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Abstract. The solutions of four ellipsoidal approxima-
tions for the gravimetric geoid are reviewed: those of
Molodenskii et al., Moritz, Martinec and Grafarend,
and Fei and Sideris. The numerical results from
synthetic tests indicate that Martinec and Grafarend’s
solution is the most accurate, while the other three
solutions contain an approximation error which is
characterized by the first-degree surface spherical har-
monic. Furthermore, the first 20 degrees of the geopo-
tential harmonic series contribute approximately 90% of
the ellipsoidal correction. The determination of a geoid
model from the generalized Stokes scheme can accu-
rately account for the ellipsoidal effect to overcome the
first-degree surface spherical harmonic error regardless
of the solution used.

Keywords: Ellipsoidal correction – Geoid – Geodetic
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1 Introduction

The geoid can be determined from the disturbing
potential, denoted by T , that is defined as the difference
between the Earth’s gravity potential W and the normal
potential U at a point ðr;XÞ in space

T ðr;XÞ ¼ W ðr;XÞ � Uðr;XÞ ð1Þ

where X is the solid angle and r is the geocentric radius
of the point. If the disturbing potential T is known on the
geoid, the geoid height N can be determined by Bruns’
formula [Heiskanen and Moritz 1967, Eq. (2–144)]

N ¼ T ðrG;XÞ
cðrE;XÞ ð2Þ

where rG is the geocentric radius of a point on the geoid,
c is normal gravity on the ellipsoid and rE is the
geocentric radius of the corresponding point on the
reference ellipsoid. Grafarend et al. (1999) give a
discussion on Bruns’ formula.
If the disturbing potential T is harmonic above the

geoid, it can be determined by solving the third
boundary value problem that can be prescribed as fol-
lows. Find the disturbing potential T by solving the
Laplace differential equation

DT ðr;XÞ ¼ 0 ð3Þ

subject to the boundary condition (Heiskanen and
Moritz 1967)

oT ðr;XÞ
oh

� T ðr;XÞ
cðrE;XÞ

ocðr;XÞ
oh

� �
G
¼ �DgðrG;XÞ þ �

T ðr;XÞ ! 0 for r ! 1 ð4Þ

where h is the normal to the ellipsoidal surface E, and
DgðrG;XÞ is the gravity anomaly on the geoid, defined as
the difference between the normal gravity at a point Q
on the ellipsoid and the actual gravity at the corre-
sponding point P on the geoid. The point P is on the
normal line to the ellipsoid from Q

Dg ¼ gP � cQ ð5Þ

In Eq. (4), the term � accounts for the difference of the
derivative of the gravity potential W with respect to the
normal to the ellipsoid and the plumb line. It can be
expressed as

� ¼ oW
oh

� oW
oH

ð6Þ

where H is normal to the geoid. Within the precision
adopted in this paper, this term can be neglected for a
Somigliana–Pizzetti reference field (Cruz 1986; Moritz
1990).
Stokes’ integral (Stokes 1849) represents a spherical

approximation to the solution of the disturbing po-
tential T on the geoid, introducing a relative geoidCorrespondence to: J. Huang
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error of the order of the flattening (f ¼: 3� 10�3) which
causes an absolute geoid error of the order of at most
0:2 m globally. In an effort to improve the accuracy of
the geoid result from Stokes’ integral, several deriva-
tions have been attempted based on ellipsoidal ap-
proximation (see e.g. Sagrebin 1956; Molodenskii et al.
1962; Bjerhammar 1966; Koch 1968; Moritz 1974;
Rapp 1981; Zhu 1981; Martinec and Grafarend 1997;
Fei and Sideris 2000, 2001; Brovar et al. 2001; Heck
and Seitz submitted; Sjöberg submitted). These deri-
vations split the ellipsoidal solution into two parts: the
spherical approximation solution and the ellipsoidal
correction. The ellipsoidal correction may reduce the
relative error of Stokes’ spherical solution to the order
of the square of the flattening, which does not exceed
2 mm in absolute value (Martinec and Grafarend
1997).
One question naturally arises: To what extent are

these solutions equivalent and, if not, which one is best?
In order to answer this question, only four solutions,
namely those derived by Molodenskii et al. (1962),
Moritz (1974), Martinec and Grafarend (1997) and Fei
and Sideris (2000, 2001), are considered due to time
constraints, leaving others for future studies. The choice
of the four methods above is somewhat arbitrary,
without a sound justification. Interested readers are en-
couraged to study other methods that provide profound
insights into the geodetic boundary value problem
(GBVP) from different aspects. First, the four solutions
are theoretically reviewed. Second, a synthetic approach
is adopted to compare them numerically. Subsequently,
numerical results for the ellipsoidal correction over
North America are presented. Finally, a procedure for
the practical evaluation of the ellipsoidal correction is
proposed.

