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Abstract 
Newton integrals for the potential and the vertical component of the attraction vector 
(gravitational effect), serve for evaluating various topographical effects (negative topographical 
corrections) as well as for evaluating the potential and the gravitational effect of various bodies 
and/or models of mass density distribution (real, constant or anomalous). Here we review global 
evaluation of the Newton integrals in geodetic coordinates (in Gauss ellipsoidal coordinates) 
formulated exactly and in spherical approximation. Various topographical corrections are 
addressed by investigating their definitions in terms of the upper and lower topographical 
boundary and the used density. Numerical aspects of the evaluation of the Newton integrals, such 
as the weak singularity treatment, split–up into spherical shell and terrain terms, and a 
requirement to integrate over the entire globe are also addressed. Implications associated with 
regional and local evaluation of the Newton integrals are indicated. Special attention is paid to 
the so-called “ellipsoidal topography of constant density” (“ETC”) and to NETC topo–
corrections to potential and gravity. The abbreviation “NETC” stands for “No ETC” and 
represents the removal of the effect of  “ETC” on potential or gravity.  
 
 
Introduction 
 
In geodesy and geophysics we often face the need to remove the gravitational potential of 
topographical masses of real or model (constant) density from the actual and/or disturbing 
potential. Equivalently, we may need to remove the vertical component of the attraction vector 
(so-called gravitational effect) of these topographical masses from the actual (observed or 
synthetic) gravity (thus also from gravity disturbances or anomalies). Generally, the 
topographical masses are defined as density distribution (real or model) between Earth’s surface 
(topographical surface, shortly topo–surface) and the geoid. However, there are applications 
(both geodetic and geophysical) that call for defining the topographical masses as the density 
distribution between the topo–surface and the reference ellipsoid (as opposed to the geoid). In 
geophysics the need of removing the effect of the latter type of topography was advocated by e.g. 
Chapman and Bodine (1979), Vogel (1982), Jung and Rabinowitz (1988), Meurers (1992), 
Talwani (1998), Hackney and Featherstone (2003). In order to distinguish the types of 
topographical masses according to their lower boundary and mass density, Vajda et al. (2004) 
proposed the following classification: 
 
Table 1.  Models of topographical masses. The upper boundary is always the topo–surface. 
 

type of topography lower boundary density notation 
topography geoid real T 
topography of constant density geoid constant (model) TC 
ellipsoidal topography reference ellipsoid real ET 
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ellipsoidal topography of constant density reference ellipsoid constant (model) ETC 
 
The term “ellipsoidal topography” is not to be understood as the topography of the ellipsoid, but 
as the topography reckoned from the ellipsoid. 
 
In addition, in geophysics we need to evaluate the potential and/or gravitational effect of various 
bodies, or density distributions of various sub–regions of the Earth – of real, constant, or 
anomalous density – not mentioning horizontal and higher order derivatives of the actual and/or 
disturbing potential. All the above mentioned potentials and gravitational effects are evaluated 
by means of the Newton integrals for the potential and vertical component of the attraction 
vector, respectively. The significance of the Newton integral is great, as it represents the solution 
to the direct (forward) gravimetric problem. Below we deal with evaluating these two kinds of 
the Newton integral in the geodetic coordinates. Our starting point will be global and rigorous, 
followed by considering approximations such as neglecting deflections of the vertical, spherical 
approximation, or simplifications that can be adopted in regional or local studies.  
 
The need to express the Newton integrals in the geodetic coordinates is implied by the fact, that 
in practice evaluation/observation points (stations) are often positioned in the geodetic 
coordinates. To be more specific, horizontal coordinates are given as geodetic latitude and 
geodetic longitude (respective to a reference ellipsoid as the horizontal datum), vertical 
coordinate is given as a geodetic (ellipsoidal) height reckoned from the same reference ellipsoid 
as the vertical datum. The geodetic height is either measured or may be evaluated (as an 
acceptable approximation) as the sum of a “height above sea level” (e.g., orthometric or normal 
height) reckoned from the “sea level” (i.e., geoid or quasigeoid), and the geoidal/quasigeoidal 
height (that is referred to the same reference ellipsoid).  
 
 
1.  Spherical and geodetic coordinates 
 
We shall refer the discussed quantities to geocentric coordinate systems, namely to a geocentric 
Cartesian coordinate system, geocentric spherical coordinate system, and geocentric geodetic 
(Gauss ellipsoidal) coordinate system (e.g., Pick et al., 1973, p. 437; Heiskanen and Moritz, 
1967, Chapter 5–3; Vaní�ek and Krakiwsky, 1986, Chapter 15.4). In the spherical coordinate 
system any point P  in space is given by the geocentric distance r , spherical (geocentric) 
latitude φ , and spherical (geocentric) longitude λ , that are related to the Cartesian coordinates 
of the point ( ) ( )λφ ,,,, rzyxP ≡≡  as follows, cf. Fig. 1: 
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For brevity we shall often denote the horizontal position in the geocentric spherical 
coordinates as ( )λφ ,≡Ω . 
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Fig. 1. The geodetic coordinate system and the relationship between spherical 

and geodetic coordinates. 
 
