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Abstract. Green's function for the boundary-value
problem of Stokes's type with ellipsoidal corrections in
the boundary condition for anomalous gravity is con-
structed in a closed form. The `spherical-ellipsoidal'
Stokes function describing the e�ect of two ellipsoidal
correcting terms occurring in the boundary condition for
anomalous gravity is expressed in O�e20�-approximation
as a ®nite sum of elementary functions analytically
representing the behaviour of the integration kernel at
the singular point w � 0. We show that the `spherical-
ellipsoidal' Stokes function has only a logarithmic
singularity in the vicinity of its singular point. The
constructed Green function enables us to avoid applying
an iterative approach to solve Stokes's boundary-value
problem with ellipsoidal correction terms involved in the
boundary condition for anomalous gravity. A new
Green-function approach is more convenient from the
numerical point of view since the solution of the
boundary-value problem is determined in one step by
computing a Stokes-type integral. The question of the
convergence of an iterative scheme recommended so far
to solve this boundary-value problem is thus irrelevant.

Key words. Spherical Stokes's function �Ellipsoidal
corrections � Surface spherical harmonics �Addition
theorem

1 Introduction

Prescribing the surface gravity potential, the magnitude
of surface gravity, the volumetric density of topograph-
ical masses and the angular velocity of the Earth's
rotation, the scalar, free boundary-value problem for
determination of the geoid can be formulated. This
problem, sometimes called the problem for gravimetric
determination of the geoid, is non-linear with respect to

the sought gravity potential since the magnitude of
gravity is a non-linear function of generating potential.
The problem may be linearized with respect to a
reference gravity GM=r2, which is quoted as a spherical
approximation in gravity space. The error of this
linearization may reach 5 mgal counted in gravity. To
reduce the linearization error of spherical approxima-
tion to a level of the order of 0.2 mgal, the gravity ®eld
of a level ellipsoid, the so-called Somigliana-Pizzetti
normal gravity, is to be introduced as a reference.
Compared to the spherical approximation, the linearized
boundary condition for anomalous gravity contains two
additional terms, the so-called ellipsoidal corrections
(e.g. Cruz 1985), the magnitudes of which are of the
order of the squared eccentricity of the level ellipsoid.

Having linearized the boundary-value problem for
gravimetric determination of the geoid in gravity space,
the problem is still non-linear (and also free) in geometry
space since the geoid to be determined is a non-linear
function of a sought anomalous potential. Hence, an
additional linearization, this time in geometry space, is
convenient to employ.

Only two geometrical approximations of the geoid in
the boundary condition for anomalous gravity have
been introduced so far, namely the approximation of the
geoid by a sphere or by an ellipsoid of revolution. Both
linearize (and also ®x) the problem with respect to the
geometrical shape of the geoid; they may thus be termed
as the spherical or ellipsoidal approximation in geome-
try space. The spherical approximation of the geoid
produces the relative error of the order of 3� 10ÿ3
(Heiskanen and Moritz 1967, Sect. 2.14) which may
cause an absolute error reaching 0.5 m counted in geo-
idal heights. Approximating the ®gure of the geoid by a
level ellipsoid in boundary condition for the anomalous
gravity reduces the linearization error in geometry space
since the geoid deviates from an ellipsoid of revolution
much less than from a sphere. The ellipsoidal lineari-
zation may cause relative errors of the order of
1:5� 10ÿ5; the absolute error in geoidal heights does not
exceed 2 mm.

Journal of Geodesy (1998) 72: 460 ± 472



Taking into account di�erent types of linearization in
gravity and geometry space, the originally non-linear,
free boundary-value problem for determination of
gravimetric geoid may be approximated by various types
of linearized, ®xed boundary-value problems. Adopting
the spherical approximation in both gravity and geom-
etry spaces results in the well-known spherical Stokes
problem, ®rst formulated and solved by Stokes (1849).

The linearization process of the boundary-value
problem for gravimetric geoid determination may follow
another possibility: the ellipsoidal approximation in
gravity space and the spherical approximation in ge-
ometry space. This leads to a boundary-value problem
of Stokes's type with two ellipsoidal corrections involved
in boundary condition. These additional terms couple
the spherical harmonics of degree two with spectral
content of sought anomalous potential. Due to this
coupling e�ect, there is no exact analytical solution of
the Stokes boundary-value problem when the ellipsoidal
corrections are involved. An iterative solution to this
problem is usually recommended in geodetic literature
(e.g. Cruz 1985; Heck 1991). At the initial step, the el-
lipsoidal correction terms are computed from a priori
known potential, e.g. global gravity model, and subtr-
acted from the right-hand side of the boundary condi-
tion for anomalous gravity. Then the solution is looked
for by successive iterations evaluating the ellipsoidal
corrections from the preceding iterative step. However,
the convergency of this iterative scheme has not been
proved.

Instead of applying the iterative solution, in this pa-
per we shall attempt to construct Green's function as-
sociated with the problem. As already discussed, an
exact Green function cannot be found due to the cou-
pling e�ect between spherical harmonics of degree two
and spherical harmonics of anomalous potential. That is
why Green's function will be constructed approximately
retaining the terms of magnitudes up the order of
Earth's ¯attening. Neglecting higher-order terms causes
relative errors of the order of 1:5� 10ÿ5; the absolute
error in geoidal heights does not exceed 2 mm.

Two remarks should be made in this context. The
construction of Green's function allows us to avoid the
use of an iterative approach in solving Stokes's boun-
dary-value problem with ellipsoidal corrections involved
in boundary condition as proposed by Cruz (1985) or
Heck (1991). The iterative scheme is questionable from a
numerical point of view since the convergency of itera-
tions has not yet been proved. Martinec and Matyska
(1997) demonstrated that the iterative scheme fails when
it is applied to solve the Stokes pseudo-boundary-value
problem arising when the heights of the Earth's topog-
raphy enter the boundary-value problem for gravimetric
geoid determination instead of the geopotential num-
bers. In this case, the ellipsoidal correction terms can be
computed neither from the previous iterative step nor
from a known global gravitational model of the Earth.

There is even another possibility of how to linearize
the originally non-linear, free boundary-value problem;
namely to use the ellipsoidal approximation in both
gravity and geometry spaces. This approach seems to be

the most precise compared to other ways of linearization
discussed, since the linearization errors are equal to 0.2
mgal and 2 mm in gravity and geometry spaces, res-
pectively. However, this approximation does not remove
the ellipsoidal correction terms in the boundary condi-
tion for anomalous gravity. They have di�erent analyt-
ical forms compared to the formulae introduced in Eq.
(2) and depend on the type of the projection of the
Earth's surface onto the geoid; their analytical forms are
derived in Heck (1991).

