A comparison of Stokes's and Hotine's approaches to geoid computation

Petra Vaniček 1, Zhang Changyou 1, Lars E. Sjöberg 3

1 Department of Surveying Engineering, University of New Brunswick, P.O. Box 4400, Fredericton, N.B., Canada E3B 5A3
2 Department of Surveying Engineering, The University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
3 Department of Geodesy, Royal Institute of Technology, S-100 44 Stockholm, Sweden

Received January 18, 1991; Accepted November 18, 1991

Abstract. In the paper, the classical as well as the generalized Stokes techniques — in which use is made of a higher-order reference spheroid defined by satellite determined potential coefficients — are compared with Hotine's technique for geoid determination. While the Stokes techniques use gravity anomalies, Hotine's technique uses gravity disturbances.

Leaving out the complications, we can say that computation of gravity anomalies requires the knowledge of orthometric heights of individual gravity observation points, while gravity disturbances require heights above the reference ellipsoid. The vast majority of the millions of gravity points on land have only the orthometric heights associated with them, thus permitting an evaluation of only gravity anomalies. A systematic use of gravity disturbances on land would require the transformation of orthometric heights into heights above the ellipsoid — barring a prohibitively expensive programme of reobsevation of the heights at all the gravity points. Such a transformation would call for the geoidal-ellipsoid separation, the geoidal height, to be known. Here lies the seeming self-contradiction of Hotine's technique as applied on land: the geoid has to be known to be determinable.

We show that this seeming paradox does not render Hotine's approach meaningless. In our investigation, the geoid (assumed known) is replaced by a higher-order reference spheroid. Two approximate variations of Hotine's technique are then considered, and it is shown that under specific circumstances both of Hotine's variations give more accurate results than the Stokes techniques.

Introduction

With the continuing improvements in accuracy of satellite determined potential coefficients it has become a custom to use the low-frequency satellite information together with terrestrial gravity data for the computation of the geoid. These combined approaches combine the advantages of the two kinds of data to arrive at more equitable solutions: more homogeneously accurate in low frequencies, and more sharply defined in high frequencies.

These combinations can be produced by means of different techniques. In this contribution, we are interested in two such techniques: the Stokes technique and Hotine's technique. More specifically, we are interested in the generalized Stokes technique (Vaniček and Sjöberg 1991) which has been specifically designed to accommodate the two kinds of data, and in approximate Hotine techniques which, unlike the original Hotine formulation, do not require the knowledge of gravity disturbances. Two such approximations are considered in this paper. One may argue that by replacing the requirement for gravity disturbance with something else the formulation can no longer be called a "Hotine" approach. Instead of coining some new names, we decided to call the formulations "approximate Hotine" to help the reader bear in mind the point of departure for their development.

The more narrow aim of this contribution is to show the circumstances under which one of the approximate Hotine techniques will give more precise (and more accurate) results than the generalized Stokes technique. For this goal, the expected biaxes of the approximate Hotine solutions are investigated and the expected variances of the different kinds of solutions are derived.

The comparison of precisions is carried out by means of expected mean square errors. These turn out to be functions of error degree variances of both the satellite-derived gravity and terrestrial gravity as well as the gravity degree variances which describe the average behaviour of the magnitude of the harmonic coefficients of gravity.

The effects — and corrections for removal of these effects — of both the spherical approximation and the flaws in the modelling of the physics of the geodetic
gravity features from satellite orbit analysis has become quite accurate. For example, the error (standard deviation) in the first (20, 20) geopotential coefficients of the GGM71 model (Marsh et al. 1988) is estimated to be only about 85 cm (Vaněk et al. 1990), certainly better than can be obtained from observed terrestrial gravity.

It thus makes sense to replace the values of the first M terms in equation (5), where the optimum choice of M should be somewhere around 20, by the corresponding values obtained from satellites. Denoting the satellite-determined gravity spherical harmonics by y_M^s we obtain a different expression (9) for geoidal heights:

$$N^s = 2C \sum_{n=1}^{M-1} \frac{\gamma_n}{n} - \frac{\gamma_n^s}{n-1} + \sum_{n=M}^{\infty} \frac{\gamma_n}{n} \tag{9}$$

where we have assumed that $M > 8$. We note that if the expected values $E(y_M)$ and $E(y_n)$ are equal for all $n \leq M$, then the expected values of N and N^s obtained from equations (5) and (9), respectively, will be the same, as they should be.

