
step size.

Generating numbers from 0 to 4 (exclusive)
for num in range(5):

print(num) # Output: 0, 1, 2, 3, 4

Generating numbers from 1 to 6 (exclusive)
for num in range(1, 6):

print(num) # Output: 1, 2, 3, 4, 5

Generating even numbers from 2 to 10 (exclusive)
for num in range(2, 10, 2):

print(num) # Output: 2, 4, 6, 8

64

4. Python Basics

4.5 Data Types

Sequential Types: Indexing Index from front 0 1 2 3 4 5

Elements P y t h o n

Index from back -6 -5 -4 -3 -2 -1

my_string = "Python"

• Indexing is zero-based: In Python, indexing starts from 0, so the first element in a
sequence has an index of 0, the second element has an index of 1, and so on.

• Positive indexing: You can access elements sequentially using positive indices. For
example, my_list[0] retrieves the first element of the list, my_string[2]
retrieves the third character of the string, and my_tuple[1] retrieves the second
element of the tuple.

• Negative indexing: Python also supports negative indexing, which allows you to access
elements from the end of the sequence. For example, my_list[-1] retrieves the last
element of the list, my_string[-2] retrieves the second-to-last character of the
string, and my_tuple[-3] retrieves the third-to-last element of the tuple.

• Out-of-range indexing: If you try to access an index that is outside the valid range of
indices for the sequence, Python raises an IndexError. For example, attempting to
access my_list[6] when my_list has only 6 elements will result in an IndexError.

65

4. Python Basics

4.5 Data Types

Sequential Types: Operations on objects

1. Indexing: Accessing individual elements by their position using
square brackets [].
my_string = 'Hello'
my_tuple = (1, 2, 3)
my_list = [True, False, True]
print(my_string[0]) ⟶ Output: 'H'
print(my_tuple[2]) ⟶ Output: 3
print(my_list[1]) ⟶ Output: False

2. Slicing: Extracting a subset of elements using a range of indices.
my_string = 'Hello World'
my_tuple = (1, 2, 3, 4, 5)
my_list = [True, False, True, False, True]
print(my_string[1:5]) ⟶ Output: 'ello'
print(my_tuple[2:4]) ⟶ Output: (3, 4)
print(my_list[:3]) ⟶ Output: [True, False, True]

3. Membership: Checking if an element is present in the sequence
using the in operator.
my_string = 'Hello World'
my_tuple = (1, 2, 3)
my_list = [True, False, True]
print('o' in my_string) ⟶ Output: True
print(2 in my_tuple) ⟶ Output: True
print(False in my_list) ⟶ Output: True

The slicing syntax follows a common pattern:
s[start:end:step]

• start (optional): The index where the slice begins. If omitted,
the slice starts from the beginning (index 0).

• end (optional, exclusive): The index where the slice ends. The
slice does not include this index. If omitted, the slice goes up
to the end of the sequence.

• step (optional): The step or increment between elements in
the slice. If omitted, the default step is 1. A positive step
moves forward through the sequence, while a negative step
moves backward.

my_string = 'Hello World'
print(my_string[1:5]) # Output: 'ello'
print(my_string[:5]) # Output: 'Hello'
print(my_string[6:]) # Output: 'World'
print(my_string[::2]) # Output: 'HloWrd'
print(my_string[::-1]) # Output: 'dlroW olleH'

my_list = [1, 2, 3, 4, 5]
print(my_list[1:4]) # Output: [2, 3, 4]
print(my_list[:3]) # Output: [1, 2, 3]
print(my_list[2:]) # Output: [3, 4, 5]
print(my_list[::2]) # Output: [1, 3, 5]
print(my_list[::-1]) # Output: [5, 4, 3, 2, 1]

66

4. Python Basics

4.5 Data Types
Sequential Types: Operations on objects

4. Equality: Comparing if two sequences are equal using the == operator.
str1 = 'Hello'
str2 = 'World'
tuple1 = (1, 2, 3)
tuple2 = (4, 5, 6)
list1 = [True, False]
list2 = [1, 2, 3]
print(str1 == str2) ⟶ Output: False
print(tuple1 == tuple2) ⟶ Output: False
print(list1 == list2) ⟶ Output: False

5. Iteration: Looping over each element in the sequence using a for loop.

my_string = 'Hello'
my_tuple = (1, 2, 3)
my_list = [True, False, True]

for char in my_string:
print(char)

for num in my_tuple:
print(num)

for item in my_list:
print(item)

67

4. Python Basics

4.5 Data Types
Sequential Types: Operations on objects

6. Returns the maximum value from a sequence using the max() function.
my_string = 'Hello World'
max_char = max(my_string)
print(max_char) ⟶ Output: 'r'
my_tuple = (5, 2, 8, 1, 9, 3)
max_value = max(my_tuple)
print(max_value) ⟶ Output: 9

7. Returns the minimum value from a sequence using the min() function.
my_list = [5, 2, 8, 1, 9, 3]
min_value = min(my_list)
print(min_value) ⟶ Output: 1
my_tuple = (5, 2, 8, 1, 9, 3)
min_value = min(my_tuple)
print(min_value) ⟶ Output: 1

8. Returns the number of occurrences of a specified element in a sequence using the count() function.
my_string = 'Hello World'
count = my_string.count('l')
print(count) ⟶ Output: 3
my_list = [1, 2, 3, 4, 1, 5, 1]
count = my_list.count(1)
print(count) ⟶ Output: 3

68

4. Python Basics

4.5 Data Types
Sequential Types: Operations on objects

9. Length: Getting the number of elements in the sequence using the len() function.
my_string = 'Hello World'
my_tuple = (1, 2, 3, 4, 5)
my_list = [True, False, True]
print(len(my_string)) ⟶ Output: 11
print(len(my_tuple)) ⟶ Output: 5
print(len(my_list)) ⟶ Output: 3

10. Returns the index of the first occurrence of a specified element in a sequence using the index() function
my_string = 'Hello World'
index = my_string.index('W')
print(index) ⟶ Output: 6
my_list = [5, 2, 8, 1, 9, 3]
index = my_list.index(8)
print(index) ⟶ Output: 2