Martinec and Grafarend (1997) made a ®rst step in
solving this type of boundary-value problem. They did
not consider the ellipsoidal correction terms in the
boundary condition for anomalous gravity, which cor-
responds to linearization in gravity space by the refer-
ence gravity GM=u2 (u is the ®rst ellipsoidal coordinate),
and constructed Green's function for this problem to
within an accuracy of the order of O�e20�. We hope to
report about the progress in solving the ellipsoidal
Stokes problem when the ellipsoidal corrections are also
included in the boundary condition for anomalous
gravity in the near future.

2 Formulation of the boundary-value problem

We will solve the boundary-value problem of Stokes's
type with the ellipsoidal corrections involved in the
boundary condition in the geocentric spherical coordi-
nates �r;X�, where X stands for the pair of angular
coordinates, co-latitude # and longitude k. The potential
T �r;X� to be determined on and outside the reference
sphere r � R is governed by the following boundary-
value problem:

r2T � 0 for r > R �1�
oT
or
� 2

r
T ÿ eh�T � ÿ ec�T � � ÿf for r � R �2�

T � c
r
� O

1

r3

� �
for r!1 �3�

where the so-called ellipsoidal corrections read

eh�T � � e20 sin# cos#
1

r
oT
o#

�4�

ec�T � � e20�3 cos2 #ÿ 2� T
r

�5�

e0 is the ®rst eccentricity of the reference ellipsoid of
revolution (Heiskanen and Moritz 1967, Sect. 2.10). The
ellipsoidal correction eh�T � occurs due to the di�erence
between the derivative of the potential T with respect to
the plumbline of the normal gravity ®eld and the radial
derivative of T , whereas the term ec�T � arises due to the
upward continuation of the normal gravity ®eld from
the reference ellipsoid of revolution to the Earth's
surface. These terms have been introduced by a couple
of authors to approximate the originally non-linear
boundary-value problem for geoid determination by
means of the linearized problem given by Eqs. (1)±(3)
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with the accuracy of the order of Earth's eccentricity.
The reader is referred to Moritz (1980), Jekeli (1981) or
Heck (1991) for more details.

We assume that f �X� is a known square-integrable
function, i.e. f �X� 2 L2�X�, which can be obtained from
measurements of the gravity ®eld on the Earth's surface
reduced by the attraction of the reference ellipsoid of
revolution and the topographical masses. The ®rst-de-
gree harmonics of T have been removed from the solu-
tion in order to guarantee the uniqueness of the solution
[c in Eq. (3) is a constant]. Furthermore, we can easily
deduce that the solution to Eqs. (1)±(3) exists only if the
®rst-degree spherical harmonics of f �X� are removed by
the postulateZ

X0

f �X�Y �1m�X�dX � 0 for m � ÿ1; 0; 1 �6�

where Y1m�X� are spherical harmonics of ®rst-degree and
order m, X0 is the full solid angle, dX � sin# d# dk, and
the asterisk stands for complex conjugation. Through-
out this paper we will assume that conditions given by
Eq. (6) are satis®ed.

3 Spectral form of the solution

The solution of the Laplace equation (1) can be written
in terms of spherical harmonics Yjm�X� as follows

T �r;X� �
X1
j�0
j 6�1

R
r

� �j�1Xj

m�ÿj

TjmYjm�X� �7�

where the Tjm are expansion coe�cients to be determined
from the boundary condition (Eq. 2). To satisfy the
asymptotic condition given by Eq. (3), the term with
angular degree j � 1 has been excluded from summation
over j's.

Substituting Eq. (7) and Eq. (A8) for harmonic rep-
resentation of the ellipsoidal corrections (see Appendix
A) into the boundary condition in Eq. (2), we obtain

1

R

X1
j�0
j 6�1

�jÿ 1�
Xj

m�ÿj

TjmYjm�X� � e20
R

X1
j�0
j 6�1

Xj

m�ÿj

� j� 1

2jÿ 1

�����������������������������������������������
��jÿ 1�2 ÿ m2��j2 ÿ m2�
�2jÿ 3��2j� 1�

s
Tjÿ2;m

8<:
� j�j� 1� ÿ 3m2

�2jÿ 1��2j� 3� ÿ 1

� �
Tjm ÿ j

2j� 3

�
�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
Tj�2;m

9=;
� Yjm�X� � ÿf �X� �8�

Moreover, expanding function f �X� in a series of
spherical harmonics,

f �X� �
X1
j�0

Xj

m�ÿj

Z
X0

f �X0�Y �jm�X0�dX0Yjm�X� �9�

where the ®rst-degree spherical harmonics of f �X� are
equal to zero due to Eq. (6), substituting Eq. (9) into Eq.
(8), and comparing the coe�cients at spherical harmon-
ics Yjm�X�, we end up with the in®nite system of linear
algebraic equations for coe�cients Tjm:

e20ajmTjÿ2;m � �1� e20bjm�Tjm � e20cjmTj�2;m � djm �10�

j � 0; 2; . . . ;m � ÿj;ÿj� 1; . . . ; j, where the system
matrix elements are equal to

ajm � j� 1

�jÿ 1��2jÿ 1�

�����������������������������������������������
��jÿ 1�2 ÿ m2��j2 ÿ m2�
�2jÿ 3��2j� 1�

s
�11�

bjm � 3

jÿ 1

�j� 1�2 ÿ m2

�2jÿ 1��2j� 3� ÿ
j

2jÿ 1

" #
�12�

cjm � ÿ j
�jÿ 1��2j� 3�

�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
�13�

and the right-hand side is given by surface integrals

djm � R
jÿ 1

Z
X0

f �X0�Y �jm�X0�dX0 �14�

4 The O�e20�-approximation

From a practical point of view, the spectral form (Eq. 7)
of the solution of the boundary-value problem in Eqs.
(1)±(3) is often inconvenient, since the construction of
the spectral components of f �X� and solving the system
of Eq. (10) for some cut-o� degree j � jmax may become
time consuming. Moreover, in the case that the magni-
tudes of ellipsoidal correction terms eh�T � and ec�T � in
the boundary condition of Eq. (2) are much smaller then
the Stokes term oT=or � 2T=r, which is the case for the
Earth, the solution of our problem should be close to the
solution of the spherical Stokes problem. We will thus
attempt to rewrite T �r;X� as a sum of the well-known
Stokes integral plus the contribution due to the correc-
tions eh�T � and ec�T �. An evident advantage of such a
decomposition is that existing theories as well as
numerical codes for geoid height computation can
simply be corrected for the ellipsoidal correction terms.