2 Review

2.1 Molodenskii et al. solution

Molodenskii et al. (1962, pp 53–59) start with Green’s
third identity on an ellipsoidal surface E

�2pT ðrE;/; kÞ ¼
Z
E

1

‘

oT ðr;/; kÞ
oh

� T ðr;/; kÞ o

oh
1

‘

� �
dE

ð7Þ

subject to the boundary condition

oT ðr;/; kÞ
oh

� T ðr;/; kÞ
cðr;/; kÞ

ocðr;/; kÞ
oh

� �
E
¼ �DghðrE;/; kÞ

ð8Þ

where / and k are the geocentric latitude and longitude,
respectively, and ‘ is the distance between the compu-
tation point on the surface E and the integration element
dE on this surface.
The solution for the disturbing potential with a rel-

ative error of the order of e
04 can be expressed as

T ðrE;/; kÞ ¼ T0ð/; kÞ þ e02
�
1

4
T0ð/; kÞ sin2 / þ vð/; kÞ

þ 3

8p

Z
X0

�
vð/0; k0Þ � 1

2
aDghðrE;/0; k0Þ

� sin2 /0
�
SðwÞdX0

�
ð9Þ

where

T0ð/; kÞ ¼
a
4p

Z
X0

DghðrE;/0; k0ÞSðwÞdX0 ð10Þ

vð/; kÞ ¼ 1

4p

Z
X0

T0ð/0; k0Þ 1� 5

2
sin2 /0 þ 2m

e02

� �
csc

w
2
dX0

� 1

4p

Z
X0

T0ð/0; k0Þðsin/0 � sin/Þ2

8 sin3 w
2

dX0 ð11Þ

SðwÞ is the spherical Stokes function, e0 ½e02 ¼ ða2�
b2Þ=b2� is the second numerical eccentricity of the
reference ellipsoid, dX0 ¼ cos/0 d/0 dk0, a is the semi-
major axis of the meridian ellipse, and w is the
angular distance between the geocentric directions of
the computation point and the integration element
dX0.

2.2 Moritz solution

Moritz (1974) defines a transformation

T0ðh; kÞ ¼ T ðrE; h; kÞ ð12Þ

where T0ðh; kÞ is a surface spherical harmonic represen-
tation of T ðrE; h; kÞ and h is the geodetic co-latitude (i.e.
90� U; U is the geodetic latitude). T0ðh; kÞ can be
determined through mapping of DghðrE; h; kÞ onto
Dg0ðh; kÞ that generates T0ðh; kÞ on the sphere of radius
R, followed by the spherical Stokes integration over
Dg0ðh; kÞ. The solution for the geoid height is expressed as

T0ðh; kÞ ¼
R
4p

Z
r0

SðwÞDg0ðh; kÞdr0 ð13Þ

where

Dg0ðh; kÞ ¼ DghðrE; h; kÞ � e2Dg1ðh; kÞ ð14Þ

dr0 ¼ sin h0 dh0 dk0, e ½e2 ¼ ða2 � b2Þ=a2� is the first nu-
merical eccentricity of the reference ellipsoid, and R is
the mean radius of the Earth. Note that the term N 1

defined by Moritz (1974) is not present here, because in
Eq. (2) the normal gravity at the computation point is
used rather than the mean normal gravity on the
ellipsoid.
Stokes’ integral over Dg1 in Eq. (13) can be directly

evaluated by the spherical harmonic expansion
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R
4pc

Z
r

Dg1ðh0; k0ÞSðwÞdr

¼ R
X1
n¼2

1

n� 1

Xn

m¼0
Gnm �RRnmðh; kÞ þ Hnm

�SSnmðh; kÞ½ �

ð15Þ

with

Gnm ¼ jnmunmcn�2;m þ knmcnm þ lnmvnmcnþ2;m
Hnm ¼ jnmunmdn�2;m þ knmdnm þ lnmvnmdnþ2;m