11. Repetition: Repeating the elements using the * operator. (Not applicable to the range object)
my_string = 'abc'
my_tuple = (1, 2)
my_list = [True, False]
print(my_string * 3) ⟶ Output: 'abcabcabc'
print(my_tuple * 2) ⟶ Output: (1, 2, 1, 2)
print(my_list * 4) ⟶ Output: [True, False, True, False, True, False, True, False]

69

4. Python Basics

4.5 Data Types
Sequential Types: Operations on objects

12. Concatenation: Joining or combining multiple sequences using the + operator. (Not applicable to the range object)
str1 = 'Hello'
str2 = 'World'
tuple1 = (1, 2, 3)
tuple2 = (4, 5, 6)
list1 = [True, False]
list2 = [1, 2, 3]
print(str1 + ' ' + str2) ⟶ Output: 'Hello World'
print(tuple1 + tuple2) ⟶ Output: (1, 2, 3, 4, 5, 6)
print(list1 + list2) ⟶ Output: [True, False, 1, 2, 3]

13. Mutation: Modifying elements or structure of the sequence. (Only applicable to the mutable object)
my_list = [1, 2, 3, 4, 5]
my_list[0] = 'New'
my_list.append(6)
print(my_list) ⟶ Output: ['New', 2, 3, 4, 5, 6]

Note: A tuple is an immutable object, meaning
you cannot directly assign a new value to the
tuple or modify other elements. However, if it
contains a list object as its element, that list
object could still be updated.

my_tuple = ([1, 2, 3], 4, 5)
print(my_tuple) # Output: ([1, 2, 3], 4, 5)

my_tuple[0].append(4)
print(my_tuple) # Output: ([1, 2, 3, 4], 4, 5)

70

4. Python Basics

4.5 Data Types
Sequential Types: Operations on objects

More on mutations

Considering the right example, it seems like the immutable
string1 is updated by the assignment operator, which is not
the case. Actually, a new string object is created with the value of
string1 + string2, which is then referenced by string1.
So, after that operation, the three objects "Hello ",
"World", and "Hello World" exist in the memory, whereas
there is no reference to "Hello " anymore.

string1 = "Hello "
string2 = "World"
string1 += string2
print(string1)

Memory

"Hello "

“World"

string1

string2

Memory

"Hello "

“World"string2

"Hello World"string1

string1 += string2

71

4. Python Basics

4.5 Data Types
Sequential Types: the str type

The str type in Python represents a sequence of characters and is used to store and manipulate
textual data. Here are key points summarizing the str type:

• Textual Data: str objects hold strings of characters, enclosed in single quotes ('') or double quotes
(""). They can represent words, sentences, paragraphs, or any other text-based information.

• Immutable: str objects are immutable, meaning their contents cannot be changed after creation.
Any operation that modifies a string actually creates a new string object.

• Type Conversion: You can convert other data types to str using the str() function, which creates
a string representation of the given object.

• String Interpolation: Python offers multiple ways to format strings and allows you to create
dynamic strings without the need for excessive concatenation or complex formatting operations.

• String Methods: str objects have many built-in methods that allow you to perform operations like
case conversion, string formatting, searching, replacing, splitting, and more.

72

4. Python Basics

4.5 Data Types
Sequential Types: the str type

String Interpolation: Python offers multiple ways to format strings and allows you to create dynamic
strings without the need for excessive concatenation or complex formatting operations.

1. Concatenation: You can concatenate strings and variables using the + operator.

2. %-formatting: This method uses the % operator to format strings. You provide a format
specifier and pass the values in a tuple.

3. str.format(): This method uses the str.format() function to format strings. You can specify
placeholders in the string and provide the values in the format() function.

name = "Alice"
age = 25
message = "My name is " + name + " and I am " + str(age) + " years old."

name = "Alice"
age = 25
message = "My name is %s and I am %d years old." % (name, age)

name = "Alice"
age = 25
message = "My name is {} and I am {} years old.".format(name, age)

73

4. Python Basics

4.5 Data Types
Sequential Types: the str type

String Interpolation: Python offers multiple ways to format strings and allows you to create dynamic
strings without the need for excessive concatenation or complex formatting operations.

4. f-strings (formatted string literals): Introduced in Python 3.6, f-strings provide a concise and
readable way to interpolate variables and expressions directly into strings. You can enclose
expressions within curly braces {} and prefix the string with the letter f.

name = "Alice"
age = 25
message = f"My name is {name} and I am {age} years old."

All the above outputs are the same:

74

4. Python Basics

4.5 Data Types
Sequential Types: the str type

String Methods: commonly used methods are listed below. More methods can be found in the online
documentation: https://docs.python.org/3/library/stdtypes.html#string-methods

Method Description Example

str.lower() Returns a lowercase version of the string. "Hello".lower() returns "hello".

str.upper() Returns an uppercase version of the string. "Hello".upper() returns "HELLO".

str.strip() Removes leading and trailing whitespace. " Hello ".strip() returns "Hello".

str.replace(old, new) Replaces occurrences of a substring with another. "Hello".replace("l", "L") returns "HeLLo".

str.split(separator) Splits the string into a list of substrings. "Hello World".split(" ") returns ["Hello", "World"].

str.join(iterable) Joins the elements of an iterable into a string. " ".join(["Hello", "World"]) returns "Hello World".

str.isdigit() Checks if all characters are digits. "123".isdigit() returns True.

str.isalpha() Checks if all characters are alphabetic. "Hello".isalpha() returns True.

str.islower() Checks if all characters are lowercase. "hello".islower() returns True.

str.isupper() Checks if all characters are uppercase. "HELLO".isupper() returns True.

str.startswith(prefix) Checks if the string starts with the given prefix. "Hello".startswith("He") returns True.

str.endswith(suffix) Checks if the string ends with the given suffix. "Hello".endswith("lo") returns True.

str.count(substring) Counts the number of occurrences of a substring. "Hello World".count("o") returns 2.

https://docs.python.org/3/library/stdtypes.html#string-methods

75

4. Python Basics

4.5 Data Types
Sequential Types: the list type

The list type in Python is an ordered collection of items that can hold various data types. Here are
key points summarizing the list type:

• Ordered Collection: Lists maintain the order of elements, meaning the position of each item is
preserved.