To build up the theory to be as simple as possible but
still matching the requirements on geoid height accu-
racy, we will keep throughout the following derivations
the terms of magnitudes of the order of O�e20� and ne-
glect terms of higher powers of e20. This approximation is
justi®able because the error introduced by this approx-
imation is at most 1:5� 10ÿ5, which then causes an error
of at most a few millimeters in the geoidal heights.
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Inspecting Eq. (10) we can see that this system is not
coupled with respect to the order m and can thus be
solved separately for an individual order m. Further-
more, the equations are also separated for even and odd
j, and again can be solved separately for even and odd
angular degrees j. In matrix notation, the Eq. (10) has a
tridiagonal form:

1� e20bmm e20cmm 0 � � �
e20am�2;m 1� e20bm�2;m e20cm�2;m � � �

0 e20am�4;m 1� e20bm�4;m e20cm�4;m � � �
� � �

0BBB@
1CCCA

�

Tmm

Tm�2;m
Tm�4;m
� � �

0BBB@
1CCCA �

dmm

dm�2;m
dm�4;m
� � �

0BBB@
1CCCA �15�

m � 0; 2; 3; . . .. A simple analysis of Eqs. (11)±(13)
reveals that the magnitudes of matrix elements can be
estimated as �j 6� 1�
jajmj < 1; jbjmj � 1; jcjmj < 1 �16�

Assuming that e20 � 1, the sizes of the o�-diagonal
elements in the system of Eq. (15) are at least 1=e20-times
smaller than those of the diagonal elements. As a
consequence, the solution to the system of Eq. (15)
always exists and is unique, again provided that j 6� 1
and e20 � 1.

A special structure of the matrix of Eq. (15) allows us
to solve the system approximately such that the accuracy
of the order of e20 is maintained in the solution. In Ap-
pendix B, we present such an approach resulting in Eq.
(B10). Applying this result to Eq. (15), the solution is

Tjm � djm ÿ e20�bjmdjm � ajmdjÿ2;m � cjmdj�2;m�
� O�e40� �17�

Inserting coe�cients Tjm into Eq. (7) yields

T �r;X� �
X1
j�0
j 6�1

R
r

� �j�1Xj

m�ÿj

djmYjm�X�

ÿ e20
X1
j�0
j 6�1

R
r

� �j�1Xj

m�ÿj

�bjmdjm � cjmdj�2;m�

� Yjm�X� ÿ e20
X1
j�0
j 6�1

R
r

� �j�3

�
Xj

m�ÿj

aj�2;mdjmYj�2;m�X� � O�e40� �18�

Substituting for coe�cients djm from Eq. (14), inter-
changing the order of summation over j and m with
integration over X0 due to the uniform convergence of
the series given by Eq. (18), the solution of the

boundary-value problem in Eqs. (1)±(3) within the
accuracy of the order of O�e20� reads
T �r;X�

� R
4p

Z
X0

f �X0�
"
4p
X1
j�0
j 6�1

1

jÿ 1

R
r

� �j�1

�
Xj

m�ÿj

Yjm�X�Y �jm�X0�

ÿ e20 Selco00 �r;X;R;X0�
ÿ

�Selco�r;X;R;X0��#dX0 �19�

where

Selco00 �r;X;R;X0� � 4p

"
ÿ R

r
b00Y00�X�Y �00�X0�

� R
r

c00Y00�X�Y �20�X0�

ÿ R
r

� �3

a20Y20�X�Y �00�X0�
#

�20�

and

Selco�r;X;R;X0� � 4p
X1
j�2

R
r

� �j�1

�
Xj

m�ÿj

"
bjm

jÿ 1
Yjm�X�Y �jm�X0�

� cjm

j� 1
Yjm�X�Y �j�2;m�X0�

� R
r

� �2 aj�2;m
jÿ 1

Yj�2;m�X�Y �jm�X0�
#

�21�

Using the Laplace addition theorem for spherical
harmonics,

Pj�cosw� � 4p
2j� 1

Xj

m�ÿj

Yjm�X�Y �jm�X0� �22�

where Pj�cosw� is the Legendre polynomial of degree j,
and w is the angular distance between directions X and
X0, the ®rst term in the square brackets in Eq. (19) is
equal to the inhomogeneous spherical Stokes function
S�r;w;R� (Moritz 1980, p. 367),

S�r;w;R� �
X1
j�0
j 6�1

2j� 1

jÿ 1

R
r

� �j�1
Pj�cosw�

� 2R
`
ÿ 3R2

r2
cosw ln

`� r ÿ R cosw
2r

� �
ÿ 3R`

r2
ÿ 5R2

r2
cosw �23�
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where

` �
���������������������������������������
r2 � R2 ÿ 2rR cosw

p
�24�

Furthermore, substituting for b00 � 1, c00 � 0,
a20 �

��������
4=5

p
, Y00�X� � 1=

������
4p
p

, and Y20�X� ���������
5=p

p �3 cos2 #ÿ 1�=4 into Eq. (20), the zero-degree
kernel Selco00 �r;X;R;X0� becomes

Selco00 �r;X;R;X0� � ÿ
R
r
ÿ R

r

� �3

�3 cos2 #ÿ 1� �25�

Finally, the solution given by Eq. (19) of the boundary-
value problem in Eqs. (1)±(3) can be written as

T �r;X� � R
4p

Z
X0

f �X0�S�r;w;R�dX0

� e20
R
r
� R

r

� �3

�3cos2#ÿ 1�
" #

R
4p

Z
X0

f �X0�dX0

ÿ e20
R
4p

Z
X0

f �X0�Selco�r;X;R;X0�dX0 �26�

In particular, we are interested in ®nding the potential
T �r;X� on the reference sphere r � R, i.e. function
T �R;X�. In this case, the general Eq. (26) reduces to

T �R;X� � R
4p

Z
X0

f �X0�S�w�dX0

� 3e20 cos
2 #

R
4p

Z
X0

f �X0�dX0

ÿ e20
R
4p

Z
X0

f �X0�Selco�X;X0�dX0 �27�

where

S�w� :� S�R;w;R� � 1

sin w
2

ÿ 3 cosw ln sin
w
2
� sin2

w
2

� �
ÿ 6 sin

w
2
ÿ 5 cosw �28�

is the homogeneous spherical Stokes function (Heiskanen
and Moritz 1967, Eq. 2.164), and

Selco�X;X0� :� Selco�R;X;R;X0�

� 4p
X1
j�2

Xj

m�ÿj

bjm

jÿ 1
Yjm�X�Y �jm�X0�

�
� cjm

j� 1
Yjm�X�Y �j�2;m�X0�

� aj�2;m
jÿ 1

Yj�2;m�X�Y �jm�X0�
�

�29�

5 The `spherical-ellipsoidal' Stokes function

We will call the function Selco�X;X0� the `spherical-
ellipsoidal' Stokes function because it describes the e�ect

of the ellipsoidal correction terms eh�T � and ec�T � on the
solution of spherical Stokes's boundary-value problem.
The next e�ort will be devoted to convert the spectral
form (Eq. 29) of Selco�X;X0� to a spatial representation.