On the other hand, assuming again that equation (7) is valid, denoting the satellite-determined gravity degree error variances by $\sigma^2(y_M^s)$ and assuming N^s uncorrelated with γ_n we get from equation (9):

$$\sigma^2(N^s) = 4C \sum_{n=1}^M \frac{1}{(n-1)^2} \sigma^2(y_M^s) + \sum_{n=M+1}^{\infty} \frac{1}{(n-1)^2} \sigma^2(\gamma_n) \tag{10}$$

Comparison with equation (8) shows clearly that if

$$\forall n \leq M : \frac{\sigma^2(y_M^s)}{\sigma^2(\gamma_n)} < \sigma^2(N^s) \tag{11}$$

then

$$\sigma^2(N) < \sigma^2(N^s) \tag{12}$$

as we have stated above.

Formula (9) can be rewritten in a closed form. Denoting the satellite-determined (model) gravity by y_M we have

$$\langle y_M \rangle = \sum_{n=M}^{\infty} \frac{\gamma_n}{n} \tag{13}$$

and the geoid of degree M, defined by the first M degree potential coefficients is given as

$$N_M = \sum_{n=1}^M \frac{\gamma_n}{n} - 2C \sum_{n=1}^{M-1} \frac{\gamma_n}{n-1} \tag{14}$$

Now we can redefine the gravity anomaly as the difference of actual gravity on the geoid, Δg, and the model gravity, $\langle y_M \rangle$, on the reference spheroid, i.e.,

$$\Delta g^M = \Delta g - \langle y_M \rangle \tag{15}$$

We can write also

$$\Delta g^M = \langle y_M \rangle \cdot \langle y_M \rangle - \langle y_M \cdot y_M \rangle = \Delta g \cdot \langle y_M \rangle \tag{16}$$

where $\langle y_M \rangle$ is what one may call the satellite-determined gravity anomaly. Finally, we get (see, e.g., Vaněk and Krakiwsky (1960):

$$N^s = (N)_M + \sum_{n=1}^{\infty} \frac{\Delta g^M d\sigma}{\Delta g} \tag{17}$$

where

$$\Delta g_M = \sum_{n=M+1}^{\infty} \frac{2m+1}{2n+1} P_n \tag{18}$$

Realizing now that

$$\Delta g^M = N - (N)_M \tag{19}$$

is the height of the geoid above the reference spheroid $(N)_M$, we can see that equation (17) can be used to evaluate the geoidal height with respect to a reference spheroid of degree M. Equation (17) looks much the same as the original Stokes formula (1) with even the gravity anomaly Δg^M having a parallel meaning with Δg. This is why we call this approach a "generalized Stokes approach" (Vaněk and Sjöberg 1991). Its accuracy is, of course, described by equation (10) and we see that under the assumption (11), the generalized Stokes approach is more accurate than the classical Stokes approach.

We note that the use of higher-degree gravity field models such as, e.g., Rapp’s OSU89 models (Rapp and Pavlis 1990), arising from the combination of satellite and terrestrial data as reference models, is not considered here.

The reason for this is that we do not wish to become entangled in the discussion of correlations which would appear once such a model is further combined with terrestrial data—see, e.g., Vaněk and Sjöberg (1990).

The Hotine Approach

In the middle of this century, another Englishman, cartographer Martin Hotine, formulated and solved the fixed boundary value problem: Given the geoid and the actual gravity on the geoid, determine the disturbing potential on and above the geoid. His solution is subject to the same qualifications as the Stokes solution described above.

