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Abstract The remove-compute-restore (RCR) technique is
the most well known method for regional gravimetric geoid
determination today. Its basic theory is the first-order approx-
imation of either Molodensky’s method for quasi-geoid deter-
mination or the classical geoid modelling by Helmert’s sec-
ond method of condensing the topography onto the geoid.
Although the basic approximate formulae do not meet to-
day’s demands for a 1-cm geoid, it is sometimes assumed
that the removal of the less precise long-wavelength terres-
trial gravity anomaly field from Stokes’s integral by utilising
a higher-order reference field represented by a more precise
Earth gravity model (EGM) and the restoration of the EGM as
a low-degree geoid contribution will produce a geoid model
of the desired accuracy. Further improvement is achieved
also by removing and restoring a residual topographic effect,
which favourably smoothes the gravity anomaly to be inte-
grated in Stokes’s formula. However, it is shown here that
the RCR technique fails to tune down the long-wavelength
gravity signal from the terrestrial data, and the EGM actually
only reduces, in a non-optimised way, the truncation error
committed by limiting the Stokes integration to a small re-
gion around the computation point. Hence, in order to take
full advantage of a precise EGM, especially one from new
dedicated satellite gravimetry, Stokes’s kernel must be modi-
fied in a suitable way to match the errors of terrestrial gravity,
EGM and truncation. In addition, topographic, atmospheric
and ellipsoidal effects must be carefully applied.
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1 Introduction

For about a decade, the International Geoid School (IGS),
under the umbrella of the International Association of Geod-
esy (IAG), has undertaken several training courses around the
world on practical geoid determination (see e.g. Sansó 1994;
Sansó and Rummel 1997). The main method for regional
geoid computation taught by the IGS goes under the name of
the remove–compute–restore (RCR) technique. This practi-
cal technique has been extensively applied, for example in the
development of several geoid models of the Nordic Geodetic
Commission (NKG; Tscherning and Forsberg 1986; Fors-
berg 1990, 2001). As all IGS courses have employed some
teachers from the NKG, the geoid modelling experience of
the NKG is an essential practical ingredient in IGS commu-
nications. Other examples of applications are the regional
geoid models of Europe (EGG95; Denker et al. 1996) and
the US (Milbert 1996). The influence of the RCR technique
on the geodetic community is also manifested by the fact that
it is the only practical gravimetric geoid modelling technique
described in the recent textbook of Torge (2001, Sect. 6.7.2)
to combine terrestrial gravimetric data with an Earth gravity
model (EGM).

The basic theory used for the RCR technique is either a
first-order approximation of M.S. Molodensky’s theory for
quasi-geoid determination or a classical Stokesian integra-
tion by a regularisation of the topographic masses. However,
for practical application, Moritz (1966, 1980) converted Mol-
odensky’s original approach to the method by analytical con-
tinuation, originating with Bjerhammar (1962, 1963, 1969).
Hence, the original formulae, in practice limited to first-order
approximations, were developed when the goal for geoid
determination was at a precision of at least one order of mag-
nitude less than it is today, i.e. ∼10 cm or worse. However,
since then the use of terrestrial gravity data in a Stokes-
type solution has been improved for regional geoid deter-
mination by using a higher-order reference field taken from
an EGM. In these combined solutions, the EGM is primar-
ily intended to represent the long-wavelength gravity field,
while a Stokes-type integral with residual gravity computes
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the high-frequency signal. Pioneer users of these ideas were
Vincent and Marsh (1974) and Rapp and Rummel (1975).
A common name for this type of combined geoid determi-
nation using a higher-order reference field is the RCR tech-
nique, which is usually also supplemented with the removal
and restoration of the high-frequency topographic effects by
a digital terrain model (DTM).

The RCR technique, as for any other method of estimat-
ing the geoid from gravimetric data, necessitates a number
of corrections to the original Stokes formula. Martinec and
Vaníček (1994a); Martinec and Vaníč ek (1994b) and Sjöberg
(2000, 2001) have pointed to several problems in the practical
evaluation of these corrections to meet the demands of a 1-cm
geoid. It could be thought that the removal and subsequent
restoration of a higher-order reference field and a DTM in the
RCR method would justify the use of the less accurate basic
formulae and corrections. This thought stems from the fact
that in the RCR technique Stokes’s integral does not oper-
ate on the full gravity anomaly, but only on a residual gravity
anomaly reduced by the EGM and DTM. Hence, as this resid-
ual gravity anomaly signal is generally much smaller than the
signal of the original gravity anomaly, it might be reasonable
to believe that the RCR method can be used with cruder cor-
rections than the original Stokes formula. The study of the
validity of this idea is one major aim of this article.

