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ABSTRACT

After a review of the method of least squares spectral analysis
{Vanicek, 1971}, with the inclusion of an arbitrary non-singular co-
variance matrix for the observed time series, a statistical test is
developed for testing the significance of pesks in the least squares
spectrum. A by-product of this investigation is the derivation of the
probability density function of the least squares spectrum under the
hypothesis that the observed time series is derived from a vector of
statistically independent random variables whose probability density
function is the multi-dimensional normal distribution Nn(ﬂ,ozl). A
simple formula is given for computing & 100{l~c}® critical value for

significant peaks in the spectrum.

I INTRODUCTION

In Vanicek {1971) it was suggested that a statistical criterion
could be derived for testing the statistical significance of individual
peaks in the least squares spectrum. In this paper such a‘ eriterion is
derived after a review of the method of least squares spectral analysis.
For a more detailed discussion of the method, especially concerning its
desirable properties for analysis of non-ztationary time series, the
reader is referred to the paper cited above.

We consider an obseyxved time series which we represent by a vector
£ {dim{f} = n} of values fi'- i=1, 2, ..., n observed at respective times ti‘
i=1, 2, ... n. Although equally spaced times result in a more efficient
algorithm for computing the least squares spectrum {Wells and Vanicek (1978})
we do not make this assumption here. We will assume that we may have
knowledge about the accuracy of £ in the form of a non~-singular covariance

matrix Cf .

The basic ebjective of the least sguares spectral analysis is to

defedt 'unknown periedic signals in f especially in the Gase that £ Zlse =

contains various systematic variations of unknown magnitude whose functional

forms are known. After Vanicek (1971) we call these known constituents
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"systematic noise" since their presence is a nuisance from the point of

view of detecting the unknown periodic signal. We call the unknown periodic
signal "systematic signal*. It is felt that we need not restrict ourselves
to periodic sigmals or indeed to systematic signals. Rowever an extension
of the method to consider arbitrary Functional forms for the signal or to
consider zero mean stochastic correlated signal constituents is beyond

the scope of the present paper.

onece a statistically significaat signal is detected it should be
related to the physics of the system being observed. Once it is under—
steod the detected signal becomes systematic noise and we may then search
for further hidden periodicities. From this point of view the method iz
an iterative one and is meaningful only if we do not jose sight of the
physics of the situwation fas with any method of spectral analysis of

observed time series).

IX LEAST SOUARES SPECTRAL ANALYSIS

Least squares spectyal analysis has its basis in the least #quams
estimation of the magnitudes of the systematic noise constituents and the
coefficients a and b in the trigonometric term a.cos ut + b.sin ot where
W (aﬁqulax frequency) is the argument of the spectrum (defined below). it
will be shown here that for each wg in the spectrum we determine the
simultaneous least squares estimates of a and b along with the systematic
noise magnitudes. Thus we sée that the least sguares spectrum will net be
distorted by the systematic noise (see also [Taylor and Hamilton, 19721).
The systematic noise may consist of various functional forms exanples of
which are constant terms {datum biases}, linear {quadratic, exponential,
etc.) trends and trigonometric terms of known angular frequency. Note
that this treatment allows for gaps in the ohserved series which are very

common in observed time series in the physical sciences.
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We can thus attempt to model the time variations of an cbhserved
time series f by

AL
+ 2.1
£ = AN Ky ¥ AL X { b

where {dim & = {n,m), m<nt?) is the Vandermonde matrix of functional
A N

values of the systematic noise with unknown magnitudes x_ (dim Xy = mj

and AS {dim As = {r,2} is the matrix of functional values (cosmti and

sin wt., 1 = 1,2, ..., n} of the systematic signal with unknown magnitudes
. - -1 ;

X, = [a, bIT- {Superscript (T) denotes matrix transposition and ( ) will

denote matrix inversion). We define the residual vector

r=f~F | (2.2
Minimization of the quadratic form
- - . - MY
e e - BT e - B 2.3)
£ £
with respect to
- T
x = [xN : st - (2.4)
yields the familiar expression
&= a'cmt ATl (2.5

for the least squares estimates of x where

A= lay T Agl
It is assumed here that ATcglA is non-singular which has to be confirmed

in each specific case in practice.
Similarly we get

¥, T ~1 -1 T -1
P el afc;'t (2.6)

for the least squares estimate of the systematic noise magnitudes x

when the systematic signal is ignored.
We thus have

r= £ - a'x (2.1

and

M)
#
Ll
1
kg
*

(2.8}




as the least squares estimates of the residual vectors r and r? re-

spectively.