ð16Þ

and

jnm ¼ � 3ðn� 3Þðn� m� 1Þðn� mÞ
2ð2n� 3Þð2n� 1Þ

knm ¼ n3 � 3m2n� 9n2 � 6m2 � 10nþ 9

3ð2nþ 3Þð2n� 1Þ

lnm ¼ �ð3nþ 5Þðnþ mþ 2Þðnþ mþ 1Þ
2ð2nþ 5Þð2nþ 3Þ

unm ¼ ð2n� 3Þðnþ jmj � 1Þðnþ jmjÞ
ð2nþ 1Þðn� jmj � 1Þðn� jmjÞ

� �1
2

vnm ¼ ð2nþ 5Þðn� jmj þ 1Þðn� jmj þ 2Þ
ð2nþ 1Þðnþ jmj þ 1Þðnþ jmj þ 2Þ

� �1
2

ð17Þ

cnm and dnm are the fully normalized ellipsoidal geopo-
tential coefficients. In Moritz’ derivation, the coefficients
cnm and dnm are not fully normalized, so his expressions
for coefficients Gnm and Hnm differ from the expressions
given here. �RRnm and �SSnm are the fully normalized
spherical harmonics. In the actual computation, the
spherical geopotential coefficients can be used to ap-
proximate the ellipsoidal geopotential coefficients cnm
and dnm to evaluate the ellipsoidal correction term in Eq.
(14) accurate to Oðe4Þ, since the ellipsoidal corrections to
the spherical geopotential coefficients are of order Oðe2Þ.

2.3 Martinec and Grafarend solution

Martinec and Grafarend (1997) formulate the ellipsoidal
correction based on the ellipsoidal harmonic solution for
the Laplace equation [Heiskanen and Moritz 1967, Eq.
(1-111b)]

T ðu; #; kÞ ¼
X1
n¼0

Xn

m¼0

Qnm i u
E

� �
Qnm i b

E
� � anmPnmðcos#Þ cosmk½

þbnmPnmðcos#Þ sinmk� ð18Þ

where # is the reduced co-latitude, the triplet ðu; #; kÞ
forms the ellipsoidal coordinate system, Pnm is Legen-
dre’s function of the first kind, Qnm is Legendre’s
function of the second kind, b is the semi-minor axis
of the meridian ellipse, E (E2 ¼ a2 � b2) is the linear
eccentricity, and anm and bnm are the geopotential
coefficients of the ellipsoidal harmonics. The boundary
values are defined as

oT ðu; #; kÞ
ou

þ 2

u
T ðu; #; kÞ

� �
E
¼ �Dguðb; #; kÞ ð19Þ

Note that Dgu in Eq. (19) differs from the gravity
anomaly Dgh in Eq. (8). Grafarend (pers. commun.
2002) reminds us that the exact formula is in Grafarend
et al. (1999, Table 4, Model 3: SOM-PI). The solution
for the ellipsoidal geodetic boundary value problem
can be written as [Martinec and Grafarend 1997,
Eq. (12)]

T ðb; #; kÞ ¼ b
4p

Z
C0

Dguðb; #0; k0ÞSEð#; k;#0; k0ÞdC0 ð20Þ

where dC0 ¼ sin#0 d#0 dk0, SE denotes the Stokes func-
tion for the ellipsoidal approximation in the form of a
spherical harmonic product series. By neglecting the
terms of powers greater than e2, SE is approximated by
the spherical Stokes function corrected by an ellipsoidal
correction term

SEð#; k;#0; k0Þ¼: SðwÞ � e2Sellð#; k;#0; k0Þ ð21Þ

Sell [Martinec and Grafarend 1997, Eq. (50)] is the
kernel for the ellipsoidal correction. Note that the
boundary values Dgu in Martinec and Grafarend’s
formula are different from the gravity anomaly Dgh.
The following equation was derived to transform Dgh to
Dgu:

Dguðb; #; kÞ ¼ DghðrE; #; kÞ þ �T þ �u þ Oðe4Þ ð22Þ

where

�T ¼ 1

2
e2 sin2 #

oT
or

				
E

ð23Þ

�u ¼ �e2 cos 2#
T
b

				
E

ð24Þ

The derivations of these two terms are shown in
Appendix A. Heck (1991) gave similar expressions to
these two terms. In order to evaluate these two
correction terms, we need to know the disturbing
potential T that is to be determined. Theoretically, they
can be evaluated iteratively, i.e. the spherical approxi-
mation of T is used in the first iteration, then the
improved T is accordingly used in subsequent iterations.
In practice, the spherical approximation of T is good
enough to give accurate estimation of these two terms
with an error of order Oðe4Þ.

2.4 Fei and Sideris solution

Fei and Sideris’ (2000, 2001) derivation follows a similar
approach to Molodenskii’s, but uses the Pizzetti kernel
function Sðr;w; r0Þ [Moritz 1980, Eq. (44–11)] in place of
the Newtonian kernel ‘�1ðr;w; r0Þ in Green’s second
identity. The solution for the geoid height is written as

Nð/; kÞ ¼ N0ð/; kÞ þ e2N1ð/; kÞ ð25Þ
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where

N0ð/; kÞ ¼
R

4pcðrE;/; kÞ

Z
X0

SðwÞDghðrE;/0; k0ÞdX0 ð26Þ

N1ð/; kÞ ¼ N11ð/; kÞ þ
1

4p

Z
X0

N0ð/0; k0Þf0ð/; k;/0; k0ÞdX0

ð27Þ

where N11 is defined in Eq. (2.44) and f0 is defined in
Eq. (2.31) of Fei and Sideris (2001). The formulae of
Fei and Sideris (2000) had mistakes (Huang et al.
2000). After we pointed out the errors, the formulae
were re-derived and corrected (see Fei and Sideris
2001).