• Heterogeneous Data: Lists can hold items of different data types, such as integers, floats, strings, or
even other lists.

• Dynamic Size: Lists can grow or shrink dynamically as items are added or removed. They have no
fixed size limitations.

• Mutable: Lists are mutable, which means you can modify their elements by assigning new values,
adding or removing items, or reordering the existing items. Lists provide methods like append(),
extend(), insert(), remove(), pop(), and clear() to manipulate their contents.

76

4. Python Basics

4.5 Data Types
Sequential Types: the list type

Operators on the list type for in-place modification.
The following operators demonstrate how to modify list elements, replace sublists with new elements, and
delete elements or sublists using the del statement. Note that the examples modify the list in-place, resulting in
a modified list after each operation.

Operation Description Example

list[index] = value
Changes the value at the specified
index in the list.

my_list = [1, 2, 3]
my_list[1] = 4 # Result: [1, 4, 3]

list[start:end] = iterable
Replaces a sublist with the elements
from the iterable.

my_list = [1, 2, 3, 4]
my_list[1:3] = ['a', 'b’] # Result: [1, 'a', 'b', 4]

list[start:end:step] = iterable
Replaces a sublist with the elements
from the iterable using a step.

my_list = [1, 2, 3, 4, 5]
my_list[::2] = ['a', 'b', 'c’] # Result: ['a', 2, 'b', 4, 'c']

del list[index]
Deletes the item at the specified
index in the list.

my_list = [1, 2, 3]
del my_list[1] # Result: [1, 3]

del list[start:end]
Deletes a sublist from the list within
the specified range.

my_list = [1, 2, 3, 4, 5]
del my_list[1:4] # Result: [1, 5]

del list[start:end:step]
Deletes a sublist from the list using a
step value.

my_list = [1, 2, 3, 4, 5]
del my_list[::2] # Result: [2, 4]

77

4. Python Basics

4.5 Data Types
Sequential Types: the list type

List Methods: commonly used methods are listed below. More methods can be found in the online
documentation: https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Method Description Example

list.append(item) Appends an item to the end of the list.
my_list = [1, 2, 3]
my_list.append(4) # Result: [1, 2, 3, 4]

list.extend(iterable)
Extends the list by appending elements
from the iterable.

my_list = [1, 2, 3]
my_list.extend([4, 5]) # Result: [1, 2, 3, 4, 5]

list.insert(index, item)
Inserts an item at the specified index in
the list.

my_list = [1, 2, 3]
my_list.insert(1, 'a’) # Result: [1, 'a', 2, 3]

list.remove(item)
Removes the first occurrence of the item
from the list.

my_list = [1, 2, 3, 2]
my_list.remove(2) # Result: [1, 3, 2]

list.pop(index=-1)

Removes and returns the item at the
specified index, or the last item if no
index is provided.

my_list = [1, 2, 3]
item = my_list.pop(1) # Result: my_list = [1, 3], item = 2

list.clear() Removes all items from the list.
my_list = [1, 2, 3]
my_list.clear() # Result: []

list.sort(key=None, reverse=False)
Sorts the items in the list in ascending
order.

my_list = [3, 1, 2]
my_list.sort() # Result: [1, 2, 3]

list.reverse() Reverses the order of items in the list.
my_list = [1, 2, 3]
my_list.reverse() # Result: [3, 2, 1]

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

78

4. Python Basics

4.5 Data Types
Sequential Types: the tuple type

The tuple type in Python is an ordered collection of items that can hold various data types. Here are
key points summarizing the tuple type:

• Ordered Collection: Lists maintain the order of elements, meaning the position of each item is
preserved.

• Heterogeneous Data: Lists can hold items of different data types, such as integers, floats, strings, or
even other tuples.

• Immutable: meaning its elements cannot be modified after creation. Although tuples are
immutable, they can contain mutable objects like lists.

79

4. Python Basics

4.5 Data Types
Sequential Types: the tuple type

The tuple type in Python is an ordered collection of items that can hold various data types. Here are
key points summarizing the tuple type:

• Ordered Collection: Lists maintain the order of elements, meaning the position of each item is
preserved.

• Heterogeneous Data: Lists can hold items of different data types, such as integers, floats, strings, or
even other tuples.

• Immutable: meaning its elements cannot be modified after creation. Although tuples are
immutable, they can contain mutable objects like lists.

Common Methods Description Example

tuple.count(value)
Returns the number of occurrences of a specified
value in the tuple.

my_tuple = (1, 2, 3, 2, 4, 2)
count = my_tuple.count(2)
Result: count = 3

tuple.index(value, start=0, end=len(tuple))
Returns the index of the first occurrence of a
specified value in the tuple within the given range.

my_tuple = (1, 2, 3, 2, 4, 2)
index = my_tuple.index(4)
Result: index = 4

80

4. Python Basics

4.5 Data Types
Sequential Types: Packing and Unpacking

Sequential data types in Python, such as lists, tuples, and strings, have the unique feature of packing
and unpacking.

• Packing is the process of combining multiple values into a single sequential data object. For
example, you can pack multiple values into a tuple by simply enclosing them within parentheses ()
(optional for tuple) or a list by using square brackets []. Packing allows you to group related values
together into a single object.

• Unpacking, on the other hand, is the process of extracting values from a sequential data object
into individual variables. It allows you to assign the elements of a tuple, list, or string to separate
variables in a single statement. Unpacking is particularly useful when you want to conveniently
access and work with the individual elements of a sequence.

• To unpack a sequential data object, you can assign its elements to variables using the assignment
operator = and separate the variables with commas. The number of variables on the left side of the
assignment must match the number of elements in the unpacked sequence.

81

4. Python Basics

4.5 Data Types
Sequential Types: Packing and Unpacking

Packing and unpacking examples for the str, list, and tuple types.