The theme of this article can also be described as follows.
Forsberg (2001) reported that the NKG geoid modelling by
the application of the RCR technique did not improve by
including more and improved gravity data over the region
and surrounding areas. Consequently, if better data are not
the key issue, it is likely that the approximations applied to
the basic theory limit the results. Sjöberg and Ågren (2002)
studied some of these issues for the NKG models, and this
investigation extends that work to the RCR technique in full.

2 The basic equations of the RCR technique

As already stated, the RCR technique has its roots in the meth-
ods for quasi-geoid determination developed by Molodensky
et al. (1962) and modified by Moritz (1966, 1980). Using the
formulation by analytical continuation of Moritz (1980, Ch.
48), the quasi-geoidal height ζ at the surface point P can be
written (limited to a first-order approximation of the vertical
gradient of the gravity anomaly, ∂�g/∂h)

ζ(P ) = R

4πγ

∫∫

σ

S(ψ)

[
�g + (hP − h)

∂�g

∂h

]
d σ (1)

whereR is the mean Earth radius, γ is normal gravity at nor-
mal height, σ is the unit sphere, S(ψ) is Stokes’s function
with argument ψ as the geocentric angle, �g is the surface
gravity anomaly and h is the topographic elevation above the
reference ellipsoid. Equation (1) is consistent with the first-
order vertical gradient approximation of Bjerhammar (1962,
1963, 1969) formula for the quasi-geoid height

ζ(P ) = R

4πγ

∫∫

σ

S(rP , ψ)

[
�g − h

∂�g

∂h

]
d σ (2)

where S(rP , ψ) is the extended Stokes function (Heiskanen
and Moritz 1967, Sect. 6-4). Either of Eqs. (1) or (2) is taken
to be the starting point for the RCR technique. However, as
the gravity anomaly gradient is not known, it is common to
approximate it by the expression (see e.g, Moritz 1968, 1980)

∂�g

∂h
≈ R2

2π

∫∫

σ

�g −�gP

l3PQ
dσ − 2�g

R

≈ µR2

2π

∫∫

σ

h− hP

l3PQ
d σ (3)

where lPQ is the slope distance between pointP at the Earth’s
surface and pointQ at the sphere of radius R below the inte-
gration point and µ = Gρ, i.e. gravitational constant times
the (constant) topographic density. [Note that the first part
of Eq. (3) will be exact if the gravity anomalies are located
on a sphere.] In the last step of the approximation, the term
−2�g/R has been neglected, and the gravity anomaly has
been approximated by a linear correlation with topography,
i.e.

�g = a + 2πµh (4)

where a is a constant. After a few more manipulations, the
final, practical formula for the height anomaly is obtained as
(Moritz 1980, Ch. 48)

ζ(P ) ≈ R

4πγ

∫∫

σ

S(ψ)
(
�g + CQ

)
d σ − πµh2

P

γ
(5a)

where CQ is the well-known terrain correction given by

CQ = µR2

2

∫∫

σ

(hA − hQ)
2

l3QA
d σA (5b)

Finally, the geoid height (N ) is obtained by adding the small
correction (Heiskanen and Moritz 1967, p. 327)

N − ζ ≈ �gB

γ
h (6)

where

�gB = �g − 2πµh (7)

is the simple, planar Bouguer anomaly.
Frequently, the geoid height is directly derived using the

classical Helmert method of condensation. For example,
Sideris [1994a, Eqs. (1.11), (1.22), (1.23), 1994b] derived
the approximate formula

N ≈ R

4πγ

∫∫

σ

S(ψ)
[
�g + CQ

]
dσQ + δNI (8a)

where

δNI ≈ −πµ
γ
h2 − µR2

6γ

∫∫

σ

h3
A − h3

Q

l3AQ
dσA (8b)

is the primary indirect topographic effect. Usually only the
first term of δNI is used in practice, causing an approxima-
tion error of upto 1 metre (Martinec and Vaníček 1994a).
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In Sideris (1990, 1994a), the above Eqs. (8a) and (8b) were
obtained by the approximations of Eq. (3) and the fact that
the sum of the direct topographical effect and the downward
continuation effect equals the terrain effect CQ.