2.5 Theoretical contrast

From the above formulae, two different definitions of
the boundary condition have been seen, even though the
same quantity T is sought. Martinec and Grafarend
(1997) prescribe a purely mathematical boundary con-
dition [Eq. (19)] on the ellipsoidal surface E without a
direct physical meaning, while the other methods
invariably define the boundary condition by Eq. (8),
which approximately represents the gravity anomaly on
the geoid.
In the derivation of the ellipsoidal correction terms,

the disturbing potential (or the geoid height) is mathe-
matically expressed as a series expansion with respect to
a small parameter �. This parameter can be either the
square of the first numerical eccentricity e2 or the square
of the second numerical eccentricity e02.

T ¼ T0 þ �T ð1Þ þ Oð�2Þ ð28Þ

in which the first term represents the spherical approx-
imation to the disturbing potential T , and the second
term accounts for the ‘ellipsoidal correction’ that leads
to a solution of T accurate to Oðe4Þ. When 1-cm geoid
accuracy is sought, terms with squares and higher
powers of � can be safely neglected so that Eq. (28)
reduces to

T ¼: T0 þ �T ð1Þ ð29Þ

Even though all derivations conform to Eq. (29), their
mathematical approaches and final expressions are
different. The ellipsoidal correction is applied only to
the boundary values in Moritz’ approach (Moritz
1974), while it is applied to both the kernel and the
boundary values in Martinec and Grafarend’s ap-
proach (Martinec and Grafarend 1997). In the cases of
the Molodenskii et al. (1962) and Fei and Sideris
(2000, 2001) methods, the ellipsoidal correction terms
are expressed as integral functions of the spherical
approximation of the disturbing potential T and the
boundary values. Both methods are based on Green’s
identity.

Three coordinate systems were used in these deriva-
tions. Molodenskii et al. (1962) and Fei and Sideris
(2000, 2001) choose the geocentric latitude / and lon-
gitude k, while Moritz refers to the geodetic co-latitude h
and longitude k. Martinec and Grafarend adopt the el-
liptical coordinate system (u, #, k) for convenience in
their derivation.
As far as the mathematical complexity is concerned,

Moritz’ method provides the simplest solution while that
of Martinec and Grafarend represents the most complex
one.
It should be noted that the ellipsoidal correction is a

relative quantity dependent on how the spherical solu-
tion is defined. By observing the four methods above, it
can be found that they formulate the spherical solution
differently; therefore, the ellipsoidal corrections are not
directly comparable. We can only compare the complete
geoid solutions (i.e. the spherical solution plus the
ellipsoidal correction) arising from these methods in
order to be able to verify their equivalence.

3 Numerical comparisons

3.1 Synthetic data

One experimental approach regarding the evaluation of
accuracy for the ellipsoidal solution is the synthetic test,
for which a synthetic gravity model is required to allow
us to generate synthetic input and output. In the
determination of the geoid on the ellipsoidal boundary,
the input is the gravity anomaly on the ellipsoidal
surface, while the output is the geoid height (or the
height anomaly). If a solution is exact, it should give
exactly the same result as the synthetic geoid height
when the synthetic gravity anomaly is used for evalua-
tion of the solution. Because of the presence of
numerical errors such as round-off errors, sampling
errors and approximation errors, the geoid result from
the computation may conform to the synthetic geoid
only within an acceptable error interval.
The synthetic geoid (or the height anomaly) can be

generated on the ellipsoid by

NðrE;XÞ ¼ GM
acE

X1
n¼0

a
rE

� �nþ1 Xn

m¼�n

�CCnm �YY nmðXÞ ð30Þ

where X is the full solid angle indicating the pair (/, k),
GM is the geocentric gravitational constant, �CCnm are the
fully normalized spherical geopotential coefficients that
have been reduced by the even zonal harmonic coeffi-
cients of the (Somiliana–Pizzetti) reference field. In
addition