Geocentric geodetic coordinates – geodetic height h , geodetic latitude φ , and geodetic 
longitude λ  – are defined in the geocentric geodetic coordinate system, which is based on the 
mean earth ellipsoid (e.g. Heiskanen and Moritz, 1967, Section 2–21). The mean earth ellipsoid 
is a reference ellipsoid that is not only geocentric and biaxial, it is also a so called “level” 
ellipsoid (ibid, Section 2–7). There is a unique and physically meaningful link between the level 
ellipsoid and the normal gravity field. The level ellipsoid is the equipotential surface of the 
normal gravity potential on which the normal gravity potential has the same value as the actual 
gravity potential on the geoid. Thus the mean earth ellipsoid (or normal ellipsoid) generates the 
normal gravity, while its surface serves as a (geocentric geodetic) coordinate surface. As a 
surface it is defined by a major semi–axis a , and minor semi–axis b . Thus the geodetic 
coordinates are inevitably associated with the mentioned two parameters of the ellipsoid. 
Alternatively to the minor semi–axis, the first numerical eccentricity e  ( 2222 ][ abae −= ), 
focal distance E , or flattening f  can be used (ibid). The geodetic coordinates are related to the 
Cartesian coordinates of the point ( ) ( )λφ,,,, hzyxP ≡≡  as follows (e.g., ibid, Section 5–3 ), cf. 
Fig. 1: 
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is the prime vertical radius of curvature (not to be confused with the geoidal height due to the 
same notation). The inverse transformation is not as straightforward, cf. e.g. (Jones, 2002; 
Pollard, 2002; Vermeille, 2002). For brevity, we will often denote the horizontal position in the 
geodetic coordinates as ( )λφ,≡Ω . Equations (1) and (2) are used to transform the geodetic 
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coordinates of the point P  to its (geocentric) spherical coordinates or vice versa. Obviously, if 
the biaxial ellipsoid represents the horizontal datum, longitudes in both coordinate systems are 
identical, i.e. λλ = . 
 
 
2. Newton integrals in geocentric spherical coordinates 
 
In section 2 we will review the formulation of the Newton integral for the gravitational potential 
and for the vertical component of the attraction vector in geocentric spherical coordinates. The 
integral boundaries will be thus referred in spherical coordinates, and the infinitesimal solid 
(volume) element will be expressed also in the mentioned coordinates.  
 
2.1  Newton integral for the gravitational potential 
 
The Newton integral for the gravitational  potential expressed in the spherical coordinates reads 
 

 :),( PPr Ω∀  ( ) � ��
Ω

Ω Ω

− ΩΩΩ=Ω
)(

)(

1
2

1 0

),,,(),(,
r

r
PPPP drrLrGrV ϑρ  ,  (4) 

 
where G is the universal gravitational constant, ( )Ω,rρ  is the mass density distribution (real, 
constant, or anomalous), L  is a 3–D Euclidean distance between the evaluation and integration 
(running) point,  
 
 Ω== ddrrdddrrd 22 cos λφφϑ         (5) 
 
is the infinitesimal solid (volume) element in the spherical coordinate system, 

)πππ 2;02;20 ⊗−≡Ω  is the full solid angle, and ( )Ω1r  and ( )Ω2r  are the lower and upper 
integral boundaries, respectively. Examples of specific gravitational potentials defined by Eq. (4) 
are listed in Tab. 2. 
 
Table 2.   Examples of specific gravitational potentials defined by the Newton integral. The 

upper boundary is for all examples the topo–surface ( ) ≡Ω2r ( )Ωtr . 
 

quantity defined by Eq. (4) density lower boundary 
potential of topography (T) 

GTV  
real 

( )Ω,rρ  
geoid 

( ) ≡Ω1r ( )Ωgr  

potential of topography of constant density (TC) 
GTV0  

constant 

0ρ  
geoid 

( ) ≡Ω1r ( )Ωgr  

potential of ellipsoidal topography (ET) 
ETV  

real 
( )Ω,rρ  

ref. ellipsoid 
( ) ≡Ω1r ( )Ωer  

potential of ellipsoidal topography of constant density (ETC)
ETV0  

constant 

0ρ  
ref. ellipsoid 

( ) ≡Ω1r ( )Ωer  
potential of real Earth’s masses 
V  

real 
( )Ω,rρ  

geocentre 
( ) 01 ≡Ωr  

potential of anomalous Earth’s masses 
Vδ  

anomalous 
( )Ω,rδρ  

geocentre 
( ) 01 ≡Ωr  
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The first four rows of Tab. 2 define, taken with the negative sign, four different (NT, NTC, NET, 
NETC) topographical corrections to the potential used for constructing the topo–corrected actual 
and/or disturbing potential. Note, that in Eq. (4) the evaluation point is not restricted to lie on the 
topo–surface or any other reference surface.  
 