List Packing and Unpacking
my_list = [1, 2, 3] # List Packing
a, b, c = my_list # List Unpacking
print(a, b, c) # Output: 1 2 3

Tuple Packing and Unpacking
my_tuple = 1, 2, 3 # Tuple Packing
a, b, c = my_tuple # Tuple Unpacking
print(a, b, c) # Output: 1 2 3

String Packing and Unpacking
my_string = "hello" # String Packing
a, b, c, d, e = my_string # String Unpacking
print(a, b, c, d, e) # Output: h e l l o

82

4. Python Basics

4.5 Data Types
Sequential Types: Packing and Unpacking

In unpacking, you can use the asterisk (*) to collect multiple elements into a single variable. The
variable that collects the remaining elements always receives a list type reference.

my_list = [1, 2, 3, 4, 5]
a, *b, c = my_list

print(a) # Output: 1
print(b) # Output: [2, 3, 4]
print(c) # Output: 5

my_tuple = (1, 2, 3, 4, 5)
a, *b, c = my_tuple

print(a) # Output: 1
print(b) # Output: [2, 3, 4]
print(c) # Output: 5

my_string = "hello"
a, *b, c = my_string

print(a) # Output: 'h'
print(b) # Output: ['e', 'l', 'l']
print(c) # Output: 'o'

83

4. Python Basics

4.5 Data Types
Mapping and Set

Mapping data types (dictionaries) in Python represent key-value pairs, while set data types represent
unordered collections of unique elements. Both are mutable, and their size and elements can be
modified.

Set and Mapping Types

set Represents an unordered collection of unique elements unique_numbers = {1, 2, 3} Mutable

dict Represents a collection of key-value pairs person = {'name': 'John', 'age': 25} Mutable

84

4. Python Basics

4.5 Data Types
Mapping and Set: the set type

• Set data type in Python represents a mutable unordered collection of unique elements.
• Sets are created by enclosing comma-separated values within curly braces ({}), or by using the

set() constructor.
• Sets provide operations like union, intersection, difference, and membership testing.
• Sets are useful for tasks that involve finding unique values, testing membership, or performing set

operations.

Creating a Set using Curly Braces
my_set = {1, 2, 3, 4, 5}

Creating a Set using the set() Constructor
my_set = set([1, 2, 3, 4, 5])

Creating an Empty Set
my_set = set()

Creating a Set from a String
my_set = set("hello")

Creating a Set from a List
my_list = [1, 2, 3, 4, 5]
my_set = set(my_list)

85

4. Python Basics

4.5 Data Types
Mapping and Set: the set type

Some common set operators

Operator Description Example

set1 | set2
Union: Returns a set containing all elements
from both sets.

set1 = {1, 2, 3}
set2 = {3, 4, 5}
union_set = set1 & set2 # Result: {1, 2, 3, 4, 5}

set1 & set2
Intersection: Returns a set containing common
elements between two sets.

set1 = {1, 2, 3}
set2 = {3, 4, 5}
intersection_set = set1 & set2 # Result: {3}

set1 - set2
Difference: Returns a set containing elements
present in the first set but not in the second set.

set1 = {1, 2, 3}
set2 = {3, 4, 5}
difference_set = set1 - set2 # Result: {1, 2}

set1 ^ set2

Symmetric Difference: Returns a set containing
elements that are in either of the sets, but not
both.

set1 = {1, 2, 3}
set2 = {3, 4, 5}
symmetric_difference_set = set1 ^ set2 # Result: {1, 2, 4, 5}

set1 <= set2
Subset: Returns True if all elements of the first
set are present in the second set.

set1 = {1, 2}
set2 = {1, 2, 3}
is_subset = set1 <= set2 # Result: True

set1 >= set2
Superset: Returns True if all elements of the
second set are present in the first set.

set1 = {1, 2, 3}
set2 = {1, 2}
is_superset = set1 >= set2 # Result: True

86

4. Python Basics

4.5 Data Types
Mapping and Set: the set type

Some common set methods. Refer to the documentation for details:
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

Method Description

set.add(element) Adds an element to the set.

set.remove(element) Removes an element from the set.

set.discard(element) Removes an element from the set if it exists, otherwise does nothing.

set.pop() Removes and returns an arbitrary element from the set.

set.clear() Removes all elements from the set, making it empty.

set.copy() Returns a shallow copy of the set.

set.update(iterable) Updates the set by adding elements from an iterable.

set.intersection(*others) Returns a new set with elements common to the set and all other sets.

set.difference(*others) Returns a new set with elements in the set but not in any of the other sets.

set.symmetric_difference(other) Returns a new set with elements present in either the set or the other set, but not both.

set.union(*others) Returns a new set with elements from the set and all other sets.

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

87

4. Python Basics

4.5 Data Types
Mapping and Set: the dict type

• dict data type in Python represents a mutable unordered collection of key-value pairs.
• Each key-value pair in a dictionary is separated by a colon (:) and enclosed in curly braces ({}).
• Keys within a dictionary must be unique, and they are typically immutable types such as strings or

numbers.
• Values within a dictionary can be of any type and can be accessed and modified using their

corresponding keys.
• Dictionaries provide fast lookups based on keys, making them efficient for data retrieval by key-

value association.
Creating an empty dictionary
my_dict = {}

Creating a dictionary with key-value pairs
my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}

Using the dict() constructor
my_dict = dict()

Creating a dictionary from a list of tuples
my_dict = dict([('name', 'John'), ('age', 30), ('city', 'New York')])

Creating a dictionary using keyword arguments
my_dict = dict(name='John', age=30, city='New York')

88

4. Python Basics

4.5 Data Types
Mapping and Set: the dict type

Iteration
1. Iterating over keys using 'for key in dict'

2. Iterating over values using 'for value in dict.values()'

3. Iterating over key-value pairs using 'for key, value in dict.items()'

my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}
for key in my_dict:

print(key)

my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}
for value in my_dict.values():

print(value)

my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}
for key, value in my_dict.items():

print(key, value)