�YY nmðXÞ ¼ �PPnjmjðsin/Þ cosmk if m � 0
sin jmjk if m < 0



ð31Þ

where �PPnjmj are the fully normalized associated Legendre
functions of the first kind; n and m are the degree and
order of harmonic series. It is worth pointing out that
Jekeli (1981) developed transformation formulae between
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the spherical and the ellipsoidal coefficients (Gleason
1988). The ellipsoidal coefficients can therefore be used
to produce the synthetic geoid on the ellipsoid in terms
of ellipsoidal harmonic series equivalently.
The synthetic gravity anomaly can be evaluated on

the ellipsoid by

DghðrE;XÞ ¼ DgrðrE;XÞ � �hðrE;XÞ � �cðrE;XÞ þ Oðe4Þ
ð32Þ

where

DghðrE;XÞ ¼ � oT ðr;XÞ
oh

þ 1

c
oc
oh

T ðr;XÞ
� �

r¼rE

ð33Þ

DgrðrE;XÞ ¼ � oT ðr;XÞ
or

� 2

r
T ðr;XÞ

� �
r¼rE

¼ GM
a2

X1
n¼0

ðn� 1Þ a
rE

� �nþ2 Xn

m¼�n

�CCnm �YY nmðXÞ

ð34Þ

The two ellipsoidal correction terms in Eq. (32) were
derived by Jekeli (1981), and simplified by Cruz (1986)
to give

�hðr;XÞ ¼ e2 sin/ cos/
oT ðr;XÞ

ro/
ð35Þ

and

�cðr;XÞ ¼ e2ð2� 3 sin2 /Þ T ðr;XÞ
r

ð36Þ

Equations (35) and (36) are valid for any point above
the ellipsoid. Here, the synthetic gravity anomaly on the
ellipsoid is needed, thus the two ellipsoidal terms must
be evaluated on the ellipsoid as well. According to
Moritz (1980, pp 39–46)

sin/ cos/
oYnmðXÞ

o/
¼ fnmYnþ2;mðXÞ þ gnmYnmðXÞ

þ hnmYn�2;mðXÞ ð37Þ

where Ynm are spherical harmonics

fnm ¼ � nðn� jmj þ 1Þðn� jmj þ 2Þ
ð2nþ 1Þð2nþ 3Þ ð38Þ

gnm ¼ n2 � 3m2 þ n
ð2nþ 3Þð2n� 1Þ ð39Þ

hnm ¼ ðnþ 1Þðnþ jmjÞðnþ jmj � 1Þ
ð2nþ 1Þð2n� 1Þ ð40Þ

Considering Cruz [1986, Eq. (5.10)], Eq. (35) can be
written on the ellipsoid as

�hðrE;XÞ ¼ e2
GM
a2

X1
n¼0

a
rE

� �nþ2 Xn

m¼�n

�CCnmFnmðXÞ ð41Þ

where

FnmðXÞ ¼ fnmunþ2;m �YY nþ2;mðXÞ þ gnm �YY nmðXÞ
þ hnmvn�2;m �YY n�2;mðXÞ ð42Þ

Equation (36) can be directly written on the ellipsoid as

�cðrE;XÞ ¼ e2ð2� 3 sin2 /ÞGM
a2

X1
n¼0

a
rE

� �nþ2

�
Xn

m¼�n

�CCnm �YY nmðXÞ ð43Þ

The term �h is called the ellipsoidal correction to the
gravity disturbance, and �c is called the ellipsoidal
correction to the spherical approximation by Vanı́ček
et al. (1999).
A global geopotential model can be used to derive the

synthetic data sets (see e.g. Novák et al. 2000). Here,
EGM96 (Lemoine et al. 1998) was adopted in generating
the synthetic data sets. The synthetic data were produced
on a grid of 300 � 300 covering the entire globe from the
first 20 degrees of EGM96. These data allow us to per-
form global integration in a reasonable time. A spherical
case test showed that when the 300 � 300 grid and the first
20 degrees of EGM96 were used, the numerical errors on
the derived geoid ranged from about�1 to 1 cm globally.
In the test, the degree-banded Stokes kernel was used to
eliminate the aliasing error (�3 to 3 cm) in the numerical
Stokes integration (Huang et al. 2001). This numerical
error range represents the integration noise level.
Figure 1 illustrates the procedure of the synthetic test.

3.2 Numerical results and discussion

Figures 2 and 3 show the ellipsoidal corrections and the
differences between the synthetic geoid and the one
computed from each method, respectively. It can be
found that the ellipsoidal corrections are highly corre-
lated to the global geoid undulations even though they
show significantly different detailed features from one
another. Due to the differences in the mathematical
definitions for the ‘spherical Stokes’ term and the

Fig. 1. The synthetic test procedure
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ellipsoidal correction between the four methods, the
correction magnitude varies significantly from method
to method, which is to be expected. Table 1 summarizes
ellipsoidal correction results from the four methods.
Comparing the differences in Table 2, it can be found

that Martinec and Grafarend’s solution demonstrates
the best conformity to the synthetic geoid with an ac-
ceptable level of numerical errors, while the other three
solutions contain errors beyond the integration noise
range (�1, 1 cm).