We see that F g C?” ?p is a measure of the variance of £ which

fs not modelled by the systematic noise. Thus the difference

* T~ oA I S BN
s (m)—rPcf rP r Ct‘ £ (2.9

is a measure of the variance of £ absorbed by the trigonometric term

*
represented by A X or, in other words, s {w} gives a measure of the
s

-,

R . T o P s < . :
maxinum (since r cfl T ic minimized) contribution of Asxs to the variance

: - -1 7
of £f. Since s*{w) e [0, £ (:f1 rp] we can define the "normmalized” least

sguares spectrum

oF -1 T -1,
Bp CeBp ~ECE oy

s{u} = L EC.OF ¥#C0 {2.10)

. op
% %
or

e e
5w) = L - e (2.11)
P°fp
whose values lie in the interval [0,1}. We see that 100.s{uw) is a measure

of the percentage of the variance of f not accounted for by I\Nx\: that is
)

acco d for b .
unte Y Rsxs

We will show now that the evaluation of the spectrum does not require

the explicit computation of eguation {2.5). We can rewrite equation (2.5}

more explicitly as

W T -3 T T -1 T
N ) Ay Cp [AN AS] R, £
{(2.12
b4 AL AT ‘ ,
s s 3
S Mwsyr U
n N u (2.13)
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(2,311}

.5 & measure
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ition {2.5)

(2.12}

(2.13)

T ~1
N, = . . d v, =
where we have let 14 A1 Cf AJ and u A

(2.13) can be written (see the Appendix)

5 Cf £; 1,3 = N,S. Equation

- -1 -k -1 -1 -1
*n P MusNsslen? M ns Wss Vet unns’ (Y%
= (2.14)
N -1 . -1 -1
] wN -
*g Nos™an Man " wsss s’ WMot Mus? Yy
Using the identities (A.3) and (A.4) we have
< -1, -k ~1, .1 el
X = +
N ‘NNN NNNNNS‘ 58 NSNNNNNNS) qsm“ma) N
-1 -1
“ma“us ssMen Maw Vws? Vs (2.18)
and
s~ -1, -l -1 -1, -1
g = TGN NoN ) Mol Uy Mo BoMmtns? Vg - (2.16)

Subtracting equation (2.6} from (2.15) and combining the result with (2.16)

we have, with

~ -1
*a B Fws 0
x ) N w, - N N_l 0
s SN ss s " Vst
Since
T -1 T -1 -1
ACE - (AC AL N =0
we have
e -1 T -1 R SRS §
%3l s Bus Al £ B A “u]
a1 T ~1 T -1
N -
®sl s Ygs ALy £ - AL ‘\ n u |
Thus, using equation (2.8},
-1
R NN T -1 .
R NN NS ag) e,
-~ T -
*g Yo Mg Ag

(2.1

(2.18)

{2.19)

(2.20)

Sl T




From equations (2.18) and (2.21) we have

. -1 -1 T 1, .
kg = WosloMer Mes) s S Tp {2.22)
Rewriting equation (2.9} as
o i€ -1 . -
s*{sy = (F -¢ [» (¥« &) (2.2%
! B ' H P

and using equations (2.7}, (2.8) and (2.17} we have

P i i AT T -1 . AT T =} . PR S
* = + + + - .
s* {0} = R AC, rp RALe £ RACT Fy xskscf by {2.24)

Since the first, second and fourth terms of the right hand side of
equation (2.24} are identically zerc {Mikhail, 1976} we have

A -1 ~
5% (w) = rPCf AS £ (.25}
and thus S | a
p €5 Rs %g {2.26)
s@) = ——2-2 .
£5c g
£ Tp

Substituting for 5‘:5 from equation (2.22) we have finally

r -1 I T S

st) = Zp S AgWgg Moy M Myg!  Ag G iy 2.27
OIS
G %

which has been detailed further for computer implementation by Wells and
Vanicek {1978). MNote that we have shown explicitly where the covariance
matxix Cf enters into the computation of the least squares spectrum.

Previous treatments have tacitly assumed Cf = I. However it is beyond the

scope of this discussion to consider the effects of an arbitrary CE
on the least squares spectrum. (Preliminary investigations indicate

that even a sinusoidal covariance function has little or no effect}.

