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Abstract 

The mean free-air gravity anomalies are often needed in geodesy for gravity field 

modelling. Two possible ways of compiling the mean free-air gravity anomalies are 

discussed. One way is via simple Bouguer gravity anomalies and the second and more 

time consuming way is via refined Bouguer gravity anomalies. Theoretically the 

differences between using any of the two ways should not be significant. However, a 

numerical experiment conducted in one part of Rocky Mountains revealed large and 

systematic differences. The effect of these differences on the geoid model is more then 

two meters in the test area. Our investigation shows that this bias is caused by the 

location of gravity measurement points, chosen mostly on hill-tops. In such points the 

terrain correction to gravity is systematically larger than the mean value of the 

correction. Therefore it is not possible to prevent the mean free-air gravity anomalies 

obtained from simple Bouguer gravity anomalies from having a systematic bias. The 

more rigorous way of computing the mean free-air gravity anomalies is via refined 

Bouguer gravity anomalies. 

 

Introduction 

 

Points of observation for surface gravity mapping are usually chosen to be 

approximately evenly distributed over the whole area of interest. An approximate 

distance between the observed points stem from the prescribed number of points per 

squared kilometre. This is natural and logical requirement. In the mountains, however, it 

is often impossible to preserve this desideratum because of the terrain roughness and 

large inaccessible areas. Therefore, according to way of data collection, we can find 
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mountainous areas where observations are located systematically in the valleys or on the 

other hand on the tops of the hills. This systematic location of the observed gravity point 

can become a serious obstacle for correct compilation of the mean gravity anomalies. 

The question can arise here, why do we need the mean values instead of the originally 

measured point values? The answer is based on the fact that we don’t know how to 

integrate the point values over the surface and usually for gravity field modeling the 

surface integrals must be solved. Therefore one should either approximate the point 

values using analytical function, e.g. splines, or compile the mean values. The usual way 

how to create the mean values from irregularly distributed measured values is to 

produce the regular grid using interpolation followed by averaging over chosen surface 

cells. In this paper we are focused on mean free-air gravity anomalies because they are, 

in a wider sense, the basis of both geoid and quasigeoid computation as well as for the 

determination of deflections of the vertical. The problem with the accuracy of the mean 

free-air gravity anomalies has been studied in earlier works, e.g. (Moritz, 1964) and to 

the same problem has been pointed out in (Torge, 1989, p. 58) mentioning so called 

representation error. The similar topic has been treated in some more recent papers, e.g. 

(Featherstone and Kirby, 2000) and (Goos et al., 2003) focused on Australian territory, 

where interestingly different results and conclusions have been obtained comparing with 

those obtained in our test.  

 

The two ways of mean free-air gravity anomaly determination 

 

Let us assume that we have gravity measurements (magnitude of the gravity vector) on 

the earth surface g(rt,Ω) at horizontal locations Ω = (ϕ,λ) and let us suppose that these 
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values have been corrected for time dependent effects, such as tides. From these values 

it is easy to compute the point values of free-air gravity anomalies at the same locations 

using the formula (Torge, 1989, Eq. (3.7a)) 

 

( ) ( ) ( ) ( )Ω+Ω−Ω=Ω∆ FA
ett

FA grrgrg δγ ,,, 0 ,  (1) 

 

where g(rt, Ω) is the measured gravity on the topography, γ0(re, Ω) is the normal gravity 

on the reference ellipsoid.  The term δgFA(Ω)  denotes  the free-air reduction of normal 

gravity defined by the following expression 
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where HN stands for normal height. Because of the correlation of free-air anomalies with 

heights, the roughness of the free-air gravity anomalies is similar to the roughness of the 

terrain. Therefore, in the mountains it is not possible to interpolate and average these 

anomalies directly, unless we have really dense gravity mapping (e.g. 10 values per km2) 

which is usually not the case. Thus in order to minimise the interpolation error we have 

to follow one of two possible ways showed in Fig.1.  
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Fig. 1: Two ways of mean free-air gravity anomaly determination. 

 

We can either use  

1) the simple Bouguer gravity anomalies ∆gSB, related to free-air anomalies by the 

following formula (Heiskanen and Moritz, 1967, Eq. (3-18)): 

 

( ) ( ) ( )Ω+Ω∆=Ω∆ BP
t

FASB grgg δ, , (3) 

 

where δgBP denotes the Bouguer plate reduction (ibid., Eq. (3-15)) 

 

( ) ( )Ω−=Ω HGg BP ρπδ 2 ,  (4) 

 

G stands for the Newton gravitation constant and ρ represents the volume density of 

topographical masses. As the second and more laborious choice we can use  

2) the refined Bouguer gravity anomalies ∆gRB, related to free-air anomalies by (ibid., 

Eq. (3-21)) 

 

( ) ( ) ( ) ( )Ω+Ω+Ω∆=Ω∆ TCBP
t

FARB ggrgg δδ, , (5) 

 

which differ from the simple Bouguer anomalies by the point terrain correction δgTC(Ω). 