By observing Fig. 3 and Table 2, it can be found that,
excluding Martinec and Grafarend’s method, the other
three methods give ellipsoidal solutions which differ
from the synthetic geoid by the first-degree components
of the surface spherical harmonics based on their spatial
patterns. In other words, if the ellipsoidal solution of
T ðrE;XÞ for each solution is transformed into the surface
spherical harmonics as follows:

Fig. 2a–d. The ellipsoidal corrections from different solutions. Con-
tour interval: 0.1 m (Hammer equal-area projection). a Molodenskii
et al.; b Moritz; c Martinec and Grafarend; d Fei and Sideris

Fig. 3a–d. The differences between the synthetic geoid and the geoid
computed from the synthetic gravity anomaly for each method.
Contour interval: 0.01 m (Hammer equal-area projection).
a Molodenskii et al.; b Moritz; c Martinec and Grafarend; d Fei
and Sideris
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T ðrE;XÞ ¼ T sðXÞ ¼
X1
n¼0

TnðXÞ ð44Þ

the four solutions give different T1, while only the T1
term for Martinec and Grafarend’s solution conforms to
the synthetic field. The T1 can be explicitly expressed as
(see e.g. Heiskanen and Moritz 1967)

T1ðXÞ ¼ y1 sin h cos k þ y2 sin h sin k þ y3 cos h ð45Þ

which has a global zero mean and a dipole pattern
similar to ones shown in Fig. 3a, b, d. Note that the T1
term in Eq. (44) does not have a direct physical meaning,
and y1, y2 and y3 in Eq. (45) should not be interpreted as
the rectangular coordinate differences between the
Earth’s centre of gravity and the centre of the reference
ellipsoid. The solid disturbing potential T ðr;XÞ on any
star-shaped surface can be represented by surface
spherical harmonics in which the first-degree term is
usually not equal to zero, even though the centre of the
Earth’s gravity coincides with the centre of the reference
ellipsoid. A more through discussion from a theoretical
point of view is given in Heck and Seitz (submitted).
In order to verify the ‘observed’ first-degree differ-

ences, or more precisely errors, the first-degree surface
spherical harmonic term is excluded from the synthetic
data. In Eq. (30), by taking the maximum degree as 20, it
can be written as

a
rE

� �nþ1
¼: 1þ e2

nþ 1

2
sin2 / ð46Þ

Then, Eq. (30) reduces to

NðrE;XÞ ¼ GM
acE

X20
n¼0

Xn

m¼�n

�CCnm �YY nmðXÞ þ �N ð47Þ

where

�N ¼ e2
GM
acE

X20
n¼0

nþ 1

2

Xn

m¼�n

�CCnm �YY nmðXÞ sin2 / ð48Þ

According to the relation [Moritz 1980, Eq. (39–76)]

Ynm sin
2 / ¼ anmYnþ2;m þ bnmYnm þ cnmYn�2;m ð49Þ

and considering Cruz [1986, Eq. (5.10)], Eq. (48) can be
written as

�N ¼ e2
GM
acE

X20
n¼0

Xn

m¼�n

Pnm �YY nmðXÞ ð50Þ

where

Pnm ¼ n� 1

2
an�2;munm

�CCn�2;m þ nþ 1

2
bnm

�CCnm

þ nþ 3

2
cnþ2;mvnm �CCnþ2;m ð51Þ

Equations (47) and (50) represent the surface spherical
harmonic expression of NðrE;XÞ for the first 20 degrees.
If we let �CCnm ¼ 0 for n < 4 and m < 4 in Eq. (30), the
first-degree term of the surface spherical harmonic
expansion for NðrE;XÞ is excluded. The same method
can be used to exclude the first-degree surface spherical
harmonics for DgðrE;XÞ.
Table 3 shows the test results from degrees 4 to 20.

They suggest that the four methods give the same result
if the first-degree surface spherical harmonic compo-
nents are removed from the synthetic data. Therefore, it
can be concluded that only Martinec and Grafarend’s
method gives a complete ellipsoidal approximation
solution, while the other three solutions contain
approximation and omission errors that manifest in the
first-degree term from their derivations.
Table 4 shows that the contribution of degree 21 to

degree 360 of EGM96 to the geoid only accounts for
about 10% of the total ellipsoidal correction based on
the EGM96 model globally.