2.2 Newton integral for the vertical component of the attraction vector (gravitational effect) 
 
The gravitational effect of mass density from a specific region is defined as a vertical component 
of the attraction vector generated by the mass density (real, constant, or anomalous) within that 
region. In the spherical coordinates it reads as follows 
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where n∂∂  is the derivative in the direction of the outer normal to the actual equipotential 
surface at the evaluation point P (along actual plumbline at P). Everything else remains as 
defined in Eq. (4). When neglecting the deflection of the vertical at P, we can replace the n∂∂  
by the derivative in the direction of the ellipsoidal normal, i.e. by the derivative with respect to 
the geodetic height of the evaluation point Ph∂∂ . Thus 
 

 :),( PPr Ω∀  ( ) � ��
Ω

Ω Ω

−

∂
ΩΩ∂Ω−≅Ω

)(

)(

12

1 0

),,,(
),(,

r

r P

PP
PP d

h
rrL

rGrA ϑρ  ,  (7) 

 
The integration domain and corresponding density distribution define the gravitational effect 
given by Eqs. (6) and (7), cf. Tab. 3 for some examples.  
 
Table 3.   Various gravitational effects defined by the Newton integral for the vertical 

component of the attraction vector. The upper boundary is the topo–surface 
( ) ≡Ω2r ( )Ωtr . 

 

quantity defined by Eq. (7) density lower boundary 
gravitational effect of topography (T) 

GTA  
real 

( )Ω,rρ  
geoid 

( ) ≡Ω1r ( )Ωgr  

gravitational effect of topography of constant density (TC) 
GTA0  

constant 

0ρ  
geoid 

( ) ≡Ω1r ( )Ωgr  

gravitational effect of ellipsoidal topography (ET)  
ETA  

real 
( )Ω,rρ  

ref. ellipsoid 
( ) ≡Ω1r ( )Ωer  

gravitational effect of ellipsoidal topography  
of constant density (ETC) 

ETA0  

constant 

0ρ  
ref. ellipsoid 

( ) ≡Ω1r ( )Ωer  

gravitational effect of real Earth’s masses 
A  

real 
( )Ω,rρ  

geocentre 
( ) 01 ≡Ωr  

gravitational effect of anomalous Earth’s masses 
Aδ  

anomalous 
( )Ω,rδρ  

geocentre 
( ) 01 ≡Ωr  
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Taken with the negative sign, the first four rows define four different topographical corrections 
to actual gravity, cf. also Tab. 8 in Vajda et al. (2004). Note, that again in Eqs. (6) or (7) the 
point of evaluation is not restricted to lie on the topo–surface or any other reference surface. 
 
 
3. Newton integrals in geocentric geodetic coordinates 
 
In section 3 we will present the formulation of the Newton integral for the gravitational potential 
and for the vertical component of the attraction vector (gravitational effect) in geocentric 
geodetic coordinates. This will require expressing the solid element, and the Euclidean distance 
with its vertical derivative, in the geodetic coordinates. Also the integral boundaries will be now 
referred in the geodetic coordinates.  
 
3.1  Newton integral for the gravitational potential in the geodetic coordinates 
 
The infinitesimal solid element in the geodetic coordinates reads 
 
 ( ) λφφϑ dddhheaJd ,,,=   ,        (8) 
 
where the expression for the Jacobian ( )φ,,, heaJ  is derived by means of Eq. (2) 
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For the partial derivatives we get 
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where the curvature )(φN  is given by Eq. (3), and where 
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Upon the back substitution and required algebraic treatment we obtain  
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For the behaviour of the Jacobian, see Appendix. In the geodetic coordinates, the Euclidean 
distance L reads 
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Thus the Newton integral for the gravitational potential reads in the geodetic coordinates 
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where the distance L  is given by Eq. (15), solid element by Eq. (8), and the Jacobian by 
Eq. (14). The upper and lower boundaries are now also given in the geodetic coordinates. For 
instance, the topo–surface is given as ( )Ωth , geoid as ( )ΩN  and reference ellipsoid as ( ) 0=Ωh . 
When the integration is to be carried out over the whole Earth’s interior, starting at the geocentre, 
the lower integration boundary will no longer be a single point. The lower boundary will become 

( ) ( )φChh =Ω1 , defined as 0=z  for 0≠φ , i.e., 
 

 :
2

0:
πφφ ≤<∀  ( ) )(1)( 2 φφ NehC −−=  ,     (17) 

 
where )(φN  is given by Eq. (3), cf. Fig. 2. 
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Figure 2.   The lower integration boundary )(φCh  [km] for evaluating  
the Newton integral over the whole interior of the Earth  
(of the ellipsoid). The horizontal axis is geodetic latitude [arcdeg]. 
The reference ellipsoid is given by a = 6378 km and 2e  = 0.0067. 