I1x STATISTICAL SIGNIFICANCE OF SPECTRAL PEAKS

Re will now investigate the response of the least squares spectrum
to "random noise”. Specifically we derive the probability density
function (pdf) of 'S(® under the hypothesis that £ (dim £ = n) is a

vector of statistically independent random variables with pdf Nn(O.I). that
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is each fi,i = 1,%,..
{We can assume arbitrary mean and variance which will pot affect our
results sxnce the arbitrary mean can be modelled by ARX and an arbitrary
variance 6 would cancel out of the expression (3.2} below}. Ynder this

hypothesis we have, aceording to equation (2.26), and since rTA =9,

PN
AT ~ AT -
+
8' ) = Py PR AR (.1}
. rT b
rp
or
¢ T g
s'w) = " p SN 3.2}
RS S
2 'p
where we have let {with A = [AN z asj as before}
6=a amnlal . (3.3

We can show (Rao and Mitra' (1971, theorem 9.4.1, P178} that the random

N T - JEY L, . s .
variables I, 6 r? and fT T, are not independently distributed. However,

using the same theorem. we can show that the random variables ? (I-6 ¢
and £ G r are independently distributed. Following Jeudy {1980) we can

make use of this fact by writing

AT . o
rp xp rp G r + £ (I G} T ? {3.4}
and substituting this in equation (3.2} giving
S'(M’ = - 1 .
1+ 28

- a T ~
k, {r - G) 7, /! (rP G rp) {3.5)

Since (Mikhail, 197¢)

rp - anO. [ +) B (3.6}
{where "™ is read “has the probability density funetion®}, where

D= (r-a () a (1.7

! Ay .
With
- T -1 T

H AN(ANAR) AN {3.8)
_ we have e )
D=TI-a. (3.9}

-+ n has a normal pdf with zero mean and unit variance.
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Therefore {Rao and Mitra, 1971: theorem 9.2.1, pl71)

62, .x
with

k, = tr{GD}
where "tr" denotes the trace of a matrix.
But

GD = G{I ~ H)
w G - GH.

It can be shown (see Appendix} that GH = H and that G and H are

idempotent (that is G = GG and H = HH).
" Therefore

tr{G) = rank (G) = m + 2

tr{GH) = rank (H}) = m .
Thus k, =m+ 2 « m = 2 and

1
E'lf GE, - @ .
Also,
L . x i)
with
k2 = tr {({I-G)D)
= tr (L -G ~ H+ GH)
=n- (m2) —m+m
= -m- 2 .
Thus

E: (x-c & © e m - 2}

P -
and, from eguations (3.5), (3.15) and (3.17),
s'{w) . 1

14 i (n-m-2)/ x°(2)
oY
1

I+ (nm.—g;».z) F{r-m-2,2)

st lw) .

{3.10)

{3.11)

{3.12)

(3.13}

(3.14)

3.1%)

(3.16)

(3.17)

(3.18)

(3.19)
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(3.10)

(3.11)

(3.12}

(3.13)

(3.14}

(3.15}

(3.16)

(3.1

{3.18}

{3.19)

cequation {3.19)). If S(w) is greater than e
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where F{ul. UZ) denotes the Fisher distribution with v, and v, degrees

2
of freedom. We can thus test the hypothesis that £ ~ Kn(ﬂ. 021) at the
100{1 -a}% confidence level by computing the critial value

o et = /(L + W“";“Z F {n-2-2,2,0)) (3.200
{using the lower tail value of F because of the inverse relationship in

we can reject the

2 * {w)
hypothesis that f _ &n(o, o X).
' Since (Rao, 1965)
- =]
F(Ul. Uz,a) = (F(vz, vy 1~ al) (3.21)
and also
=} (o
F{2, v, L - a) = }( 7 v} (3.22)
a
we have, with v=n ~m - 2,
_ ~2fv =1, -1 . a
cs‘(w) (L + {a 1y 7} - (3.23)

Furthermoxe we can determine the expected response of the
spectrum as follows. Defining -

2 W s . R
xl rP G rp x {2
and N
2 =T = 2
X, = T {1 ~ G)rp X {n-m-2
wg have
2
STty = Xy . (3.24)
2 © 2
Xt ox,

Thus (Rao, 1965; #17, pl7¥5; {3b.l.12}, pi4% and 3a.3, pl3s) s°{u}
has a beta distribution with parameters ¥y and § given by

y = 1

4 = {(n-m-2}/2

..and the expected value, or mean, of this distribution (ie the expected

response of s{w)} to £ Nn(ﬂ, 021)) is
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v t um Y -
E (5'{w)} T+ 6 i
1+ n—m-2
[+]3 2
E (s'(w}) = 2 {3.25)
n-m

which agrees with Vanicek {1971; p23).
As examples the following table of values of 100.::5_{ ) for

u.WO.OS and 100.E (s'{w))} for various (n=m-2) is given.