In the practical use of the RCR technique, the terrain
correction [Eq. (5b)] is usually evaluated in planar approxi-
mation

cQ = µR2

2

∫∫

σ

(
hA − hQ

)2

l30
dσA (9a)

where l0 = 2R sin(ψ/2), implying a difference from CQ of
the order of

�CQ = CQ − cQ ≈ −3µR2

4

∫∫

σ

(
hA − hQ

)4

l50
dσA (9b)

which can be most significant in rough terrain. With all these
approximations, the final geoid estimator becomes

N̂ = R

4πγ

∫∫

σ

S(ψ)
(
�g + cQ

)
dσ − πµh2

γ
(10)

At this point it is instructive to compare the basic Eqs. (5a)
plus (6) and Eqs. (8a) plus (8b) for the geoid height esti-
mation. In fact, the two approaches agree, except for the
approximate correction �gBh/γ of the first method. How-
ever, already this discrepancy is of the order of 1–2 m in the
highest mountains. The contribution from the neglected term
−2�gh/R of Eq. (3) when inserted into Eq. (2) is of the same
order. Martinec and Vaníček (1994a); Martinec and Vaníč ek
(1994b) and Sjöberg (2000, 2001) have emphasised that the
resulting formulae for the Helmert condensation approach
[Eqs. (8a) and (8b)] include several significant approxima-
tions in the direct and indirect topographic effects that may
lead to errors of the order of several decimetres. This conclu-
sion is well confirmed by a statement of Moritz concerning
the last term of Eq. (5a) (which is of the order of 5 cm for ele-
vations within 1 km but reaches 4 m for Mt. Everest): ‘It will
be consistent with the present approximation—restriction to
first-degree corrections to Stokes’ [sic] and Vening Meinesz’
[sic] formulas and assumption of linear dependence of �g
on h—to neglect this small term’ (1980, p. 418).

Interestingly, by assuming the Lipschitz condition that
the slope of the terrain is within 45 degrees (i.e. the method
fails in rough topography), and applying the refined surface
Bouguer anomaly

�grB = �g − 2πµH − C̃Q (11a)

where

C̃Q = µ

2

∫∫

σ

(
h− hQ

)2

l3Q
dσ (11b)

and lQ = 2rQ sin(ψ/2) ≈ l0 and using planar approxima-
tions [in their Eqs. (8) and (26)], Jekeli and Serpas (2003)
showed that the geoid height can be determined by

N≈ R

4πγ

∫∫

σ

S(ψ)
[
�g + C̃Q + δ�grBdwc

]
dσ + δNI (12a)

where

δ�grBdwc = (�grB)∗ −�grB (12b)

Here ( )∗ means that the quantity in the brackets is downward-
continued to sea level, and δNI is the indirect effect on the
geoid for Helmert’s method of condensation. The estimator
in Eq. (12a) differs from the RCR estimator mainly by the
term δ�grBdwc. As C̃Q ≈ CQ and the refined Bouguer effect
varies rather smoothly with elevation, one may assume that
Eq. (12a) is a reasonable approximation of the geoid height.
Nevertheless, it remains to prove whether it is good enough
for the ‘1-cm geoid’ required today. So far, it has not been
proved that it is sufficient in high mountains, where the pla-
nar approximation may introduce decimetre errors, and the
Lipschitz condition and the limitation of the formulas to first-
order gravity anomaly gradients will not be adequate (see also
Sect. 6.2).

Note that all the above has been derived for the full grav-
ity field and the true topography, before taking out any global
EGM reference field and topographic effect. This is what the
RCR technique does, which will be discussed next.