Both, the simple and the refined Bouguer gravity anomaly fields are smooth enough to 

perform an interpolation and averaging operations over the point values within a 

specific geographical cell and obtain the corresponding mean values on a regular grid. 
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Each grid node is located in the centre of the corresponding cell and the value represents 

the mean value for that particular cell.  

Now we can close the loop in Fig.1 by computing the two sets of mean free-air gravity 

anomalies both ways. We expected both sets to be similar, meaning that the differences 

between them should be randomly distributed around zero and their values should be 

within a reasonable confidence interval. We decided to check this numerically in one 

part of Rocky Mountains. 

 

The Rocky Mountains Experiment 

 

The biggest problem in the geoid determination is encountered in the mountains. 

Therefore the area in the Rocky Mountains, delimited by parallels 40°N and 66°N, and 

meridians 210°E and 252°E, was chosen for our test. For this region we obtained the 

surface and marine gravity data from Geodetic Survey Division, Natural Resources 

Canada, in Ottawa. In Fig.2 we show the distribution of more than 300,000 gravity 

points over the area. The average number of gravity points per one degree squared is 

about 300 and the average distance between gravity stations is approximately 6 km. 

Several digital elevation models (DEM) were used for the calculation of the terrain 

effect: the Canadian Digital Elevation Data (CDED) 3″ by 3″ in Alberta, Yukon and 

Northwest Territories; the provincial DEM 1″ by 1″ in British Columbia; NGSDEM99 

1″ by 1″ in the US part of the area and 30″ by 30″ mean heights for Alaska. All 

mentioned data sets are compatible in sense of vertical datum. The topography of the 

region of interest can be seen in Fig.3.  
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Fig. 2: Distribution of the measured gravity points. 

 

The values of free-air gravity anomalies obtained at the observation points from Eq. (1) 

served as the input into our numerical test. Following the two ways shown in Fig. 1, two 

sets of mean free-air gravity anomalies were obtained. The differences between the two 

sets were computed and the results are displayed in Fig.4. Minimum, maximum and 

mean differences are stored in Tab.1. In order to obtain the approximate effect of these 

differences on the geoid, the Stokes integration within a 6° spherical cap was performed. 

The effect on the geoid, after cutting out the edge affected areas, is shown in Fig.5. 
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Figure 3: Topography in the region of interest. 
 

 

Minimum, maximum and mean values are shown in Tab.1. The effect appears to be 

surprisingly systematic and quite large. It demonstrates that computing mean free-air 

gravity anomalies via refined Bouguer anomalies instead of simple Bouguer anomalies 

in the Rocky Mountains, we obtain a geoid model which is, in some places, higher by 

more then 2 meters.  

 

 
File FA

g1∆  
FA

g 2∆  
FAFA

gg 12 ∆−∆
 

N∆  

Units mgal mgal mgal m 
Area A A A B 
Min. -167.68 -167.72 -35.64 -0.25 
Max. 328.12 296.44 35.35 2.29 
Mean 2.20 2.81 0.61 0.47 
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Tab. 1: Basic statistics of the investigated files. 
FA

g1∆  are the mean free-air gravity 

anomalies 5′ by 5′ computed via simple Bouguer graviy anomalies, 
FA

g 2∆  are the mean 

free-air gravity anomalies 5′ by 5′ computed via refined Bouguer graviy anomalies and 

N∆  are the differences between the meen free-air gravity anomalies after Stokes’s 

integration up to 6° spherical radius that gives us an approximate effect on the geoid. 

Area A is bounded by parallels and meridians: 40°N < ϕ < 66°N, 210°E < λ < 252°E. 

Area B is smaller to avoid the edge effect: 46°N < ϕ < 60°N, 222°E < λ < 246°E. 

 

 
 
Figure 4: Differences between two sets of the free-air gravity anomalies. 
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Figure 5: Effect of the free-air gravity anomalies difference on the geoid. 
 
 

The basic questions now arise: What is the origin of this significant systematic influence 

and which one of the two discussed approaches is more rigorous. In order to find the 

answer to these questions we focused more closely on one 6° by 6° sub-area delimited 

by parallels 52°N and 58°N, and meridians 232°E and 238°E. The topography of this 

sub-area is plotted in Fig.6. The quantity we wish to discuss in particular, is the terrain 

correction. First, the terrain correction was computed at each and every one of the 3201 

observation points and then the same quantity was computed on a regular geographic 

grid of 30″ by 30″ in the whole sub-area (518400 grid nodes). In both cases, the terrain 

correction was computed using the spherical model (Martinec and Vaní�ek, 1994), 

integrated within a 3° spherical cap by means of the analytical expression for the 

integration kernel derived by (Martinec, 1998).  

 



 11 

 

 
 

Figure 6: Topography in the 6°°°° ×××× 6°°°° sub-area. 
 

The simple averages of terrain correction for 1° by 1° cells were evaluated from the 

values computed at the observation points as well as from the values computed on a 

regular grid. This was done for all 36 cells of 1° by 1° as it is shown in Fig.7. 