4 The method for ellipsoidal correction

4.1 The correctional method

The above numerical analysis has shown that the
dominant components of the ellipsoidal correction arise

Table 2. Numerical statistics of the differences between the syn-
thetic geoid and the computed geoid from each method. The syn-
thetic geoid and gravity anomaly were generated from the first 20
degrees of EGM96. Unit: m

Method Min Max Mean Standard
deviation

RMS

Molodenskii )0.132 0.128 0.000 0.071 0.071
Moritz )0.082 0.079 0.000 0.042 0.042
Martinec and
Grafarend

)0.013 0.010 0.000 0.004 0.004

Fei and Sideris )0.057 0.062 0.000 0.031 0.031

Table 1. Numerical statistics of the ellipsoidal corrections for the
four methods. The input synthetic gravity anomaly was generated
from the first 20 degrees of EGM96. Unit: m

Method Min Max Mean Standard
deviation

RMS

Molodenskii )0.555 0.461 0.008 0.146 0.146
Moritz )0.525 0.384 )0.011 0.177 0.177
Martinec and
Grafarend

)1.101 0.818 )0.005 0.298 0.298

Fei and Sideris )0.635 0.486 0.007 0.159 0.159

Table 3. Numerical statistics of the differences between the syn-
thetic geoid and the computed geoid from each method. The syn-
thetic geoid and gravity anomaly were generated by using the
coefficients of degrees 4–20 of EGM96. Unit: m

Method Min Max Mean Standard
deviation

RMS

Molodenskii )0.004 0.007 0.000 0.001 0.001
Moritz )0.005 0.006 0.000 0.001 0.001
Martinec and
Grafarend

)0.003 0.007 0.000 0.001 0.001

Fei and Sideris )0.004 0.007 0.000 0.001 0.001
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from the low degrees of the geopotential harmonics. The
terrestrial gravity, which suffers from irregular distribu-
tion, datum biases and height errors, will introduce
considerable biases into the low-degree components
when being used to evaluate the ellipsoidal correction.
The best source available for the low-degree components
is the satellite-only solution, because of its superior
sensitivity to the long-wavelength components of the
geopotential. The generalized Stokes scheme (Vanı́ček
and Sjöberg 1991) has been suggested for the determi-
nation of a precise geoid in order to fully make use of
information from both the terrestrial data and the
satellite solution. Proper use of the generalized Stokes
scheme can reduce the ellipsoidal effect on the geoid to a
few centimetres (Vanı́ček and Sjöberg 1991; Feather-
stone et al. 2001). A straightforward procedure is as
follows.

1. Remove the low degrees of the gravity anomalies
evaluated on the ellipsoid using the satellite-only
geopotential model.

2. Estimate the residual geoid and the residual ellipsoi-
dal correction from the residual gravity anomalies via
the generalized Stokes formula, or modification
thereof and an ellipsoidal correction formula.

3. Restore the low-degree terms of the geoid evaluated
on the ellipsoid from the satellite-only geopotential
model.

With the generalized Stokes scheme, all four solu-
tions will produce the same geoid results because the
way in which the low-degree components of the geoid
are pre-evaluated independent of each method avoids
the ‘first-degree’ error. In the implementation of the el-
lipsoidal correction computation, the coordinate system
must be completely in accordance with the coordinate
system defined with the corresponding method. For ex-
ample, if Molodenskii’s method is used, the gravity
anomaly must be referenced to the geocentric latitude.

4.2 The ellipsoidal correction over North America

Martinec and Grafarend’s solution was chosen to
evaluate the ellipsoidal correction over North America.
This area is delimited by 20�–84� latitude and 170�W–
10�W longitude. The 20 � 20 Helmert gravity anomaly
and EGM96 were used as input data.
Table 5 shows the statistical results of the ellipsoidal

correction over the area. Figures 4–6 show the spatial
distribution of the ellipsoidal correction. Again, it can be
seen that the first 20 degrees of the geopotential model
account for about 90% of the total ellipsoidal correc-
tion. Furthermore, the ellipsoidal correction influences
mainly the long-wavelength components of the geoid,

Table 4. Numerical statistics of the ellipsoidal correction for
Martinec and Grafarend’s method using EGM96. Unit: m

Data Min Max Mean Standard
deviation

RMS

Degrees 21 to 360 )0.124 0.109 0.000 0.011 0.011
Degrees 2 to 360 )1.112 0.859 0.005 0.298 0.298

Table 5. Numerical statistics of the ellipsoidal correction over
North America by using Martinec and Grafarend’s method. Unit:
m

Data Min Max Mean Standard
deviation

RMS

Degrees 2 to 20 )0.532 0.578 )0.021 0.285 0.286
Degrees 21 to 1 )0.077 0.083 0.001 0.015 0.015

Total )0.528 0.603 )0.020 0.286 0.286

Fig. 4. The ellipsoidal correction
to the spherical Stokes solution
geoid over North America from
degree 2 to degree 20 of EGM96
by using Martinec and Grafa-
rend’s method. Contour interval:
0.05 m (Lambert conic conformal
projection)
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and has minor effects on the local features of the geoid.
The residual ellipsoidal correction above degree 360 was
computed from the residual Helmert gravity anomaly
according to Sect. 4.1. It ranges from 1.9 to 2.3 cm over
the area of interest.