89

4. Python Basics

4.5 Data Types
Mapping and Set: the dict type

Operators

Operator Description Example

[] Accessing values by key: my_dict[key]
my_dict = {'name': 'John’}
value = my_dict['name’] # Result: 'John'

in Checking if a key exists: key in my_dict
my_dict = {'name': 'John'}
if 'name' in my_dict:

print('Key exists')

not in Checking if a key does not exist: key not in my_dict
my_dict = {'name': 'John’}
if 'age' not in my_dict:

print('Key does not exist')

== Equality comparison: dict1 == dict2

dict1 = {'name': 'John’}
dict2 = {'name': 'John’}
if dict1 == dict2:

print('Dictionaries are equal')

!= Inequality comparison: dict1 != dict2

dict1 = {'name': 'John’}
dict2 = {'name': 'Jane’}
if dict1 != dict2:

print('Dictionaries are not equal')

len() Getting the number of key-value pairs: len(my_dict)
my_dict = {'name': 'John', 'age': 30}
length = len(my_dict) # Result: 2

del Deleting a key-value pair: del my_dict[key]
my_dict = {'name': 'John'}
del my_dict['name'] # Result: dictionary is empty

90

4. Python Basics

4.5 Data Types
Mapping and Set: the dict type

Some common dict methods. Refer to the documentation for details:
https://docs.python.org/3/library/stdtypes.html#dict

Method Description

dict.get(key, default) Returns the value for a given key. If the key is not found, returns default.

dict.keys() Returns a view object containing all the keys in the dictionary.

dict.values() Returns a view object containing all the values in the dictionary.

dict.items() Returns a view object containing all the key-value pairs in the dictionary.

dict.update(other_dict) Updates the dictionary with the key-value pairs from another dictionary.

dict.pop(key, default) Removes and returns the value for a given key. If the key is not found, returns default.

dict.popitem() Removes and returns an arbitrary key-value pair from the dictionary.

dict.clear() Removes all key-value pairs from the dictionary, making it empty.

dict.copy() Returns a shallow copy of the dictionary.

https://docs.python.org/3/library/stdtypes.html#dict

91

4. Python Basics

4.5 Data Types
Sequence Comprehension
Python comprehensions create new sequences from existing ones. There are three types of
comprehensions in Python:

1. List Comprehensions: List Comprehensions provide a way to create new lists from existing iterables (e.g., a list,
tuple, or string) and applying an expression to each element. The result is a new list derived from the original
elements. List comprehensions follow the syntax: [expression for item in iterable if condition].

2. Set Comprehensions: Set comprehensions are similar to list comprehensions but produce sets as output.. Set
comprehensions follow the syntax: {expression for item in iterable if condition}.

3. Dictionary Comprehensions: Dictionary comprehensions allow you to create new dictionaries by iterating over
an iterable and constructing key-value pairs based on an expression. Dictionary comprehensions follow the
syntax: {key_expression: value_expression for item in iterable if condition}.

numbers = [1, 2, 3, 4, 5]
squares = [n**2 for n in numbers if n % 2 == 0] # a new list: [4, 16]

numbers = [1, 2, 3, 4, 5, 4, 3, 2, 1]
unique_squares = {n**2 for n in numbers} # a new set: {1, 4, 9, 16, 25}

fruits = ['apple', 'banana', 'orange']
fruit_lengths = {fruit: len(fruit) for fruit in fruits} # a new dict: {'apple': 5, 'banana': 6, 'orange': 6}

92

4. Python Basics

Coding exercises

W3schools offers interactive quizzes and coding exercises to help you learn Python. Please pause the
video and open the following page. Try all you have learned so far.

https://www.w3schools.com/python/default.asp

Try all these sections

https://www.w3schools.com/python/default.asp

93

4. Python Basics

4.6 Functions
Functions in Python are reusable blocks of code that perform specific tasks. They help organize code,
improve readability, and promote code reuse.

Defining a Function

def function_name(parameter1, parameter2, ...):
"""
Docstring: Description of the function.
Optional documentation providing more details about the function.
"""

Function code block
Perform operations and calculations here

Optional: Return a value
return result

• function_name is the name you choose for
your function.

• parameter1, parameter2, ... are optional
input parameters that your function may
accept. You can define as many parameters
as needed, separating them with commas.

• A docstring in triple quotes """… """
provides information on a function’s
purpose, inputs, return value, and more.
(optional)

• The function code block is indented
beneath the function definition. This is
where you write the actual code to execute
when the function is called.

• If your function is designed to return a
value, you can use the return statement
followed by the value you want to return.
This is optional, and not all functions need
to have a return statement.

94

4. Python Basics

4.6 Functions

Defining a local (nested) Function within another function

def outer_function():
Define the local function
def inner_function():

Function logic goes here
pass

Call the local function
inner_function()

Call the outer function
outer_function()

Remember that the local function is only
accessible within the scope of the outer
function. It cannot be directly accessed or
called from outside the outer function.

95

4. Python Basics

4.6 Functions

Function Example

def square(number):
"""
Calculates the square of a given number.

Parameters:
number (int or float): The number to be squared.

Returns:
int or float: The square of the input number.
"""
result = number ** 2
return result

Calling the square function
result = square(5)
print(result)

In Python, you need to define a function
before you can call it. This is because Python is
an interpreted language, which means it
executes code line by line. When you define a
function, you are creating a block of code that
can be executed later when you call it.

If you try to call a function before it is defined,
you will encounter a NameError because
Python hasn't encountered the function
definition yet.

96

4. Python Basics

4.6 Functions

Function Parameters
Functions can have different types of parameters that allow you to pass information into the function.
1. Positional Parameters: Parameters defined by their position in the function call. The values passed as

arguments match the parameters based on their position.

2. Default Parameters: Default parameters have predefined values assigned to them. The default value is used if
no argument is provided for a default parameter.

def function_name(param1=default_value1, param2=default_value2, ...):
Function code

def function_name(param1, param2, ...):
Function code

def greet(name, greeting="Hello"):
"""
Greets a person with a specified greeting (default: Hello).