 
Recently, Novák and Grafarend (2004) derived the Newton integral for the potential in the 
geodetic coordinates while neglecting the terms of 4e  and higher (ibid, Section 2). They also 
discussed the computational aspects in detail, as well as the expression of this integral in the 
spectral form (ibid, Section 4).  
 
3.2  Newton integral for the gravitational effect in the geodetic coordinates 
 
The derivative of the inverse Euclidean distance with respect to the geodetic height reads 
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where 
 
 ( )λλφφφφψ −+= PPP coscoscossinsincos  ,     (19) 
 
and the distance L  is given by Eq. (15). The gravitational effect given by Eq. (7) reads in the 
geodetic coordinates 
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where PhL ∂∂ −1  is given by Eq. (18). 
 
Novák and Grafarend (2004) also derived the Newton integral for the gravitational effect in the 
geodetic coordinates while neglecting the terms of 4e  and higher (ibid, Section 3). They also 
discussed the computational aspects in detail.  
 
 
4. Spherical approximation of Newton integrals in geocentric geodetic coordinates  
 
In section 4 we will deal with the spherical approximation of the Newton integrals presented in 
section 3. The spherical approximation will imply expressing the solid element, as well as the 
Euclidean distance and its vertical derivative, in the spherical approximation, still using the 
geodetic coordinates.  
 
4.1  Newton integral for the potential in the geodetic coordinates – spherical approximation 
 
Under the spherical approximation (Moritz, 1980, p. 349) we shall hereafter understand 
neglecting the terms multiplied by 2e  and higher order terms in the expressions for the 
Euclidean distance, derivative of the inverse Euclidean distance with respect to the geodetic 
height of the evaluation point, and the Jacobian. Moreover, the major semi–axis a is replaced by 

the mean radius 3 2baR = . Since  
 

 ( ) Rae
a

a
e

a
N ≈≈+≅

−
= φ

φ
φ 22

22
sin

2sin1
 ,     (21) 

 
Equation (15) reads in the spherical approximation as follows: 
 

 ≈ΩΩ ),,,( hhL PP  ( ) ( ) ( )( ) ψcos222 hRhRhRhR PP ++−+++  ,  (22) 
 
where ψcos  is given by Eq. (19). Here ψ  stands for the angular distance between the evaluation 
and integration point. In spherical approximation , the Jacobian reads 
 
 ( ) ( ) φφ cos,,, 2hRheaJ +≈  .        (23) 
 
Thus the Newton integral for the gravitational potential in spherical approximation reads 
 

 :),( PPh Ω∀    ( ) ( )� ��
Ω

Ω Ω

− Ω+ΩΩΩ≈Ω
)(

)(

21
2

1 0

),,,(),(,
h

h
PPPP ddhhRhhLhGhV ρ  ,  (24) 

 
where λφφ ddd cos=Ω , and the distance L  is given by Eq. (22). In spherical approximation, 
when integrating over the whole Earth’s interior, the integration starts (as expected) at the 
geocentre, i.e. the lower integral boundary is given as follows, cf. Eq. (17): 
 
 ( ) RhC −≈φ   .          (25) 
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Novák and Grafarend (2004) showed, that the Newton integral for the potential in the geodetic 
coordinates (neglecting the terms of 4e  and higher) can be written as a sum of a spherical term 
and ellipsoidal correction to the spherical term (ibid, Eqs. (13) through (15)). In the case of the 
topographical correction, they showed for a test area in the Canadian Rocky Mountains that the 
ellipsoidal correction is by three orders of magnitude smaller than the spherical term (ibid, 
Section 5).  
 
4.2   Newton integral for the gravitational effect in the geodetic coordinates – spherical 

approximation 
 
Equation (18) reads in spherical approximation as follows: 
 

 ≈
∂

ΩΩ∂ −

P

PP

h
hhL ),,,(1 ( ) ( )

3

cos
L

hRhR P ψ+−+−  ,     (26) 

 
with the distance L  given by Eq. (22). Thus the gravitational effect in spherical approximation 
reads 
 

:),( PPh Ω∀    ( ) ( )� ��
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Ω Ω

−
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)(

)(

2
12
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h
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h
hhL
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            (27) 
 
where PhL ∂∂ −1  is given by Eq. (26). 
 
Novák and Grafarend (2004) showed, that the Newton integral for the gravitational effect in the 
geodetic coordinates (neglecting the terms of 4e  and higher) can be written as the sum of a 
spherical term and ellipsoidal correction to the spherical term (ibid, Eqs. (36) and (37)). Again 
the ellipsoidal correction was three orders of magnitude smaller than the spherical term (ibid, 
Section 5).  
 