3 The RCR technique

The concept of geoid determination by the RCR technique
implies that both topography and low-degree gravity signals
are removed before computation and restored after Stokes’s
integration. In addition, Stokes’s integral is truncated to a lim-
ited region σ0 around the computation point. In the approxi-
mations that follow, we will assume that σ0 is a spherical cap
of geocentric angle ψ0 (although in the practical evaluations
of the RCR technique the integration region is more often
taken as a spherical rectangle). There are a number of meth-
ods called the RCR technique, but the two most well-known
versions are probably the methods of residual terrain model-
ling (RTM) and Helmert’s condensation, both of which will
be breifly outlined below.

3.1 The RTM method

The RTM method (see e.g. Forsberg 1984, 1993, 1994; Fors-
berg and Tscherning 1997, Omang and Forsberg 2000) is
based on the determination of the quasi-geoid height by ana-
lytical continuation [Eq. (2)], and the geoid height is obtained
by adding the correction of Eq. (6). Formally, the RCR model
for the height anomaly becomes

ζRCR = R

4πγ

∫∫

σ0

S(ψ)

×
[
�gM−�gRTM+(hP − h)

∂(�g −�gRTM)

∂h

]
dσ

+ζM + ζRTM (13a)
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where

�gM = �g −�gM = �g −
M∑
n=2

�gEGM
n (13b)

is the residual gravity anomaly (assumed to give a signal of
degrees higher thanM) after subtracting the gravity anomaly
�gM generated by an EGM, complete to degree and order
M , and ζM is the corresponding low-degree EGM-generated
quasi-geoid height. In practical evaluation, the gradient term
under Stokes’s integral is neglected, and

�gRTM = 2πµ(h− hM)− cQ (14)

where hM is a low-degree spherical harmonic representation
of the topography generated by a global DTM and cQ is the
terrain correction of Eq. (9a) (applied in the planar approxi-
mation). Moreover, for ζRTM, the planar approximation

ζRTM = µ

γ

∞∫

−∞

∞∫

−∞

(h− hM)

D
dx dy (15)

is used, where D is the planar distance. Hence, the RCR
estimator becomes

ζ̂RCR = R

4πγ

∫∫

σ0

S(ψ)
(
�gM + cQ − 2πµ(h− hM)

)
dσ

+ζM + ζRTM (16)

and Stokes’s integral is usually also evaluated in a planar
approximation.

If we disregard the truncation error (to be considered in
Sect. 5), and we assume that the RCR procedure of the EGM
is exactly zero (see also next section), Eq. (16) should be
consistent with Eq. (1). The possible error introduced by the
estimator ζ̂RCR with respect to Eq. (1) thus becomes

εζ̂ = R

4πγ

∫∫

σ0

S(ψ)[cQ − g1 − 2πµ(h− h
M
)] dσ+ζRTM

(17)

where g1 is the gravity anomaly gradient term of Eq. (1).
From the spherical approximation of ζRTMand the approxi-
mation S(ψ) ≈ 2R/D (which only holds for small distances
D), we easily obtain

ζRTM = µR2

γ

∫∫

σ0

h− h
M

D
dσ

≈ µR

2γ

∫∫

σ0

S(ψ) (h− hM) dσ (18)

which thus exactly compensates the contribution −2πµ(h−
hM) from the RTM under Stokes’s integral of Eq. (17). Numer-
ical computations of the corresponding spherical approxi-
mations with cap sizes of 10 and 20 degrees [cf. Eq. (19a)]
showed that this error is still within 1 cm. Hence, only the
contribution from the gravity difference cQ − g1 remains,
and Moritz (1980, Sect. 48) showed that Stokes’s integral

operating on this term yields approximately πµh2/γ . This
contribution reaches 1 cm for a computation point located at
430 m above sea level; for the height of Mt. Everest, it reaches
4.5 m. However, in Eq. (17) the integration area is limited to
the spherical cap σ0, which thus leads to the modified result

εζ̂ ≈ πµ

γ

∞∑
n=2

(
1 − n− 1

2
Qn(ψ0)

)
h2
n (19a)

where h2
n is the nth Laplace spherical harmonic of h2 (see

e.g. Heiskanen and Moritz 1967, Sect. 1–13)

h2
n = 2n+ 1

4π

∫∫

σ

h2Pn(cosψ) dσ (19b)

andQn(ψ0) are Molodensky’s truncation coefficients (Molo-
densky et al. 1962). A numerical application of Eq. (19a)
for a cap size of 10 degrees and the upper limit of spheri-
cal harmonic series of the topography squared set to 1800
yielded a minimum, average and maximum global geoid er-
ror of −0.49, 0.01 and 2.52 m, respectively. The correspond-
ing figures for a cap size of 5 degrees were –0.72, 0.01 and
2.45 m. This error is thus most significant in mountainous
regions.