Substituting for ajm, bjm and cjm from Eqs. (11)±(13)
into Eq. (29), we have

Selco�X;X0�

� 4p
X1
j�2

Xj

m�ÿj

(
3

�jÿ 1�2
�j� 1�2 ÿ m2

�2jÿ 1��2j� 3� ÿ
j

2jÿ 1

" #

� Yjm�X�Y �jm�X0� ÿ
j

�j2 ÿ 1��2j� 3�

�
�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s

� Yjm�X�Y �j�2;m�X0� �
j� 3

�j2 ÿ 1��2j� 3�

�
�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s

� Yj�2;m�X�Y �jm�X0�
)

�30�

One of the trickiest steps in ®nding the spatial repre-
sentation of Selco�X;X0� is to sum up the series over m
occurring in Eq. (30). Making use of the Laplace
addition theorem for spherical harmonics, we present
the approach for summing these series in Appendix C.
Substituting from Eqs. (C22)±(C24) into Eq. (30), the
`spherical-ellipsoidal' Stokes function can be composed
from seven di�erent terms

Selco�X;X0� �
X7
i�1

hi�#;w; a�Mi�cosw� �31�

where w and a are polar coordinates, and

h1�#;w; a� � sin2 #�cos2 aÿ sin2 a� �32�

h2�#;w; a� � cos2 # sinwÿ 2 sin# cos# cosw cos a

ÿ sin2 # sinw cos2 a �33�

h3�#;w; a� � cos2 # cosw� 2 sin# cos# sinw cos a

ÿ sin2 # cosw cos2 a �34�

h4�#;w; a� � sin#�cos# sinw cosw cos a

ÿ sin# cos2 w cos2 a� sin# sin2 a� �35�

h5�#;w; a� � ÿ sin# cos a�cos# sinwÿ sin# cosw cos a�
�36�

h6�#;w; a� � 1ÿ sin2 # sin2 a �37�

h7�#;w; a� � ÿ1 �38�
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The isotropic parts Mi�cosw�; i � 1; . . . ; 7, of Selco�X;X0�
are given as in®nite series of the Legendre polynomials
and their derivatives:

M1�cosw� �
X1
j�2

3

�j2 ÿ 1��2j� 3�
dPj�1�cosw�

d cosw
�39�

M2�cosw� � sinw
X1
j�2

2�j2 � 3j� 3�
�j2 ÿ 1��2j� 3�

dPj�1�cosw�
d cosw

�40�

M3�cosw� �
X1
j�2

3�j� 2�
�jÿ 1��2j� 3� Pj�1�cosw� �41�

M4�cosw� �
X1
j�2

3�2j� 1�
�jÿ 1�2�2jÿ 1��2j� 3�

dPj�1�cosw�
d cosw

�42�

M5�cosw� �
X1
j�2

3�j� 1��2j� 1�
�jÿ 1�2�2jÿ 1��2j� 3� Pj�1�cosw�

�43�

M6�cosw� �
X1
j�2

3�j� 1�2�2j� 1�
�jÿ 1�2�2jÿ 1��2j� 3� Pj�cosw� �44�

M7�cosw� �
X1
j�2

3j�2j� 1�
�jÿ 1�2�2jÿ 1� Pj�cosw� �45�

6 Spatial forms of functions Mi�cosw�

We now attempt to express in®nite sums for Mi�cosw� as
®nite combinations of elementary functions depending
on cosw. Simple manipulations with Eqs. (39)±(45) result
in fact that Mi�cosw� can be expressed in terms of sumsX1
j�3

Pj�cosw�
2j� 1

and
X1
j�3

Pj�cosw�
�jÿ 1�2 �46�

The ®rst sum is expressible in the full elliptic integrals
(Pick et al. 1973, Appendix 18) which may only be
evaluated approximately by some method of numerical
quadrature (Press et al. 1989, Sect. 6.11). The second
sum is equal to a de®nite integral the primitive function
of which cannot be expressed in a closed analytical form
(Pick et al. 1973, Appendix 18) but again only numer-
ically. We can thus see that sums given by Eqs. (39)±(45)
cannot be expressed in closed analytical forms. There-
fore, our method of summation will be based on the
following idea. Since the kernels Mi�cosw� are singular
at the point w � 0, we will take out those contributions
from Eqs. (39)±(45) which are responsible for the
singular behaviour at the point w � 0. These contribu-

tions will be expressed in closed analytical forms.
Having removed singular contributions, the remainders
of sums will be represented by quickly convergent
in®nite series, which are bounded on the whole interval
0 � w � p. Prescribing an error of computation, they
can be simply summed up numerically.

As a preparatory step, we introduce a few formulae
for sums of Legendre polynomials and their derivatives
which will help us in the following manipulations. Pick
et al. (1973, Eqs. D.18;1 and D.18;3) show thatX1
j�0

Pj�cosw� � 1

2 sin w
2

�47�

andX1
j�1

Pj�cosw�
j

� ÿln sin
w
2
� sin2

w
2

� �
�48�

Furthermore, Martinec and Grafarend (1997) demon-
strate thatX1
j�1

4

�2jÿ 1��2j� 3�
dPj�cosw�
d cosw

� 1

2 sin w
2

�49�

X1
j�2

2�4j� 1�
�j2 ÿ 1��2jÿ 1��2j� 3�

dPj�cosw�
d cosw

� ÿln sin
w
2
� sin2

w
2

� �
� 1

10
�50�

Let us start to sum up the in®nite series of Eq. (39).
Shifting the summation index to jÿ 1, the fraction
occurring in this series can be decomposed as