 
5.  Spherical approximation of the topographical corrections in terms of orthometric (or 

normal) heights with the geoid (or quasigeoid) as a vertical datum 
 
When the Newton integral for the gravitational potential or the gravitational effect is evaluated 
with the geoid as the lower topo–boundary, in spherical approximation, while the topo–surface 
as well as the evaluation and integration points are positioned using orthometric/normal heights 
reckoned from the geoid/quasigeoid as a vertical datum, the spherical approximation applies to 
the geoid. Recall the relationship between geodetic (h) and orthometric (H), or normal ( NH ) 
heights: 
 
 ( ) ( ) ( )Ω+Ω≅Ω NHh      (a) ,  ( ) ( ) ( )Ω+Ω≅Ω ζNHh         (b) ,  (28) 
 
where ζ  is the height anomaly reckoned from the reference ellipsoid. Everything considered in 
the sequel for the orthometric heights applies also to the normal heights. 
 
The gravitational potential of topography  reads (cf. Tab. 2) 
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where the Euclidian distance L  is given by  
 

 ≈ΩΩ ),,,( HHL PP  ( ) ( ) ( )( ) ψcos222 HRHRHRHR PP ++−+++  , (30) 
 
and angular distance between the evaluation and integration points ψ  is given by Eq. (19). The 
upper boundary is the topo–surface ( )ΩtH  reckoned from the geoid. The lower boundary is the 
geoid, given as ( ) ( )Ω=Ω Nh  or ( ) 0=ΩH . Similarly the gravitational effect of topography  
reads (cf. Tab. 3) 
 

 ( ) ( )� ��
Ω

Ω
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where the vertical derivative with respect to the geodetic height at the evaluation point Ph∂∂  
was replaced by the vertical derivative with respect to the orthometric height at the evaluation 
point PH∂∂ , i.e.  
 

 ≈
∂

ΩΩ∂ −

P

PP

H
HHL ),,,(1 ( ) ( )

3

cos
L

HRHR P ψ+−+−  ,    (32) 

 
where the distance L  is given by Eq. (30) and ψcos  by Eq. (19). The upper and lower 
boundaries are identical to those in Eq. (29).  
 
 
6.  Numerical aspects 
 
Now we will turn our attention to some aspects of numerical evaluation of the discussed Newton 
integrals. We will take a look at the singularity of the integrals, we will focus on the 
topographical corrections in spherical approximation and discuss the splitting of the topo–
correction into a spherical shell term and a terrain term. Finally, we will look at the requirement 
of integrating over the whole globe. 
 
6.1  Weak singularity 
 
Both the Newton integrals – gravitational potential and gravitational effect – discussed in 
Sections 2 through 5 are singular for the integration point coinciding with the evaluation point, 
i.e., ( ) ( )PPhh Ω=Ω ,, , or ( ) ( )PPHH Ω=Ω ,, . The singularity is encountered when evaluating the 
integrals on the topo–surface or below it. However, the singularity is weak, removable, cf. e.g. 
(Kellogg, 1929, p. 151). 
 
6.2  Spherical topographical corrections – spherical shell and terrain terms 
 
In the sequel we shall deal with topo–corrections in spherical approximation only. The spherical 
approximation implies that the lower topographical boundary is approximated by a sphere (not 
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actually, only for the sake of computing the distances between the evaluation and integration 
points). In the case of topo–corrections, that adopt the constant model density of topographical 
masses, it is conventional and convenient to split the topo–correction into a spherical shell term  
and a terrain term (sometimes referred to as the roughness term) 
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   (b),  (33) 

 
where ( )Pth Ω  is the geodetic height and ( )PtH Ω  is the orthometric height of the topo–surface at 
the horizontal position of the evaluation point. The spherical shell term (dropping the negative 
sign) is the potential, or the gravitational effect, of the spherical layer (shell) with the inner 
radius equal to the mean Earth’s radius R, and thickness )( Pth Ω , or ( )PtH Ω , which can be 
evaluated analytically (closed-form solution), cf. e.g. (Wichiencharoen, 1982; Blakely, 1995, 
Sections 3.2.1 and 3.2.2; Vaní�ek et al., 2001; 2004). Note, that the thickness of the spherical 
shell is equal to the elevation of the topo–surface at the horizontal position of the evaluation 
point; thus it changes from one evaluation point to another. The terrain term (dropping the 
negative sign) is the potential, or the gravitational effect, of the terrain relative to the spherical 
shell, sometimes called the roughness term, which is to be evaluated by numerical integration 
over the entire globe. The terrain term remains singular, but again the singularity is weak and 
removable in the same manner as already discussed in Section 6.1. 
 
Topo–corrections (to the potential and gravity) for topography defined by the geoid as its lower 
boundary, referred in terms of the orthometric heights, cf. Section 5, are discussed in detail in 
e.g. (Vaní�ek et al., 2004). Hereafter we shall focus on the NETC topo–corrections. 
 