3.2 Helmert’s second condensation approach

By removing and restoring an EGM and a DTM in Eq. (8a),
we obtain (with obvious notations) the geoid estimator by
Helmert condensation

NRCR = R

4πγ

∫∫

σ0

S(ψ)(�gM + CQ −�gDTM) dσ

+NM +NDTM + δNI (20)

where CQ and δNI are determined by a DTM.
Disregarding the truncation bias of the integration area

to σ0 (to be considered in Sect. 5), we obtain the following
error estimate by comparison with the more exact formula of
Eq. (12a):

εNRCR ≈ R

4πγ

∫∫

σ0

S(ψ)(CQ − C̃Q −�gM −�gDTM

−δ�grBdwc) dσ +NM +NDTM (21)

Assuming that the total effect of the RCR procedure of the
EGM vanishes and that CQ ≈ C̃Q, the geoid error estimate
becomes

εNRCR ≈ − R

4πγ

∫∫

σ0

S(ψ)(�grB)dwc d σ (22)

which is likely to be a significant error at the several-
centimetre level in mountainous regions. So far there are also
several other significant topographic effects missing, which
will be considered in Sect. 6.
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3.3 General considerations

Usually the RCR technique employs a fast Fourier technique
(FFT; see e.g. Forsberg 1985; Schwarz et al. 1990; Strang
van Hees 1990; Forsberg and Sideris 1993 ; Haagmans et al.
1993; Sideris 1994a,b; Tziavos 1996) to speed up the com-
putations. Importantly, the one-dimensional (1-D) FFT tech-
nique (Haagmans et al. 1993) can be used without introducing
approximations to Stokes’s integral, but the frequently used
planar approximations inevitably introduce biased results.

There is no doubt that the use of a low-degree and low-
order EGM can be very advantageous compared to the strict
use of the original Stokes formula. This advantage stems from
the assumption that the low-degree signal is better repre-
sented by the EGM, and Stokes’s integral with a surface grav-
ity anomaly is used only to compute the high degree signal.
Whether this ambition is fulfilled in the RCR technique will
be discussed in Sect. 4.

As shown in Sects. 2 and 3, the basic practical formu-
lae for the RCR technique are too crude to allow a precise
geoid determination of today in rough terrain and high moun-
tains. Nevertheless, we may argue that the RCR technique
could perhaps justify less accurate (topographic) corrections
(see e.g. Tscherning 2001), because in this technique (1) the
Stokes integration operates on a residual gravity anomaly
rather than the total gravity anomaly signal, and (2) Stokes’s
integral is used in a limited region around the computation
point. Remark (2) is certainly relevant for long-wavelength
effects in the terrestrial gravity anomaly, but the short-wave-
length effects, which dominate in the truncated Stokes inte-
gral, cannot be avoided in this way. Remark (1) is discussed
in Sect. 4 with respect to applying a higher-order reference
field.

However, at this point, we should admit that the use of the
residual gravity anomaly is advantageous in smoothing and
interpolating gravity anomaly data used in Stokes’s integral,
and, as discussed in Sect. 5, the removal of the RTM reduces
the truncation error in Stokes’s integral. Nevertheless, the
RCR procedure of the RTM must be consistent, so as not to
introduce additional biases to the estimation procedure. As
shown in Sect. 3.1, this is not the case with the RTM method
as it is usually applied today.