1

�jÿ 2�j�2j� 1�
� 4j� 1

2�j2 ÿ 1��2jÿ 1��2j� 3�

� 3�6j3 ÿ j2 ÿ 2j� 2�
2j�jÿ 2��j2 ÿ 1��4j2 ÿ 1��2j� 3� �51�

By means of this last equation and Eq. (50), function
M1�cosw� reads

M1�cosw� � ÿ 3
4

ln sin
w
2
� sin2

w
2

� �
� 6

7
coswÿ 1

10

� �
� R1�cosw� �52�

where

R1�cosw� � 9

2

X1
j�3

6j3 ÿ j2 ÿ 2j� 2

j�jÿ 2��j2 ÿ 1��4j2 ÿ 1��2j� 3�

� dPj�cosw�
d cosw

�53�

Let us prove that the function R1�cosw� is bounded for
w 2 h0; pi. For those ws, the derivatives of Legendre
polynomials can be estimated as
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dPj�cosw�
d cosw

���� ���� � j2 �54�

which yields

jR1�cosw�j � 9

2

X1
j�3

j�6j3 ÿ j2 ÿ 2j� 2�
�jÿ 2��j2 ÿ 1��4j2 ÿ 1��2j� 3�

<
9

2

X1
j�3

6j3 ÿ j2 ÿ 2j� 2

�jÿ 2��jÿ 1��4j2 ÿ 1��2j� 3�

<
9

2

X1
j�3

6j3 ÿ j2 ÿ 2j� 2� �j� 19�
�jÿ 2��jÿ 1��4j2 ÿ 1��2j� 3�

� 9

2

X1
j�3

3j2 ÿ 5j� 7

�jÿ 2��jÿ 1��4j2 ÿ 1�

<
9

8

X1
j�3

12j2 ÿ 20j� 28� �20jÿ 31�
�jÿ 2��jÿ 1��4j2 ÿ 1�

� 27

8

X1
j�3

1

�jÿ 2��jÿ 1� �
27

8
�55�

where we have used (Mangulis 1965, p. 53)

X1
j�1

1

j�j� 1� � 1 �56�

It should be pointed out that the last estimate is rather
weak; Fig. 2 will show that jR1�cosw�j < 1:2.

Nevertheless, it is important that the function
R1�cosw� is bounded at any point in the interval
0 � w � p, so that the singularity of function M1�cosw�
at the point w � 0 is expressed analytically by the ®rst
term on the right-hand side of Eq. (52). We can see that
M1�cosw� has a logarithmic singularity at the point
w � 0. In addition, function R1�cosw� can simply be
evaluated numerically since it is represented by a quickly
convergent series. Figure 1 demonstrates this fact in a
transparent way; for w � 0 it plots the decay of magni-
tudes of series terms in Eq. (53) with increasing degree j.
Inspecting Fig. 1 we can estimate that it is su�cient to
sum up the in®nite series of Eq. (53) for R1�cosw� up to
j � 25 in order to achieve an absolute accuracy of the
order of 0.01. This accuracy is su�cient for evaluating
the `spherical-ellipsoidal' Stokes function Selco�X;X0� in
the frame of the O�e20�-approximation.

The spatial forms of the other integral kernel
Mi�cosw�, i � 2; . . . ; 7, can be expressed in a similar
fashion as the kernel M1�cosw�; after some cumbersome
but straightforward algebra we can arrive at

M2�cosw� �
cos w

2

2 sin w
2

� cos w
2 �6� 5 sin w

2�
2�1� sin w

2�

ÿ 33

8
sinw ln sin

w
2
� sin2

w
2

� �
ÿ 207

80
sinwÿ 181

28
sinw cosw� R2�cosw�

M3�cosw� � ÿ 3
4
�3 cos2 wÿ 1�ln sin

w
2
� sin2

w
2

� �
ÿ 3

2
�1� 3 cosw� sinw

2
� 9

8
� 3

2
cosw

ÿ 21

8
cos2 w� R3�cosw�

M4�cosw� � ÿ 3
4

ln sin
w
2
� sin2

w
2

� �
� 6

7
coswÿ 1

10

� �
� R4�cosw�

M5�cosw� � R5�cosw�

M6�cosw� � ÿ 3
2

cosw ln sin
w
2
� sin2

w
2

� ��
�2 sinw

2
� coswÿ 1

�
� R6�cosw�

M7�cosw� � ÿ3 cosw ln sin
w
2
� sin2

w
2

� ��
�2 sinw

2
� coswÿ 1

�
� R7�cosw� �57�

where the residuals Ri�cosw� are of the forms

R2�cosw� � 3

4
sinw

X1
j�3

138j3 � 17j2 ÿ 6j� 16

�jÿ 2�j�j2 ÿ 1��4j2 ÿ 1��2j� 3�

� dPj�cosw�
d cosw

R3�cosw� � 3

2

X1
j�3

1

�jÿ 2��2j� 1� Pj�cosw�

R4�cosw� � 3

2

X1
j�3

84j4 ÿ 132j3 ÿ 15j2 � 72j� 6

�jÿ 2�2�j2 ÿ 1��4j2 ÿ 1��4j2 ÿ 9�

� dPj�cosw�
d cosw
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Fig. 1. The sizes of particular terms creating the in®nite series for R1(1)
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R5�cosw� � 3
X1
j�3

j�2jÿ 1�
�jÿ 2�2�2jÿ 3��2j� 1� Pj�cosw�

R6�cosw� � 3

2

X1
j�2

10j2 � 15jÿ 1

�jÿ 1�2�2jÿ 1��2j� 3� Pj�cosw�

R7�cosw� � 3
X1
j�2

4jÿ 1

�jÿ 1�2�2jÿ 1� Pj�cosw� �58�

Figure 2 plots the residuals Ri�cosw�, i � 1; . . . ; 7, within
the interval 0 � w � p. We can observe that Ri�cosw�
are `su�ciently' smooth functions bounded for all angles
w. This is a consequence of the fact that the magnitudes
of series terms in Eq. (58) quickly decrease with
increasing summation index j. In order to achieve an
absolute accuracy of the order of 0.01, which is su�cient

in the framework of O�e20�-approximation, Eq. (58) may
be truncated at degree of about j � 25.