6.3  NETC topo–correction to the gravitational potential and gravity 

In Section 6.3 we shall deal exclusively with the evaluation of the NETC topo–correction to the 
potential ( ETV0− ) and the NETC topo–correction to gravity ( ETA0− ). For more details regarding 
the potential and gravitational effect of the ellipsoidal topography of constant density (ETC), 
refer to (Vajda et al., 2004), particularly to Sections 3, 3.1, 3.6 and 4. The potential and the 
gravitational effect of the ETC can also be split (for evaluation points above, on or below the 
topo–surface) into the spherical shell and terrain term, cf. Fig. 3. Recall, that the surface of the 
inner quasi–ellipsoid is taken as the lower topo–boundary of the ETC, in order to account 
properly for the areas over the globe, where the topo–surface dips below the reference ellipsoid 
(ibid, Section 4). 
 
For the potential of the ETC, ETV0 , and the gravitational effect of the ETC, ETA0 , the spherical 
shell term is the potential, and the gravitational effect, of the spherical layer (shell) of the radius 
of the inner sphere ( )*hR −  and of thickness ( )*)( hh Pt +Ω , cf. Fig. 3, which can be evaluated 
analytically. 
 



Evaluation of Newton integrals in geodetic coordinates Received in CGG  

FINAL, latest edit on 3 November 2004  page 13 

 

h* 

P4 

P1 

P2 

Bouguer shell 

reference ellipsoid 

topo–surface 

h* 

P3 + 
- + 

 
 

Fig. 3.  Sketch illustrating the spherical shell with the upper boundary 
( )Pthh Ω=  and lower boundary *hh −= . The topo–surface 

forms the terrain relative to the spherical shell, indicated by “+” 
and “–“ signs. Subscripts indicate four possible positions of the 
evaluation point ( )PPhP Ω≡ , : 1 – below the spherical shell, 2 – 
inside the spherical shell, 3 – at the topo–surface, and 4 – above 
the topo–surface.  

 
For the gravitational potential of the ETC we can write  
 
 ( ) =Ω PP

ET hV ,0 ( )+Ω PP
BET hV ,,

0 ( )PP
RET hV Ω,,

0  ,     (34) 
 
where BETV ,

0  is the gravitational potential of the spherical shell of a constant density 0ρ  and 

thickness ( )*)( hh Pt +Ω , and  
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Ω
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− Ω+ΩΩ=
)(
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21
0

0

,,,
t

Pt

h

h
PP ddhhRhhLGρ    (35) 

 
is the gravitational potential of the terrain relative to the spherical shell. Rigorously it must be 
numerically evaluated over the entire globe. The terrain term of the ETC potential can be written 
also as a surface integral (cf. Martinec, 1998, Eq. (3.52); Sjöberg, 2000, Eqs. 9–11), when the 
geodetic heights replace in the formulae the orthometric heights.  
 
For the gravitational effect of the ETC we can write  
 
 ( ) =Ω PP

ET hA ,0 ( )+Ω PP
BET hA ,,

0 ( )PP
RET hA Ω,,

0  ,     (36) 
 
where BETA ,

0  is the gravitational effect of the spherical shell of the constant density 0ρ  and 

thickness ( )*)( hh Pt +Ω . The gravitational effect of the terrain relative to the spherical shell is 
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Rigorously it must also be numerically evaluated over the entire globe.  
 
6.3.1   Evaluation point on the topo–surface 
 
If the evaluation point is located on the topo–surface, we have ( ) PPt hh =Ω . The potential of the 
spherical shell becomes, following e.g. (Blakely, 1995, Sections 3.2.1 and 3.2.2), and also (Jekeli 
and Serpas, 2003, Eqs. (9) and (15); Vaní�ek et al., 2004, Eq. (25)) 
 

 ( ) :PtP hh Ω=   ( ) =Ω PP
BET hV ,,

0
( ) ( )

( )P

P

hR
hRhR

G
+

−−+ 3*3

03
4 ρπ   .  (38) 

 
The gravitational effect of the spherical shell becomes, following e.g. (Blakely, 1995, Sections 
3.2.1 and 3.2.2), and also (Jekeli and Serpas, 2003, Eqs. (10) and (15); Vaní�ek et al., 2004, 
Eq. (40)) 
 

 ( ) :PtP hh Ω=   ( ) =Ω PP
BET hA ,,

0
( ) ( )

( )2

3*3

03
4

P

P

hR

hRhR
G

+
−−+

− ρπ    (39) 

 
The NETC terrain correction to gravity ( )RETA ,

0− , in the case of the evaluation point located on 
the topo–surface, is computed exactly (when replacing orthometric heights by geodetic heights) 
as the spherical terrain correction to surface gravity that was recently discussed by Novák et al. 
(2001), cf. Sections 3 and 6, and Fig. 7.  
 