4 The higher-order reference field

The two main questions to be answered here are whether
(1) the RCR technique of Eqs. (16) and (20), operating with
residual gravity anomalies, can be used in Stokes’s formula
with less precise corrections than the original, but truncated,
Stokes’s formula, which uses the full gravity anomaly sig-
nal, and (2) whether Eqs. (16) and (20) efficiently exploit
the EGM for the long-wavelength gravity field representa-
tion. To answer these questions we will only consider the use
of a higher-order reference field, which by itself reduces the
gravity anomaly under the integral by a considerable amount.
To obtain the answers, we will focus our discussion on a

comparison of the following two estimators of the geoid
height (cf. Sjöberg 1986):

Ñ1 = R

4πγ

∫∫

σ0

S (ψ)�gM dσ + c

M∑
n=2

2

n− 1
�gEGM

n (23)

and

Ñ2 = R

4πγ

∫∫

σ0

S (ψ)�g dσ + c

M∑
n=2

Qn�g
EGM
n (24)

where c = R/2γ , �gEGM
n is the Laplace harmonic of de-

gree n for the gravity anomaly determined from the EGM,
and Qn = Qn (ψ0). The first estimator [Eq. (23)], origi-
nating with Vincent and Marsh (1974), is of the form with
a higher-order reference field that uses the residual gravity
anomaly�gM in Stokes’s formula, while the second estima-
tor [Eq. (24); Rapp and Rummel 1975] utilises the full surface
gravity anomaly inside the integration cap and the EGM to
compute the effect outside the cap. The estimator Ñ1 is thus
apparently advantageous in comparison with to the estimator
Ñ2, because since Ñ1 uses the residual gravity anomaly�gM ,
it may be expected to be less affected by any gravity anomaly
error than Ñ2, which uses the full gravity anomaly signal�g.
However, this type of reasoning is completely wrong, as we
will show next in two ways.

First, let us assume that the surface gravity anomaly is in
error by ε�g . It is easy to see that this error propagates into
the following errors of the geoid estimators [Eqs. (23) and
(24)]:

δÑ1 = R

4πγ

∫∫

σ0

S (ψ) ε�g dσ = δÑ2 (25)

i.e. the two estimators have the same error.
Second, by introducing the spectral form of the terrestrial

gravity anomaly, �g = ∑
�gTn , the two estimators can be

written in their spectral forms as follows. From Ñ1 we obtain

Ñ1 = c

∞∑
n=2

[
2

n− 1
−Qn

]
�gTn + c

M∑
n=2

Qn�g
EGM
n (26)

which is nothing other than the spectral form of Ñ2, and we
have thereby shown that the two estimators are actually iden-
tical. [Note that this identity between Ñ1 and Ñ2 holds for
any error distribution of the gravity anomalies and potential
coefficients, and it holds also for the modified Stokes function
(see Appendix A).] Hence, the answer to our first question is
in the negative, and there is therefore no particular advantage
in using a higher-order reference field compared to a direct
combination of Stokes’s integral with an EGM.

On the other hand, there is no doubt that there could
be a great advantage in combining Stokes’s formula with
a set of EGM potential coefficients, which is the case in both
Eqs. (23) and (24). This combination is then intended to use
the long-wavelength information of the EGM, and the short-
wavelength features are to be estimated by Stokes’s formula
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in a spherical cap or other (usually rectangular with FFT)
area around the computation point. However, it also follows
from Eq. (26) that the answer to our second question (2) is in
the negative: the RCR method does not fully utilise the long-
wavelength gravity field from the EGM: the EGM is only used
for the contribution from the remote zone. Hence, the RCR
method does not have the desired property of removing all
low-degree terrestrial gravity signal and representing it by the
EGM, it only reduces the remote-zone truncation error (in a
non-optimum way) (see also Vaníček and Featherstone 1998;
Featherstone 2003). With the recent dedicated gravimetric
satellite missions, such as CHAMP, GRACE and the near-
future GOCE missions, the low-degree gravity field (say to
M = 200) will be accurately determined with satellite-only
EGMs; however, as shown by Eq. (26), the RCR technique
will fail to take full advantage of such high-precision data.
[In contrast, the requested satellite-only low-degree combi-
nations with terrestrial gravity anomaly can be achieved by
the so-called modified Stokes formula for a special choice of
modification parameters (Vaníček and Sjöberg 1991; Sjöberg
2003b).]