Parameters:
name (str): The name of the person.
greeting (str, optional): The greeting to use (default: Hello).
"""
print(greeting + ", " + name + "!")

Calling the greet function with default greeting
greet("Alice") # Output: Hello, Alice!

Calling the greet function with a custom greeting
greet("Bob", "Hi") # Output: Hi, Bob!

97

4. Python Basics

4.6 Functions

Function Parameters

3. Variable-Length Positional Parameters (args): Variable-length positional parameters, commonly known as
*args, allow you to pass an arbitrary number of positional arguments to a function. The arguments are
collected into a tuple within the function.

def function_name(*args):
Function code

def calculate_sum(*numbers):
"""
Calculates the sum of an arbitrary number of numbers.

Parameters:
*numbers (float): Variable-length positional parameters representing numbers.

Returns:
float: The sum of the input numbers.
"""
total = sum(numbers)
return total

Calling the calculate_sum function with different numbers
result1 = calculate_sum(2, 4, 6) # Output: 12
result2 = calculate_sum(1, 3, 5, 7, 9) # Output: 25

print(result1)
print(result2)

98

4. Python Basics

4.6 Functions

Function Parameters

4. Keyword Parameters: Keyword parameters, also known
as named parameters, allow you to pass arguments
using their parameter names. This provides clarity and
flexibility in function calls.

def function_name(param1=value1, param2=value2, ...):
Function code

def create_person(name, age, occupation=None, city=None):
"""
Creates a person with a given name, age, occupation, and city.

Parameters:
name (str): The name of the person.
age (int): The age of the person.
occupation (str, optional): The occupation of the person. Default is None.
city (str, optional): The city of the person. Default is None.

Returns:
dict: A dictionary containing the person's information.
"""
person = {

'name': name,
'age': age,
'occupation': occupation,
'city': city

}
return person

Creating a person with required parameters only
person1 = create_person('Alice', 25)
print(person1)
Output: {'name': 'Alice', 'age': 25, 'occupation': None, 'city': None}

Creating a person with additional information
person2 = create_person('Bob', 30, occupation='Engineer', city='New York')
print(person2)
Output: {'name': 'Bob', 'age': 30, 'occupation': 'Engineer', 'city': 'New York'}

99

4. Python Basics

4.6 Functions

Function Parameters

5. Variable-Length Keyword Parameters (kwargs): Variable-length keyword parameters, commonly
known as **kwargs, allow you to pass an arbitrary number of keyword arguments to a function.
The arguments are collected into a dictionary object within the function.

def function_name(**kwargs):
 # Function code

def print_student_details(**kwargs):
 """
 Prints the details of a student.

 Parameters:
 **kwargs (dict): Variable-length keyword parameters representing student details.
 """
 for key, value in kwargs.items():
 # Print each key-value pair
 print(key + ':', value)

Calling the function with different student details
print_student_details(name='Alice', age=20, major='Computer Science’)
print("")
print_student_details(name='Bob', age=22, major='Physics', university='ABC University')

100

4. Python Basics

4.6 Functions

Function Returns

Return Multiple Values
In Python, you can return multiple values from a function by
using a tuple, a list, or multiple variables separated by commas

Returning as Tuple
def get_values_tuple():
 value1 = 10
 value2 = "Hello"
 return (value1, value2)

result_tuple = get_values_tuple()
print(result_tuple) # Output: (10, "Hello")

Returning as List
def get_values_list():
 value1 = 10
 value2 = "Hello"
 return [value1, value2]

result_list = get_values_list()
print(result_list) # Output: [10, "Hello"]

Returning as Multiple Variables
def get_values_multiple():
 value1 = 10
 value2 = "Hello"
 return value1, value2

result1, result2 = get_values_multiple()
print(result1) # Output: 10
print(result2) # Output: "Hello"

The values are implicitly packed into a tuple

Tuple unpacking

101

4. Python Basics

4.6 Functions

“Calling by Reference” Side Effects

In Python, when you pass an argument to a function, it is passed
by reference. If the argument is mutable, any modifications made
to it within the function persist outside the function scope,
affecting the original object.

Be aware of these effects of altering mutable objects inside a
function.

def add_item_to_list(item, my_list):
"""
Adds an item to the provided list.

Parameters:
item: The item to be added.
my_list: The list to which the item is added.
"""
my_list.append(item)
print("Inside the function:", my_list)

Creating an empty list
my_list = []

print("Before the function call:", my_list)

Calling the function and modifying the list
add_item_to_list("Apple", my_list)

print("After the function call:", my_list)

102

4. Python Basics

4.6 Functions

Namespace and Scope

In Python, a namespace is a system that determines the scope
and accessibility of names (variables, functions, classes, etc.)
within a program.

• Each function in Python has its own namespace, which is a
local scope where the function's variables and other names
are stored.

• Any names defined within the function are inaccessible
outside of the function.

• The function can access names from its own namespace and
names from any outer scopes (such as global scope or
enclosing functions) where it was defined. If a name is not
found in the local namespace, Python will search the
enclosing scopes and then the global scope until the name is
found or an error occurs.

Global variable
global_var = "Global"

def outer_function():
 # Outer function's local variable
 outer_var = "Outer"

 def inner_function():
 # Inner function's local variable
 inner_var = "Inner"

 # Accessing variables from different scopes
 print("Inner:", inner_var)
 print("Outer:", outer_var)
 print("Global:", global_var)

 # Calling the inner function
 inner_function()

Calling the outer function
outer_function()

Attempting to access variables from outer scopes
Uncommenting any of the lines below will result in
a NameError.

print("Outer (from global):", outer_var)
print("Inner (from global):", inner_var)

103

4. Python Basics

4.6 Functions

Built-in Functions
Python provides a rich set of built-in functions that are readily available for use without requiring explicit import
statements. Here is a summary of some commonly used Python built-in functions:

Function Description

print() Outputs text or values to the console.

len() Returns the length of an object, such as a string, list, or tuple.

type() Returns the type of an object.