A lot of material on the numerical aspects of the evaluation of topo–corrections for the 
evaluation point on the topo–surface, which applies also to the NETC topo–corrections, if 
replacing orthometric heights by geodetic heights, can be found in geodetic literature as part of 
the discussion of the direct topographical effect on gravity. The direct topographical effect 
consists of two terms – the effect of topographical masses (“removal of topographical masses”) 
and the effect of a condensed layer (“restoration of topographical masses”) according to a 
specific scheme, such as the first or second Helmert condensation method (e.g., Heck, 2003; 
Martinec, 1998; Vaní�ek and Martinec, 1994; Jekeli and Serpas, 2003). By considering just the 
terms reflecting the removal of the topographical masses, the same numerical procedures can be 
applied also to the computation of the NETC topo–corrections to the potential and gravity. Let us 
quote Martinec and Vaní�ek (1994), Sjöberg (1994), (1996), (2000), Nahavandchi and Sjöberg 
(1998), Nahavandchi (2000), Novák et al. (2001), Jekeli and Serpas (2003). For more details on 
the numerical aspects of evaluating the terrain effects (negative terrain corrections) the reader is 
referred also to Section 3.2.3 in (Hackney and Featherstone, 2003) and literature cited therein.  
 
6.3.2   Evaluation point below the topo–surface 
 
In the case of the evaluation point below the topo–surface, ( )PtP hh Ω< , the terrain terms will 
remain as given by Eqs. (35) and (37). Only the spherical shell terms will read differently, 
following e.g. (Vaní�ek et al., 2004, Eqs. (25) and (40)); namely, the gravitational potential is  
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and the gravitational effect 
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 ( ) ;, PPh Ω∀ :*hhP −<   ( ) 0,,

0 =Ω PP
BET hA   .       (43) 

 
6.3.3   Evaluation point above the  topo–surface 
 
Again, the terrain terms will remain as given by Eqs. (35) and (37). The spherical shell terms will 
now read, following e.g. (Blakely, 1995, Sections 3.2.1 and 3.2.2), 
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6.4  Integration domain – entire globe 
 
The discussed Newton integrals, or at least the terrain terms in the case of topo–corrections, must 
be evaluated over the entire globe. This is a numerically demanding requirement. If the data 
coverage is not global, this requirement even cannot be met. Often, in spherical approximation, 
the integration is split into two zones: a near zone (inner zone) and a far zone (outer zone), or 
even more zones. The evaluation strategy and numerical procedure may then differ from zone to 
zone. Such a split–up into zones is possible if the integral is expressed in local polar coordinates 
of the evaluation point (e.g., Vaní�ek and Krakiwsky, 1986), where the horizontal position of the 
evaluation point ( )PΩ  becomes the origin, and the horizontal position of the integration point 
( )Ω  is given by means of ( )αψ , , where ψ  is the angular distance from the origin, and α  is the 
azimuth reckoned from an arbitrary direction such as the north. In spherical approximation we 
then have 
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since λφφαψψ dddd cossin = , and where ( )ψ,,hhL P  is given by Eq. (22), ψcos  by 

Eq. (19), and ( ) PP hhhL ∂∂ − ψ,,1  by Eq. (26). The spherical cap of a pre–selected radius 0ψ , in 

terms of the angular distance from the evaluation point, constitutes the near zone 0,0 ψ , while 

the integration domain beyond this radius represents the far zone ( πψ ,0 . The upper and lower 
integral boundaries remain the same, only are positioned in the new coordinates 

( ) ( )λφαψ ,, ii hh ≡ , 2,1=i . In the case of splitting the topo–corrections into the spherical shell 
and terrain terms, the split–up into the zones applies either to both terms or just to the terrain 
term. 
 
The integration must be carried out over the whole globe, that is in angular distance from 0  to 
π . Often the contribution from the far zone is neglected, resulting in a truncation error. The 
radius of the near zone may vary by a scholar and by application. Instead of neglecting the far- 
zone contribution, global digital elevation models (DEMs) in a spherical harmonic representation 
may be used in this zone (Sjöberg, 1994; 1996; Nahavandchi and Sjöberg, 1998;  Novák et al., 
2001; Sun, 2002), or a combined approach may be adopted, as suggested by Nahavandchi 
(2000). Approximations additional to spherical approximation may be adopted, when developing 
the reciprocal Euclidean distance into a series expansion, as classified recently by Jekeli and 
Serpas (2003) – planar approximation, flat–Earth approximation, and linear approximation.  
 