5 The truncation error

The estimator Ñ1 (or Ñ2) in Sect. 4 suffers from the trunca-
tion of the EGM to the maximum degreeM and of the Stokes
integration to a cap/rectangle σ0. Considering only the trun-
cation of Stokes’s integral, we may define the true value for
the geoid height by

N = c

2π

∞∑
n=2

�gn

n− 1
(27)

and the truncation error, using the spectral form of the esti-
mator [Eq. (26)], can then be written

δÑ1 = Ñ1 −N = −c
∞∑

n=M+1

Qn�gn (28)

Equation (28) can be estimated in the global RMS sense
by the formula

δN̄1 = c

√√√√ ∞∑
n=M+1

Q2
ncn (29)

where cn are the gravity anomaly degree variances. Trunca-
tion errors forM = 360 and different sizes of the cap radius,
which have been computed using Eq. (29) and the gravity
anomaly degree variances of Tscherning and Rapp (1974),
are presented in the second column of Table 1. This is the
RMS truncation error of Eq. (20), i.e. with Helmert’s second
method of condensation.

Hence, to keep the truncation bias below 1 cm and using
the original (unmodified) Stokes’s function, the cap radius
must exceed approximately 20 degrees. However, in practice,
the size of the rectangular integration area frequently corre-
sponds to a spherical cap radius of 5–10 degrees. According

Table 1 Global RMS truncation errors for different methoods withL =
M = 360 and cap sizes ψ0 in degrees. Unit: cm

ψ0 Helmert RTM Molodensky

2 3.2 2 0.0
5 2.3 1.4 0.0
10 1.6 1.0 0.0
20 0.9 0.6 0.0

to Table 1, column 2, this yields a significant truncation bias,
depending on position. In column 3 of Table 1, we show
the RMS truncation error for the RTM method with degree
variances taken from Forsberg (1986) and Tscherning and
Forsberg (1987). It shows some reduction of the truncation
error compared with Helmert’s method, but the error is sig-
nificant at the centimetre level for any cap size less than 10
degrees.

However, by using a method of modifying Stokes’s kernel
(Molodensky et al. 1962; Sjöberg 1984), the goal of an insig-
nificant truncation bias can be achieved for a much smaller
cap size when utilising an EGM to degree and order M =
360. Let us illustrate this for Molodensky’s method of mod-
ifying Stokes’s formula. We start from

N3 = R

4πγ

∫∫

σ0

SL (ψ)�g dσ + c

M∑
n=2

(
QL
n + sn

)
�gEGM

n

(30)

with the modified Stokes function

SL (ψ) = S (ψ)−
L∑
n=2

2n+ 1

2
snPn (cosψ) (31)

where QL
n are Molodensky truncation coefficients using the

kernel in Eq. (31) modified to any degreeL.The parameters sn
are determined in such a way that the upper limit of the trun-
cation error is minimised (Molodensky et al. 1962; Sjöberg
1984). This leads to an expression for the truncation error that
is analogous to Eq. (28). The global RMS δN̄3 is given by a
formula similar to Eq. (29). Again, utilising the Tscherning
and Rapp (1974) degree variances and L = M = 360, we
arrive at near-zero truncation errors (Table 1, column 4). It is
thus clear that a significantly smaller cap size can be used in
this case. However, in reality, our gravity observations and
EGM geopotential coefficients contain errors, which affect
both the choice of cap size and how Stokes’s formula should
be modified (see e.g. Sjöberg 1984, 1991).

6 The topographic effects

As discussed in Sect. 3.1, the RTM method is primarily bi-
ased by the term πµh2/γ , which is easy to correct by apply-
ing a correction -εζ̂ [Eq. (19)]. Similarly, the Helmert-type
geoid estimator [Eq. (20)] can be improved by the correc-
tion −εN̂RCR

[Eq. (22)]. Here we will discuss the additional
topographic corrections needed in rough terrain.
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6.1 The RTM method

The correction −εζ̂ was derived by assuming a linear correla-
tion between the gravity anomaly and elevation, an approxi-
mation that might be insufficient and generally not true (Mar-
tinec 1998). Moreover, the basic Eq. (1), based on the first-
order Molodensky series, might be insufficient in such ter-
rain, and the correction N − ζ of Eq. (6) may also be too
crude (see e.g. Sjöberg 1995). Finally, the assumption of a
constant topographic density will not necessarily suffice. All
these effects must be considered for the goal of the ‘1-cm
geoid’.