The preceding formulae make it possible to study the
behaviour of functions Mi�cosw� in the vicinity of the
point w � 0. We can readily see that

lim
w!0

M2�cosw� � 1
w �59�

lim
w!0

Mi�cosw� � ln�w=2� if i � 1; 3; 4; 6; 7 �60�

lim
w!0

M5�cosw�
���� ���� < A �A is finite� �61�

Moreover, taking Eq. (C18) into account, we can see
that

2 sin# cos# sinw cosw cos aj#�#0
� sin2 w�cos2 #ÿ sin2 # cos2 a� �62�

By this, the function h2�#;w; a� de®ned by Eq. (33)
behaves like w when w! 0. Consequently, `spherical-
ellipsoidal' Stokes function Selco�X;X0� has a logarithmic
singularity at the point w � 0, i.e. Selco�X;X0� � ln�w=2�
for w! 0. Using Eqs. (C25) and (C26), we can get the
proportional factor of this singularity:

Selco�X;X0� � 3 sin2 #ln�w=2� for w! 0 �63�
We can conclude that the singularity of Selco�X;X0� at
the point w � 0 is weaker than that of the spherical
Stokes function.

7 Conclusion

This work was motivated by the question of whether the
solution to Stokes's boundary-value problem with
ellipsoidal corrections involved in boundary condition
for anomalous gravity can be expressed in a closed
spatial form which would be convenient for numerical
computations. The objective behind this e�ort is to
avoid applying the iterative approach usually recom-
mended for solving this type of geodetic boundary-value
problem. To answer this question, we have ®rst
constructed Green's function in terms of spherical
harmonics. The spherical harmonic coe�cients of the
sought potential satisfy an in®nite system of linear
algebraic equations with a tridiagonal system matrix.
We have con®ned ourselves to this system and found its
solution with an accuracy of the order of the Earth's
eccentricity. This is an acceptable approximation since it
is consistent with the linearization errors hidden behind
the formulated boundary-value problem. Moreover, this
accuracy is still fairly good for today's requirements
concerning geoid height computations. Within this
accuracy, we have shown that the solution can be
written as a surface integral taken over the full solid
angle with integration kernel consisting of the tradi-
tional spherical Stokes function and the correction due
to the appearance of the ellipsoidal corrections in the
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467



boundary conditions for anomalous gravity. We have
managed to express the correcting integration kernel,
originally represented in the form of an in®nite spherical
harmonics, as a ®nite combination of elementary
analytical functions exactly representing the behaviour
of integration kernel at the vicinity of its singular point
w � 0. The important conclusion is that the correcting
integration kernel has only a logarithmic singularity at
w � 0 that is weaker than the singularity of the spherical
Stokes function.
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Appendix A
Spectral form of ellipsoidal corrections

In this section we aim to derive the spectral representation
of ellipsoidal correction terms, eh�T � and ec�T �, de®ned by
Eqs. (4) and (5). Substituting the spherical harmonic
expansion given by Eq. (7) of the disturbing potential T
into these equations, taking the derivative of T with
respect to # for the term eh�T �, and putting r � R, we get

eh�T � � e20
R

X1
j�0
j 6�1

Xj

m�ÿj

Tjm sin# cos#
oYjm�X�

o#
�A1�

ec�T � � e20
R

X1
j�0
j 6�1

Xj

m�ÿj

Tjm�3 cos2 #ÿ 2�Yjm�X� �A2�

To express the product of derivative oYjm�X�=o# with
sin# cos# in terms of Yjm�X�, we use the recurrence
formula for the ®rst derivative of spherical harmonics
(Varshalovich et al. 1989, p. 147, Eq. 6):

sin# cos#
oYjm�X�

o#
� j

���������������������������������
�j� 1�2 ÿ m2

�2j� 1��2j� 3�

s
cos#Yj�1;m�X�

ÿ �j� 1�
���������������������������������

j2 ÿ m2

�2jÿ 1��2j� 1�

s
� cos#Yjÿ1;m�X� (A3)

By recurrence formulae Varshalovich et al. 1989, p.145,
Eq. (2),

cos#Yj�1;m�X� �
���������������������������������
�j� 2�2 ÿ m2

�2j� 3��2j� 5�

s
Yj�2;m�X�

�
���������������������������������
�j� 1�2 ÿ m2

�2j� 1��2j� 3�

s
Yjm�X� (A4)

and

cos#Yjÿ1;m�X� �
���������������������������������
�jÿ 1�2 ÿ m2

�2jÿ 3��2jÿ 1�

s
Yjÿ2;m�X�

�
���������������������������������

j2 ÿ m2

�2jÿ 1��2j� 1�

s
Yjm�X� (A5)

we obtain

sin# cos#
oYjm�X�

o#

� ÿ j� 1

2jÿ 1

�����������������������������������������������
��jÿ 1�2 ÿ m2��j2 ÿ m2�
�2jÿ 3��2j� 1�

s
Yjÿ2;m�X�

� 3m2 ÿ j�j� 1�
�2jÿ 1��2j� 3� Yjm�X� � j

2j� 3

�
�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
Yj�2;m�X� (A6)

To make a similar arrangements for the term ec�T �, we
make use of the recurrence formula for spherical
harmonics (Varshalovich et al. 1989, p.145, Eq. 5) and
get

�3 cos2 #ÿ 2�Yjm�X�

� 3

2jÿ 1

�����������������������������������������������
��jÿ 1�2 ÿ m2��j2 ÿ m2�
�2jÿ 3��2j� 1�

s
Yjÿ2;m�X�

ÿ 2�3m2 ÿ j�j� 1��
�2jÿ 1��2j� 3� � 1

� �
Yjm�X�

� 3

2j� 3

�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
� Yj�2;m�X� (A7)

Finally, substitution of Eqs. (A6) and (A7) into Eqs.
(A1) and (A2) results in spherical harmonic representa-
tion of the sum of ellipsoidal correction terms,

eh�T � � ec�T � � e20
R

X1
j�0
j 6�1

Xj

m�ÿj

(
j� 1

2jÿ 1

�
�����������������������������������������������
��jÿ 1�2 ÿ m2��j2 ÿ m2�
�2jÿ 3��2j� 1�

s
Tjÿ2;m

� j�j� 1� ÿ 3m2

�2jÿ 1��2j� 3� ÿ 1

� �
Tjm

ÿ j
2j� 3

�
�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s

� Tj�2;m

)
Yjm�X� (A8)
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Appendix B
The approximate solution of tridiagonal system

The set of equations to be solved is

1� b1 c1 0 . . .

a2 1� b2 c2 . . .

. . .