Interestingly, the average terrain corrections obtained from observation points are larger 

in every 1° by 1o cell with the exception of 3 relatively flat cells. Clearly, the average 
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terrain correction obtained from the regular grid is more realistic because it is obtained 

from more then 100 times larger amount of uniformly distributed points.  
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Figure 7: Average terrain corrections for 1°°°°××××1°°°° cells. Each cell contain the 
following numbers (from the top): number of the observed gravity points, average 

terrain correction computed at the observed gravity points in mgal, average 
terrain correction computed at the 14400 regularly distributed points in mgal. 
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After noting these results, a more detailed analysis of the location of the observation 

points was done. One example of such detailed analysis is shown in Fig.8, where one 

particular observation point is located at the local terrain maximum; it is shown together 

with the terrain correction for the area. It can be seen that at the observation point the 

terrain correction grows up very steeply. Other gravity observation points display similar 

characteristics. 

 

 
 

Figure 8: Topography (left) and terrain correction (right) in the vicinity of 
a particular observed gravity point. Units are m for topography and mgal for 

terrain correction. 
 

In order to show the dependence between the elevation and the terrain correction 

mathematically, let us focus on a radial derivative within the radial integral of the 

Newton kernel ( ) ( ) rd
rrL

r
rrL

r
′

′
′

=′ � ′ ,,
,,

~ 2

ψ
ψ  as it is evaluated analytically by Martinec 

(1998, Eq. (3.54)) 

 



 14 

( ) ( ) ( )[ ] ( )

( ) ( ).,,cosln1cos3

,,cos61cos3
,,

~

2

1222
1

rrLrrr

rrLrrrr
r

rrL

′+−′−+

+′′−++′=
∂

′∂ −
−

ψψψ

ψψψψ
  (6) 

 

In Eq. (6) r and r' are the radial distances of the computation point and integration 

element respectively, ψ is their spherical and L is their spatial distance. Eq. (6) 

represents the integration kernel for the evaluation of the effect of the topographical 

masses, i.e., masses between the geoid and earth surface, on gravity. Provided that the 

computation point is on the earth surface and after subtracting the effect of the spherical 

Bouguer shell we get the integration kernel for the spherical terrain correction in the 

following form 
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where t=cosψ. Using Eq. (7) we can investigate the correlation between the terrain 

correction and the elevation difference ∆H=H'-H, where H'=r'-R, H=r-R and R is the 

radius of the sphere used in the spherical model. Figs. 9 and 10 show such a correlation 

for an integration element located at the spherical distance ψ=0.01°  (approximately 

1km) and ψ=0.001°  (approximately 0.1km) respectively for realistic range of ∆H. As it 
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can be seen from the graphs (Figs. 9 and 10), in the first approximation, the integration 

kernel K is a quadratic function of height.  

 

K/r 
 
 
 
 
 
 
 
 
 
∆H (m) 

 
 

Figure 9: Integration kernel for terrain correction K(r,ψψψψ,r′′′′)/r for ψψψψ = 0.01°°°° 
(≈≈≈≈1100m), r = 6378200m and r′′′′∈∈∈∈<6378200m,6378700m>, where ∆∆∆∆H = r′′′′ - r. 
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Figure 10: Integration kernel for terrain correction K(r,ψψψψ,r′′′′)/r for ψψψψ = 0.001°°°° (≈≈≈≈ 

110m), r = 6378200m and r′′′′∈∈∈∈<6378200m,6378250m>, where ∆∆∆∆H = r′′′′ - r. 
 

In fact if we have more points that behave as the one shown in Fig.8, the simple 

Bouguer gravity anomaly becomes systematically affected and it is not possible to 

interpolate with any reasonable accuracy. Our investigation in the Rocky Mountains, 
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especially in the area shown in Fig.7, confirmed that a significant number of observed 

gravity points in the Rocky Mountains are located at or in the vicinity of the local terrain 

maxima. As a consequence, the mean free-air anomalies as well as the geoid model 

computed via simple Bouguer gravity anomalies are systematically affected for more 

then 20 mGals and 2 meters respectively, as it is shown in Figs.4 and 5.  

 

Conclusions 

 

The answer to the first question we posed above is: The origin of the systematic 

discrepancy between the two sets of mean free-air gravity anomalies is in the location of 

the observation points. Too many gravity points in the Rocky Mountains are located at 

the local terrain tops, where the terrain correction is also extremely large. Therefore the 

simple Bouguer gravity anomalies computed at these points are too biased for a 

meaningful interpolation and averaging. The more rigorous and correct way of the 

compilation of the mean free-air gravity anomalies is via refined Bouguer gravity 

anomalies. This, of course, is more time consuming because it requires the evaluation of 

the terrain correction both at the observation points and, after the interpolation and 

averaging, also on chosen regular grid in order to obtain the mean terrain correction with 

sufficient accuracy.  
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