int(), float(), str(), bool() Converts values to integer, float, string, or boolean types, respectively.

input() Reads input from the user via the console.

range() Generates a sequence of numbers within a specified range.

abs() Returns the absolute value of a number.

max(), min() Returns the maximum or minimum value from a sequence of values.

sum() Calculates the sum of values in a sequence.

round() Rounds a number to a specified precision.

sorted() Returns a new sorted list from an iterable.

enumerate() Returns an iterator of tuples with indices and corresponding values from an iterable.

zip() Combines multiple iterables into a single iterator of tuples.

any(), all() Returns True if any or all elements in an iterable are true, respectively.

map() Applies a function to each element of an iterable and returns an iterator with the results.

filter() Filters elements from an iterable based on a specified condition and returns an iterator

For complete reference: https://docs.python.org/3.11/library/functions.html

https://docs.python.org/3.11/library/functions.html

104

4. Python Basics

4.6 Functions

Do some coding exercises here:

https://www.w3schools.com/python/python_functions.asp
https://www.w3schools.com/python/python_scope.asp

https://www.w3schools.com/python/python_functions.asp
https://www.w3schools.com/python/python_scope.asp

105

4. Python Basics

4.7 Classes, Objects, and Methods

• Class: A blueprint/template that defines the structure and behavior of objects. It encapsulates related data and
functionality into a single entity.

• Object: A specific instance created from a class, representing an individual entity with its own data and behaviors.
• Method: A function defined within a class that operates on objects, defining their behavior and allowing them to

perform actions.

106

4. Python Basics

4.7 Classes, Objects, and Methods

Let's use the str class (or type) as an example to explain the concepts
• Class: The str class in Python is a built-in class that represents strings. It defines the structure and behavior of

string objects.
• Object: An object of the str class is an instance of the class representing a specific string value. For example,

"Hello, World!" is an object of the str class, representing a string with that specific content.
• Method: The str class provides various methods that can be applied to string objects. For instance, the upper()

method is a method defined within the str class. We can use it on string objects to convert the string to the
uppercase.

my_string = "Hello, World!"

The `str` class represents the structure and behavior of string objects.
`my_string` is an object of the `str` class, representing the specific string
"Hello, World!".

uppercase_string = my_string.upper()
`upper()` is a method defined within the `str` class.
It is called on the `my_string` object to convert the string to uppercase.

print(uppercase_string) # Output: "HELLO, WORLD!"

Python can access methods
from objects using dot
notation:
• object_name.object_method()

107

4. Python Basics

4.8 Packages and Modules

In Python, packages and modules are organizational structures that help manage and organize code.

A module is a single file containing Python definitions, functions, classes, or variables. It is a way to organize code into
reusable components.

• You can import a module into other Python scripts or modules using the import statement. After that, you
can use dot notation to access code in a module, such as module_name.function_name() or
module_name.variable_name.

• For example, if you have a module called my_module.py with a function named my_function, you can
import and use it as follows:

import my_module

my_module.my_function()

my_module.py

108

4. Python Basics

4.8 Packages and Modules

In Python, there are primarily three types of modules:

1. Built-in Modules: These modules are part of the Python Standard Library and come pre-installed with Python.
They offer various functionalities, including file handling, math operations, network communication, and data
manipulation. Examples of built-in modules include math, os, datetime, and random.

2. Third-Party Modules: Not part of the Python Standard Library, these modules are created by outside developers.
They can be installed separately using package managers like pip. Third-party modules offer additional
functionality beyond what is available in the built-in modules and can be used to extend the capabilities of
Python. Popular third-party modules include NumPy, pandas, requests, and matplotlib.

3. User-Defined Modules: These modules are created by users to encapsulate reusable code. User-defined modules
are typically Python scripts with .py extensions that contain functions, classes, or variables that can be imported
and used in other Python programs. By organizing related code into modules, you can achieve better code
organization and reusability.

109

4. Python Basics

4.8 Packages and Modules

In Python, packages and modules are organizational structures that help manage and organize code.

A package is a way to organize related modules into a directory hierarchy. It can contain multiple modules and even
nested sub-packages. Packages allow for a more structured code organization, especially for larger projects.

• A package is simply a directory that contains an __init__.py file, which marks the directory as a Python
package. This file can be empty or can include the initialization code for the package. The package directory
can also contain other modules or sub-packages.

• Packages are imported similarly to modules, using the import statement. When importing a package, you can
access its modules and sub-packages using dot notation.

• For example, if you have a package called my_package with modules module1 and module2 inside it, you
can import and use them as follows:

import my_package.module1
import my_package.module2

my_package.module1.my_function()
my_package.module2.my_function()

__init__.py

module1.py

module2.py

sub_package

my_package

__init__.py

110

4. Python Basics

4.8 Packages and Modules

Possible import statements

Importing the Entire Module
import math # Imports the entire math module

Importing Specific Items
from math import sqrt, pi # Imports only sqrt() and pi from math

Importing with an Alias
import pandas as pd # Imports pandas module with an alias pd

Importing All Items from a Module (Discouraged)
from math import * # Imports all items from math (not recommended)

Importing a Module from a Package
from my_package import my_module # Imports my_module from my_package

111

4. Python Basics

4.8 Packages and Modules

Best Practices

Use Explicit Imports
import math # Good: Importing the entire module

from math import sqrt # Good: Importing specific items

Avoid using import *
from math import * # Avoid: Imports all items from math (not recommended)

Import with an Alias
import pandas as pd # Good: Importing with an alias

Import Each Module on a Separate Line
import os
import sys

import numpy as np

import my_module

Avoid importing multiple modules on a single line
import os, sys # Avoid: Importing multiple modules on a single line

112

4. Python Basics

4.8 Packages and Modules

Best Practices (continued)

Group Imports Appropriately
Standard library imports
Third-party library imports
Local module imports

Standard library imports
import os
import sys
import datetime

Third-party library imports
import numpy as np
import pandas as pd
import requests

Local module imports
import my_module
from my_package import my_other_module

113

4. Python Basics

4.8 Packages and Modules

Coding Exercises
https://www.w3schools.com/python/python_modules.asp

https://www.w3schools.com/python/python_modules.asp

Apply what you have learned so far

5. Creating Your First Python

Program

115

5. Creating Your First Python Program

5.1 Getting familiar with the Spyder IDE

Jupyter Notebook excels in interactive data exploration and analysis, but only has limited functionality to debug your
code if you work in a larger project.