. . . anÿ1 1� bnÿ1 cnÿ1

. . . 0 an 1� bn

0BBBBBB@

1CCCCCCA

�

u1
u2
. . .

unÿ1
un

0BBBBBB@

1CCCCCCA �
r1
r2
. . .

rnÿ1
rn

0BBBBBB@

1CCCCCCA (B1)

The solution of this system of equations with a
tridiagonal matrix can be carried out by the following
recurrence formulae (Isaacson and Keller 1973, Sect.
2.3.2). For j � 2; . . . ; n, let us generate the quantities:

cj �
cjÿ1
bjÿ1

(B2)

bj � 1� bj ÿ ajcj (B3)

aj � rj ÿ ajajÿ1
bj

(B4)

with starting values

b1 � 1� b1; a1 � r1
b1

(B5)

Having created aj; bj and cj, the solution of tridiagonal
system of Eq. (B1) is

un � an (B6)

uj � aj ÿ cj�1uj�1 for j � nÿ 1; . . . ; 1 (B7)

Now, let us suppose that the elements aj, bj and cj are
small quantities such that jajj � e, jbjj � e, jcjj � e, and
e� 1. To get an approximate solution of Eq. (B1) with
the accuracy of the order of e, we can approximately put

bj�: 1� bj � O�e2� (B8)

since jcjj � e. Within the same accuracy, Eq. (B4) can be
replaced by

aj�: rj ÿ bjrj ÿ ajrjÿ1 � O�e2� (B9)

Substituting these formulae to Eqs. (B6) and (B7) leads
to the approximate solution of Eq. (B1)

uj�: rj ÿ bjrj ÿ ajrjÿ1 ÿ cjrj�1 � O�e2�; j � 1; 2; . . . ; n

(B10)

assuming that cn � 0.

Appendix C
Di�erent forms of the addition theorem for spherical
harmonics

In this section, we shall derive di�erent forms of
addition theorem for spherical harmonics. Let us start
with the recurrence relation for the spherical harmonics
(Varshalovich et al. 1989, p.147, Eq. 6)�������������������������������������������
2j� 3

2j� 1
��j� 1�2 ÿ m2�

s
Yjm�X� � sin2 #

oYj�1;m�X�
o cos#

� �j� 1� cos#Yj�1;m�X� (C1)

This recurrence formula can be rewritten in a di�erent
form:�������������������������������������������
2j� 3

2j� 5
��j� 2�2 ÿ m2�

s
Yj�2;m�X� � ÿ sin2 # oYj�1;m�X�

o cos#

� �j� 2� cos#Yj�1;m�X� (C2)

Multiplying Eq. (C1) by complex conjugate relation
with Eq. (C2) taken at a point X0, we get

�2j� 3�
�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
Yjm�X�Y �j�2;m�X0�

� ÿ sin2 # sin2 #0 oYj�1;m�X�
o cos#

oY �j�1;m�X0�
o cos#0

ÿ �j� 1� cos# sin2 #0Yj�1;m�X�
oY �j�1;m�X0�

o cos#0

� �j� 2� sin2 # cos#0Y �j�1;m�X0�
oYj�1;m�X�

o cos#
� �j� 1��j� 2� cos# cos#0Yj�1;m�X�Y �j�1;m�X0� (C3)

Summing Eq. (C3) from m � ÿjÿ 1 up to m � j� 1,
and realizing that the factor �j� 1�2 ÿ m2 is equal to
zero for m � ��j� 1�, we get

�2j� 3�
Xj

m�ÿj

�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
� Yjm�X�Y �j�2;m�X0�

� ÿ sin2 # sin2 #0
Xj�1

m�ÿ�j�1�

oYj�1;m�X�
o cos#

oY �j�1;m�X0�
o cos#0

ÿ �j� 1� cos# sin2 #0
Xj�1

m�ÿ�j�1�
Yj�1;m�X�

oY �j�1;m�X0�
o cos#0

� �j� 2� sin2 # cos#0
Xj�1

m�ÿ�j�1�
Y �j�1;m�X0�

oYj�1;m�X�
o cos#

� �j� 1��j� 2� cos# cos#0

�
Xj�1

m�ÿ�j�1�
Yj�1;m�X�Y �j�1;m�X0� (C4)
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The sums of the products of spherical harmonics and
their derivatives will be simpli®ed by means of the
Laplace addition theorem for spherical harmonics.
Taking the Laplace addition theorem (Eq. 22) for index
j� 1, we have

2j� 3

4p
Pj�1�cosw� �

Xj�1
m�ÿ�j�1�

Yj�1;m�X�Y �j�1;m�X0� �C5�

Di�erentiating Eq. (C5) with respect to cos# and cos#0,
and substituting the results to Eq. (C4), we get

4p
Xj

m�ÿj

�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
Yjm�X�Y �j�2;m�X0�

� ÿ sin2 # sin2 #0 o2Pj�1�cosw�
o cos# o cos#0

ÿ �j� 1� cos# sin2 #0 oPj�1�cosw�
o cos#0

� �j� 2� sin2 # cos#0 oPj�1�cosw�
o cos#

� �j� 1��j� 2� cos# cos#0Pj�1�cosw� (C6)

The partial derivatives of Legendre polynomials
Pj�1�cosw� with respect to cos# and cos#0 will now be
expressed in terms of the ordinary derivatives of the
Legendre polynomials with respect to cosw by making
use of the well-known formulae of spherical trigonom-
etry (e.g. Heiskanen and Moritz 1967, Eq. 2.208),

cosw � cos# cos#0 � sin# sin#0 cos�kÿ k0� (C7)

sinw cos a � sin# cos#0 ÿ cos# sin#0 cos�kÿ k0� (C8)

sinw sin a � ÿ sin#0 sin�kÿ k0� (C9)

where a is the azimuth between directions X and X0.
Realizing that

oPj�1�cosw�
o cos#

� dPj�1�cosw�
d cosw

o cosw
o cos#

(C10)

and taking the derivative of Eq. (C7) with respect to
cos#, we have

oPj�1�cosw�
o cos#

��cos#0 ÿ cot# sin#0 cos�kÿ k0��

� dPj�1�cosw�
d cosw

(C11)

Similarly, we can write

oPj�1�cosw�
o cos#0

��cos#ÿ cot#0 sin# cos�kÿ k0��

� dPj�1�cosw�
d cosw

(C12)

Furthermore, di�erentiating Eq. (C11) with respect to
cos#0, we obtain the second-order derivative occurring
in Eq. (C6),

o2Pj�1�cosw�
o cos# o cos#0

� �1� cot# cot#0 cos�kÿ k0�� dPj�1�cosw�
d cosw

� �cos#0 ÿ cot# sin#0 cos�kÿ k0��

� �cos#ÿ cot#0 sin# cos�kÿ k0�� d
2Pj�1�cosw�
d�cosw�2

(C13)