5 Summary

In this contribution, four different ellipsoidal solutions
of the Stokes geodetic boundary value problem are
discussed. These solutions are classified into three
categories: Green’s identity method (Molodenskii et al.

1962; Fei and Sideris 2000, 2001), mapping of boundary
values (Moritz 1974) and construction of the ellipsoidal
kernel function (Martinec and Grafarend 1997).
All are expressed as the spherical Stokes integration

plus an ellipsoidal correction of the order of the flat-
tening. Moritz’s method provides the simplest solution
while Martinec and Grafarend give the most complex
one. Since the boundary value condition for Martinec
and Grafarend’s solution is not directly related to ob-
servables, two ellipsoidal correction terms were derived
to make this method practically usable.
Due to differences in definition for the spherical part

and the ellipsoidal corrections, the resulting ellipsoidal

Fig. 6. The total ellipsoidal cor-
rection to the spherical Stokes
geoid over North America by
using Martinec and Grafarend’s
method. Contour interval: 0.05 m
(Lambert conic conformal pro-
jection)

Fig. 5. The ellipsoidal correction
to the spherical Stokes geoid over
North America from the residual
gravity anomaly above degree 20
of EGM96 by using Martinec and
Grafarend’s method. Contour
interval: 0.01 m (Lambert conic
conformal projection)
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correction from one method is not in itself comparable
with the others. Three coordinate systems (geocentric for
Molodenskii et al., Fei and Sideris; geodetic for Moritz;
and elliptical for Martinec and Grafarend) have been
used in the derivations of the ellipsoidal solution for the
convenience of each derivation.
A test procedure was designed to verify their equiv-

alence based on a synthetic field. Numerical tests show
that Martinec and Grafarend’s solution is the most ac-
curate, while the other three solutions are subject to an
approximation error which is related to the first-degree
components of the surface spherical harmonic expansion
for the geoid solution.
The computational results show that 90% of the el-

lipsoidal correction is described by the first 20 degrees of
the geopotential harmonic series. Thus, the proper use
of the generalized Stokes scheme, combining the ter-
restrial data and the satellite solution, can accurately
include the ellipsoidal correction to the geoid in the light
of the superior sensitivity of satellites to the lower-de-
gree components of the geopotential, and also provide
the correct geoid result regardless of which method is
used.
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Appendix A

On the reference ellipsoid, we can write (Heiskanen and
Moritz 1967, Sect. 2–8)

oT
oh

				
E
¼ 1

w0

oT
ou

				
E

ðA1Þ

where

1

w0
¼ a

ða2 sin2 b þ b2 cos2 bÞ
1
2

¼ 1

ð1� e2 cos2 bÞ
1
2

¼ 1þ 1

2
e2 cos2 b þ Oðe4Þ ðA2Þ

b is the reduced latitude. Substituting 1=w0 into
Eq. (A1), we obtain

oT
oh

				
E
¼ oT

ou

				
E
þ 1
2
e2 cos2 b

oT
ou

				
E
þOðe4Þ ðA3Þ

By using the following equation (Heiskan and Moritz
1967, Sect. 2–8):

r ¼ ðu2 þ E2 cos2 bÞ
1
2 ðA4Þ

we obtain

oT
ou

				
E
¼ oT

or
or
ou

� �				
E
¼ 1� 1

2
e2 cos2 b

� �
oT
or

				
E
þOðe4Þ

ðA5Þ

Therefore, Eq. (A1) can be expressed as

oT
oh

				
E
¼ oT

ou

				
E
þ�T þ Oðe4Þ ðA6Þ

where

�T ¼ 1

2
e2 cos2 b

oT
or

				
E

ðA7Þ

According to Jekeli (1981) and Cruz (1986), we have

� T
c
oc
oh

				
E
¼ 2

rE
T þ �c

		
EþOðe4Þ ðA8Þ

Using the following relation on the reference ellipsoid:

1

rE
¼ ð1� e2 cos2 /Þ

1
2

b
ðA9Þ

and considering the following equations:

sin/ ¼ sin b 1� 1

2
e2 cos2 b

� �
þ Oðe4Þ ðA10Þ

cos/ ¼ cos b 1þ 1

2
e2 sin2 b

� �
þ Oðe4Þ ðA11Þ

Eq. (A8) can be written as

� T
c
oc
oh

				
E
¼ 2

b
T þ �u þ Oðe4Þ ðA12Þ

where

�u ¼ e2 cos 2b
T
b

				
E

ðA13Þ

b ¼ p
2
� # ðA14Þ
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