Spyder offers a complete IDE with a code editor, variable explorer, debugger, profiler, and file explorer. It offers a
comprehensive development environment focusing on code editing, project management, and debugging
capabilities. This makes it well-suited for larger projects and more traditional software development workflows.

• Spyder's variable explorer provides an interactive way to inspect and explore variables in your code. It allows you
to view, modify, and track the values of variables during execution, making it easier to debug and understand your
code's behavior.

• Spyder offers a feature-rich code editor with advanced code editing capabilities. It includes features like syntax
highlighting, code folding, code navigation, and integrated code documentation. Spyder also provides
autocompletion, which can help speed up coding by suggesting possible completions as you type.

Watch the following video to learn how to use the Spyder IDE:
Introduction to the Spyder IDE for Python by Kyle Bradbury (15 mins)
Covering the IPython shell, text editor, variable editor, and code execution and debugging tools.

https://www.youtube.com/watch?v=zYNRqVimU3Q

116

5. Creating Your First Python Program

5.2 Solve a Real Problem

Task: Find the maximum number from a CSV file

Requirement:
We have a CSV (Comma-Separated Values) file (data.csv) which contains multiple rows of integer numbers. Write a
Python script to find the maximum integer from the file and then output it to the screen.

117

5. Creating Your First Python Program

5.2 Solve a Real Problem

General problem-solving process:
1. Separate your complex problem into multiple manageable components.
2. For each component, set up the requirements, research possible solutions, develop, and test the code.
3. Combine your components together and test them again with the original requirements.

For this specific task, we need to separate it into the following components:
1. Read the CSV file to access its content
2. For each row, find the maximum integer number, and store it somewhere.
3. After we complete iterating all the rows, we should get a collection of maximum numbers for each row.
4. Find the maximum number from the above collection and print it out on the screen.

1. Read the CSV file to access its content

The functionalities of CSV file manipulation are part of the Python Standard library. You may have never used it
before. However, you may seek help from

A. Python Standard library official documentation: https://docs.python.org/3/library/csv.html

B. Google

C. ChatGPT: https://chat.openai.com/

118

5. Creating Your First Python Program

5.2 Solve a Real Problem

Your best friend to solve
problems quicker!

https://docs.python.org/3/library/csv.html
https://chat.openai.com/

1. Read the CSV file to access its content

1) Raise a question to ChatGPT and check
its answer. Carefully read the
explanations following the code. If you
don’t understand some statements,
ask ChatGPT for clarification (and/or
read Python documentation) until you
fully understand them.

2) Copy and paste the code to a newly
created Python file in the Spyder IDE.
Save the file to a local folder.

3) Put the supplied “data.csv” file in the
same folder.

4) Change the corresponding CSV file
name in the Python file to “data.csv”
and save it.

119

5. Creating Your First Python Program

5.2 Solve a Real Problem

1. Read the CSV file to access its content

5) Set a couple of breakpoints of your
interest and start debugging the code
by pressing the debug button

120

5. Creating Your First Python Program

5.2 Solve a Real Problem
Debug button

breakpoints

1. Read the CSV file to access its content

6) Check the Variable Explorer for the active variables.
Examine their Name, Type, Size, and Value

121

5. Creating Your First Python Program

5.2 Solve a Real Problem

Variable Explorer

1. Read the CSV file to access its content

7) Go to the next breakpoint until you can see the row
variable is active and appears in the Variable Explorer pane

122

5. Creating Your First Python Program

5.2 Solve a Real Problem

Click to go to the next breakpoint

1. Read the CSV file to access its content

8) Go to the next breakpoint until you can see the row
variable is active and appears in the Variable Explorer pane

123

5. Creating Your First Python Program

5.2 Solve a Real Problem

Do you find something
interesting here?

Each row is read as a list that
contains a series of str type elements

The list element is a str type,
although it represents an integer!

Compared with the input data.csv
file, the first row of numbers read

into Python is correct!

We are done for the first step!

Try applying what you have learned from this session for the rest of the steps. Modify the code and debug it,
until you get the maximum number.

124

5. Creating Your First Python Program

5.2 Solve a Real Problem

STOP
I will show you my solution on the next slide. But don’t

peek at it. Try your solution first.

Try applying what you have learned from this session for the rest of the steps. Modify the code and debug it,
until you get the maximum number. There are many ways to solve the problem. I just show you my way to
solve it:

125

5. Creating Your First Python Program

5.2 Solve a Real Problem

What’s this? Check
“set comprehension”!

What did I do here?

Why did I put this statement here
instead of inside of the for loop?

I used built-in functions to
make my life easier!

Research the XML (eXtensible Markup Language) file structure via Google or ChatGPT. Write a Python script to
analyze the provided XML file (books.xml), find the books that were published the earliest, and finally print out
their titles and publish year. Make sure your logic can handle multiple books published in the same year.
Note, the book’s title and author are random strings in the provided XML file, such as “SysXGxgMgX,” and not
the same as the following examples.

126

6. Assignment

Parse an XML file

<?xml version='1.0' encoding='utf-8'?>
<catalog>

<book id="1">
<title>Python Crash Course</title>
<author>Eric Matthes</author>
<year>2015</year>

</book>
<book id="2">

<title>Fluent Python</title>
<author>Luciano Ramalho</author>
<year>2015</year>

</book>
</catalog>

A sample structure of the provided “books.xml” file

THANK YOU

H a p p y C o d i n g !

	Slide 1: PYTHON fundamentals
	Slide 2
	Slide 3: Understand why we choose Python
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Understand basic Python concepts
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Prepare your coding tools
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Learn the basics of Python
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: Apply what you have learned so far
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127: THANK YOU