{n~m-2) loo.cs' ) 0. E (s (w))
L 93.75 66.67
2 95.00 50.00
5 69.83 28.57
10 45.07 16.67
20 25.89 9.09
50 11.29 3.85
100 5.82 1.96
‘200 2.95 0.99
500 1.19 0.40
1000 .60 0.20
2000 0.30 . ©.10
5000 0.12 C0.04
10000 0.06 0.02

IV CONCLUDING REMARKS

We have derived a statistical criterion for testing the significance
of peaks in the least squares spectrumy the 100{i-a)}% critical value is

given in a simple form by equation (3.23).

We note that the critical value, for a 'given significance level o, is
a function only of the degrees of freedom of the least squares
estimation of equation {2.5) which is intuitively pleasing. The longer
the time series the more significant are small peaks in the spectrum from

a statistical point of view.
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APPENDIX: SOME MATRIX IDENTITIES

We show here some matrix identities used in the developments
of sections 2 and 3. Identities {A.3) and (A.4) are particularly
useful and are used in deriving equation (A.14} which simplifies arguments

concerning the derivation of certain probability density functions in
section 3.

We consider the square, non-singular, symmetric matyrix

W NS
Q= (a.1}
) Now Nss
with both “3& and NSS nen-gingular.

The inverse of Q may then be written (Mikhail, 1976; Appendix A)

-1 -1 = -1 -1
ol o MsVsglisn! s s Mo mor'ns?
-1 ~1 -1, -1 '
NasTsw M MaesSss¥on! s N oanys? - (a.2)
Also
=1 -1 _ . ~1 - -3 -] -1
B MasPssMsn! " Mas Mes Malans! Vet 5.3
and
“1 S1 el - -1 -1
NsgMan M MsssVen’ (Nss'“sn“u:?‘ns) Sodfm - (h.4)
We now consider the product
- L -
ci = anatay) Y Aa aga) 1 N @a.5)

where G = A(AA) S AT, H = AN(A: %)"1 ANT RS ENE

with dim A, = {n, m}, dim Ao = (n, p) where (m + p} < n and

rank A = rank ¢ = {(m + p}, rank AN = xank H » m {and rank AS = p}. Using

the notation of section 2 we have
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T
. AAL L.
Aa = - = (a.6}
Az N

and

-1 I
] N =
T T, =1 NN
SNLC R
o N N-l {A.7)
&N SH NN
ttsing this result we have
A’i
-1 +
aTa (}\:A ) AT = |
N o "
N N—l AT {A.8}
S8 NN N

Using equation {A.2) for the inverse of ATA we have

T, .- -1 T
ofa ™ 2y e -
-1 -1 ~1 -1 -1 ~1 T
[{ WMo T St s Fartmins’ Mo “N]
-1 -1, -1 -1 -1 -1 ,,T . {A.9)
{ HosMan M Myalss¥se!  * (Nog oS s’ Mo }‘\1 ’
But according to equations {A.3) and (A.4) equation (A.9) becomes
-1 T
R
T ,~1 P T -1 % NN z&‘l
(a'a) " aTa, (RAD A, [ ] (a.10}
o]
and we have finally, premultiplying eguation {A.10} by A,
T -1 T T -1 T -1 P
N A ["m: “u} {(A.11}
0
T T S
= .12
AN (ANRN) AN {(A.12)
That is R (A.13)

{and rank (GH} = rank H = rank AN = m).

fur
Y.
seq
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1 (A7)

(A.8)

{A.9)}
omas

(A.10}

(A.11})

(A.12)

{a.13)
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Furthermore we note that GT =G =66 and HT = H = HH, ie G and # are
symmetric and idempotent. It is not difficult to show then that any
sequence of products of the matrices G and H results in H. For example
GHGHGH = HGGHG = éHGH = HGH = GHG = HG = GH = H and thus the rank of any
of these products is m. (A.14)