Substituting Eqs. (C11)±(C13) into Eq. (C6), we have

4p
Xj

m�ÿj

�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
Yjm�X�Y �j�2;m�X0�

� ÿ sin# sin#0�sin# cos#0 ÿ cos# sin#0 cos�kÿ k0��
� �sin#0 cos#ÿ cos#0 sin# cos�kÿ k0��

� d2Pj�1�cosw�
d�cosw�2 ÿ sin# sin #0�sin# sin#0

� cos# cos#0 cos�kÿ k0�� dPj�1�cosw�
d cosw

ÿ �j� 1� cos# sin#0�sin#0 cos#

ÿ cos#0 sin# cos�kÿ k0�� dPj�1�cosw�
d cosw

� �j� 2� sin# cos#0�sin# cos#0

ÿ cos# sin#0 cos�kÿ k0�� dPj�1�cosw�
d cosw

� �j� 1��j� 2� cos# cos#0Pj�1�cosw� (C14)

The functions in square brackets standing in front of the
derivatives of Legendre polynomials will be expressed by
means of the angular distance w and the azimuth a
between directions X and X0. Using Eqs. (C7)±(C9), we
can, after some algebraic manipulation, obtain:

sin#0 cos#ÿ cos#0 sin# cos�kÿ k0�
� 1

sin#0
�cos#ÿ cos#0 cosw� (C15)

sin# sin #0 � cos# cos#0 cos�kÿ k0�
� 1

sin#0
�sin#ÿ cos#0 sinw cos a� (C16)

Considering Eqs. (C8), (C15) and (C16) in Eq. (C14), we
have

4p
Xj

m�ÿj

�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
Yjm�X�Y �j�2;m�X0�

� ÿ sin# sinw cos a�cos#ÿ cos#0 cosw� d
2Pj�1�cosw�
d�cosw�2

ÿ sin#�sin#ÿ cos#0 sinw cos a�dPj�1�cosw�
d cosw

ÿ �j� 1� cos#�cos#ÿ cos#0 cosw�dPj�1�cosw�
d cosw
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� �j� 2� sin# cos#0 sinw cos a
dPj�1�cosw�

d cosw

� �j� 1��j� 2� cos# cos#0Pj�1�cosw� (C17)

Multiplying Eq. (C7) by cos#= sin# and adding the
result to Eq. (C8), we get

cos#0 � cos# cosw� sin# sinw cos a (C18)

Employing the last formula and Legendre's di�erential
equation

sin2 w
d2Pj�1�cosw�
d�cosw�2 ÿ 2 cosw

dPj�1�cosw�
d cosw

� �j� 1��j� 2�Pj�1�cosw� � 0 (C19)

the sum of the ®rst, the second and the last term on the
right- hand side of Eq. (C17) reads

ÿ sin# sinw cos a�cos#ÿ cos#0 cosw�d
2Pj�1�cosw�
d�cosw�2

ÿ sin#�sin#ÿ cos#0 sinw cos a� dPj�1�cosw�
d cosw

� �j� 1��j� 2� cos# cos#0Pj�1�cosw�
� ÿ sin#�sin#� cos# sinw cosw cos a

ÿ sin# cos2 w cos2 aÿ sin# cos2 a�dPj�1�cosw�
d cosw

� �j� 1��j� 2��cos2 # cosw� 2 sin# cos# sinw cos a

ÿ sin2 # cosw cos2 a�Pj�1�cosw� (C20)

Moreover, by Eq. (C18), the sum of the third and fourth
term on the right-hand side of Eq. (C17) becomes

ÿ �j� 1� cos#�cos#ÿ cos#0 cosw� dPj�1�cosw�
d cosw

� �j� 2� sin# cos#0 sinw cos a
dPj�1�cosw�

d cosw

� ÿ�j� 1� sinw�cos2 # sinwÿ 2 sin# cos# cosw cos a

ÿ sin2 # sinw cos2 a�dPj�1�cosw�
d cosw

� sin#�cos# sinw cosw cos a� sin# sin2 w cos2 a�
dPj�1�cosw�

d cosw
(C21)

Substituting Eqs. (C20) and (C21) into Eq. (C17), we
®nally have

4p
Xj

m�ÿj

�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
Yjm�X�Y �j�2;m�X0�

� sin2 #�cos2 aÿ sin2 a� dPj�1�cosw�
d cosw

ÿ �j� 1� sinw�cos2 # sinwÿ 2 sin # cos# cosw cos a

ÿ sin2 # sinw cos2 a� dPj�1�cosw�
d cosw

� �j� 1��j� 2��cos2 # cosw� 2 sin# cos# sinw cos a

ÿ sin2 # cosw cos2 a�Pj�1�cosw� (C22)

In an analogous way, other forms of the addition
theorem for spherical harmonics can be derived. We
introduce two of them without demonstrating a detailed
proof:

4p
Xj

m�ÿj

�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
� Yjm�X0�Y �j�2;m�X�

� sin2 #�cos2 aÿ sin2 a� dPj�1�cosw�
d cosw

� �j� 2� sinw�cos2 # sinwÿ 2 sin# cos# cosw cos a

ÿ sin2 # sinw cos2 a� dPj�1�cosw�
d cosw

� �j� 1��j� 2��cos2 # cosw� 2 sin# cos# sinw cos a

ÿ sin2 # cosw cos2 a�Pj�1�cosw� (C23)

and

4p
2j� 1

Xj

m�ÿj

��j� 1�2 ÿ m2�Yjm�X�Y �jm�X0�

� sin#�cos# sinw cosw cos aÿ sin# cos2 w cos2 a

� sin# sin2 a� dPj�1�cosw�
d cosw

ÿ �j� 1� sin# cos a�cos# sinw

ÿ sin# cosw cos a�Pj�1�cosw�
� �j� 1�2�1ÿ sin2 # sin2 a�Pj�cosw� (C24)

Particularly, when X � X0, we get

4p
Xj

m�ÿj

�����������������������������������������������������������
��j� 1�2 ÿ m2���j� 2�2 ÿ m2�

�2j� 1��2j� 5�

s
Yjm�X�Y �j�2;m�X�

� 1
2 �j� 1��j� 2��3 cos2 #ÿ 1� (C25)

and

4p
2j� 1

Xj

m�ÿj

��j� 1�2 ÿ m2� jYjm�X�j2

� �j� 1�2 ÿ 1
2 j�j� 1� sin2 # (C26)
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