 
7.  Discussion and concluding remarks 
 
Newton integrals play an important role in geodesy and geophysics, as they represent the 
solution to the direct (forward) gravimetric problem. They provide the means for evaluating a 
gravitational potential, its gradient (vertical and horizontal components of the attraction vector), 
as well as higher order derivatives of the potential (actual or disturbing) of various bodies or 
density distributions of real, model (such as constant), or anomalous density. Among most 
common examples we can find the potential or gravitational effect of a body that may be the 
subject of the gravimetric inverse problem, or the potential or gravitational effect of the 
topographical masses. Here we have discussed exclusively the Newton integral for the potential, 
as defined in Section 2.1, and the Newton integral for the gravitational effect, i.e., for the vertical 
component of the attraction vector, as defined in Section 2.2. The points of interest (evaluation 
points) and the integration (running) points are nowadays commonly positioned in the geodetic 
coordinates. That is why we have dealt with evaluating the Newton integrals in the geodetic 
coordinates, as given by Sections 3.1 and 3.2. The evaluation of the Newton integrals in the 
geodetic coordinates calls for evaluating the solid (volume) element, thus the Jacobian, in the 
geodetic coordinates, as well as evaluating the 3D reciprocal Euclidean distance and its vertical 
derivative in the geodetic coordinates.  
 
In most applications, spherical approximation to the exact evaluation of the Newton integrals in 
the geodetic coordinates, as given in Sections 4.1, 4.2, and 5 will be acceptable, since the 
ellipsoidal correction to spherical approximation of the Newton integral for the potential and 
gravitational effect is by three orders of magnitude smaller than the spherical term (Novák and 
Grafarend, 2004). 
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Several aspects of numerical evaluation of the discussed Newton integrals were addressed in 
Section 6. The Newton integrals may become singular, but this singularity at the coincidence of 
the integration point with the evaluation point is weak and removable. We focused on the 
topographical corrections in spherical approximation that adopt the constant (model) density of 
the topo–masses, and discussed the splitting of the topo–correction into the spherical shell and 
terrain (roughness) term, cf. Sections 6.2 and 6.3. We paid a particular attention to the NETC 
topo–correction to the potential and gravity; in other words, to the potential and gravitational 
effect of the ellipsoidal topography of a constant density. Globally the “ETC” is defined as 
topographical masses of constant density bounded by the surface of the inner quasi–ellipsoid as 
the lower topo–boundary (which plays the role of the reference ellipsoid and originates from the 
occurrence of negative ellipsoidal topography in some areas over the globe) and the topo–surface 
as the upper topo–boundary. The reasons for defining and using the ETC topo–masses and their 
potential and gravitational effect are discussed in more detail by Vajda et al. (2004). Here we 
looked in detail at evaluating the ETC spherical shell term for evaluation points above, on, and 
below the topo–surface, cf. Sections 6.3 through 6.3.3. The advantage of splitting the ETC 
potential and ETC gravitational effect (or NETC topo–corrections to the potential and gravity) 
into the spherical shell and terrain term dwells in the analytical evaluation of the (N)ETC 
spherical shell term and in the fact, that the NETC terrain correction (negative ETC terrain term) 
is equal to the spherical terrain correction (to the potential or gravity) as generally known and 
used in geodesy and geophysics. Finally, we looked at the requirement of integrating in the 
horizontal coordinates over the whole globe. In Section 6.4 we mentioned the truncation of the 
integration domain to a spherical cap, and different approaches and numerical procedures that 
may be adopted in near- and far-zone contribution evaluation, providing references to published 
work on this topic. 
 
 
Appendix 
 
To show the behaviour of the Jacobian given by Eq. (14) in the interior of the reference ellipsoid, 
we portray it, cf. Fig. 4, as a function of the geodetic latitude (in the first quadrant) for several 
values of the (negative) geodetic height: (A) h = 0 km, (B) h = -6000 km, (C) h = -6300 km, 
(D) h = -6335 km. Notice, that to stay in the first quadrant, in terms of the geodetic height and 
geodetic latitude, the geodetic height must comply with the following inequality, cf. Eq. (17) and 
Fig. 2: 
 

 :
2

0:
πφφ ≤<∀  )(φChh ≥  .       (48) 

 



Evaluation of Newton integrals in geodetic coordinates Received in CGG  

FINAL, latest edit on 3 November 2004  page 18 

 

0 10 20 30 40 50 60 70 80 90 0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 x 10 7 

A 

 
 
 

0 10 20 30 40 50 60 70 80 90 0 

2 

4 

6 

8 

10 

12 

14 x 10 4 

B 

 



Evaluation of Newton integrals in geodetic coordinates Received in CGG  

FINAL, latest edit on 3 November 2004  page 19 

 

0 10 20 30 40 50 60 70 80 90 0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

C 

 
 
 

0 10 20 30 40 50 60 70 80 90 0 

500 

1000 

1500 

D 

 
Figure 4.   The behaviour of the Jacobian. The horizontal axis is geodetic latitude [arcdeg.]. 

Reference ellipsoid is given by a = 6378 km, 2e  = 0.0067. (A) h = 0 km,  
(B) h = -6000 km, (C) h = -6300 km, (D) h = -6335 km.  
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