6.2 Helmert’s second method of condensation

The Helmert condensation technique by the geoid estima-
tor of Eq. (20) with the correction −εN̂ of Eq. (22) is not
adequate for 1-cm geoid estimation in rough terrain unless
the following additional significant topographic effects are
considered.

1. The terms of Eq. (20) representing the EGM must also
be corrected for the direct topographic effect (Sjöberg 1996,
2001). (This is obvious if we consider the special case of
these equations with σ0 = 0, as the geoid height represented
by an EGM will be biased when predicting the geoid below
the topographic surface.)

2. Although Stokes’s function is blind to harmonics of
degrees zero and one, the geoid estimation needs topographic
corrections for these harmonics (Sjöberg 2001). These cor-
rections are of the order of 10 cm.

3. In high mountain areas, the limitation of the topo-
graphic corrections to first-order approximations will not be
sufficient, and the exact surface integrals of direct and indi-
rect effects presented in Martinec (1998) and Sjöberg (2000)
should be useful.

4. The assumption of a constant topographic density is
not sufficient in mountainous regions (Martinec 1998), but a
correction for a laterally variable topographic density can be
applied (also see Sjöberg 2004).

7 Concluding remarks

We have shown that the use of a higher-order reference field,
as is the case for the RCR technique, does not make the geoid
estimators more insensitive to various errors than does a com-
bined solution of Stokes’s formula. Admittedly, one excep-
tion is that the use of a residual gravity anomaly reduces
the numerical errors committed by the Stokes integration.
The use of a higher-order reference field without modifying
Stokes’s kernel does not take advantage of the high-quality
low-degree signal of the EGM in an efficient way; low-degree
gravity anomaly errors will deteriorate the solution. In fact,
the RCR technique, as it has been applied to date, uses the
EGM just to reduce the truncation error in a non-optimum
way, and some of the potential advantages of the EGM are

lost. In contrast to the RCR technique, it is only by the modi-
fication of Stokes’s kernel (see e.g. Sjöberg 1991 and 2003a)
that it is possible to match the errors of the terrestrial gravity
data, the EGM and the truncation in an optimum way. Con-
sequently, in order to cope with the present goals for precise
regional geoid determination, the RCR technique must also
employ the modified Stokes’s kernel technique and all the
refined topographic and atmospheric and other corrections to
gravimetric geoid determination available today. Otherwise,
a precise EGM that will result from the dedicated satellite
gravity and gradiometry missions, in combination with the
RCR technique, will most probably not solve the problems
and achieve the desired 1-cm geoid model.
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Appendix A

Consider the two models for estimating geoid heights

Ñ1 = c

2π

∫∫

σ0

SL (ψ)�g̃M dσ + c

M∑
n=2

2

n− 1
�g̃EGM

n (A1)

and

Ñ2 = c

2π

∫∫

σ0

SL (ψ)�g̃ dσ + c

M∑
n=2

(
QL
n + s∗n

)
�g̃EGM

n

(A2)
where
�g̃M = �g̃ −�g̃EGM (A3)

SL (ψ) = S (ψ)−
L∑
n=2

2n+ 1

2
snPn (cosψ) (A4)

and

s∗n =
{
sn if 2 ≤ n ≤ L

0 otherwise
(A5)

where L and M are arbitrary upper limits of summation of
modification of Stokes’s kernel and the EGM, respectively,
and x̃ denotes an erroneous estimate of any quantity x.

Proposition Ñ1 = Ñ2.

Proof By considering Eq. (A3), Ñ1 can be rewritten

Ñ1 = c

2π

∫∫

σ0

SL (ψ)�g̃ dσ − c

2π

∫∫

σ0

SL (ψ)�g̃EGM dσ

+c
M∑
n=2

2

n− 1
�g̃EGM

n

= c

2π

∫∫

σ0

SL (ψ)�g̃ dσ + c

M∑
n=2

(
QL
n + s∗n

)
�g̃EGM

n

(A6)
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because
c

2π

∫∫

σ0

SL (ψ)�g̃EGM dσ

= c

M∑
n=2

(
2

n− 1
−QL

n − s∗n

)
�g̃EGM

n (A7)

Comparing the last term of Eq. (A6) and Eq. (A2) proves that
Ñ1 and Ñ2 are equal.
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