Hotine’s formula (Hotine 1969),

$$N = \sum_{n=1}^{\infty} \int_{C_n} H d\sigma \tag{20}$$

where

$$H = \sum_{n=1}^{\infty} \frac{2m+1}{2n+1} P_n \tag{21}$$

is known as Hotine’s function of a spherical distance and $\delta g = \delta g \cdot \langle y_M \rangle \tag{22}$.
which is easily evaluated as

\begin{equation}
\text{Bias}(\tilde{N}) = 2c \sum_{n=2}^{\infty} \frac{1}{(n-1)^2(n+1)^2} E(g_{n-1}) \cdot \frac{g_{n-1}}{\sigma_n^2(g_{n-1})} \cdot \frac{\sigma^2_{n-1}(g_{n-1})}{\sigma^2_n(g_{n-1})}.
\end{equation}

This bias contains only higher frequencies — from wave numbers M_n up — as one would expect from the approximation of N by $N(M)$ in equation (29).

The variance of \tilde{N} is easily derived from equation (28). Considering again the γ_n components of normal gravity errors, we obtain

\begin{equation}
\sigma^2(\tilde{N}) = 4c^2 \sum_{n=2}^{\infty} \frac{1}{(n-1)^2(n+1)^2} \sigma^2_n(g_{n-1})
\end{equation}

\begin{equation}
\quad \quad \quad + \sum_{n=2}^{\infty} \frac{1}{(n+1)^2} \sigma^2_n(g_{n-1}).
\end{equation}

Taking the MSE (an error 'centred' on 0) as a more appropriate measure of accuracy in the presence of a bias, we get

\begin{equation}
\text{MSE}(\tilde{N}) = \text{Bias}^2(\tilde{N}) + \sigma^2(\tilde{N})
\end{equation}

\begin{equation}
= 4c^2 \sum_{n=2}^{\infty} \frac{1}{(n-1)^2(n+1)^2} \sigma^2_n(g_{n-1})
\end{equation}

\begin{equation}
\quad \quad \quad + \sum_{n=2}^{\infty} \frac{1}{(n+1)^2} \sigma^2_n(g_{n-1})
\end{equation}

\begin{equation}
\quad \quad \quad + \sum_{n=M+1}^{\infty} \frac{4}{(n-1)^2(n+1)^2} \sigma^2_n(g_{n-1}).
\end{equation}

where by $c_n = E[g_{n-1}]$ we denote the "degree variances" (squares of values of spherical harmonics in the sense of actual, physical averages) of gravity.

The Second Approximate Hotine Approach

As an alternative, let us take directly the value defined by equation (30) from the previous paragraph and rewrite it as,

\begin{equation}
\tilde{N} = (N(M) + \delta \sum_{M+1}^{\infty} \delta_{n-1}(M) \delta_{n-1}(M) \delta_{n-1}(M))
\end{equation}

Its expected value is, of course, the same as that of the first approximation, i.e.,

\begin{equation}
E(\tilde{N}) = E(N)
\end{equation}

and so is therefore its bias

\begin{equation}
\text{Bias}(\tilde{N}) = \text{Bias}(\tilde{N}).
\end{equation}

The spectral expression for \tilde{N} is different, however, and can be written right away as

\begin{equation}
\tilde{N} = 2c \sum_{n=2}^{\infty} \frac{\gamma_n}{n} \sum_{n=1}^{\infty} \frac{\gamma_n}{n+1}
\end{equation}

\begin{equation}
\quad \quad \quad + \sum_{M+1}^{\infty} \frac{\gamma_n}{n+1} \delta_n.
\end{equation}

From the spectral form, we obtain the following expression for the variance

\begin{equation}
\sigma^2(\tilde{N}) = 4c^2 \sum_{n=2}^{\infty} \frac{1}{(n-1)^2(n+1)^2} \sigma^2_n(g_{n-1})
\end{equation}

\begin{equation}
\quad \quad \quad + \sum_{n=M+1}^{\infty} \frac{1}{(n+1)^2} \sigma^2_n(g_{n-1}).
\end{equation}

which is also different from the variance of the first approximation. The MSE of \tilde{N} is given by

\begin{equation}
\text{MSE}(\tilde{N}) = 4c^2 \sum_{n=2}^{\infty} \frac{1}{(n-1)^2(n+1)^2} \sigma^2_n(g_{n-1})
\end{equation}

\begin{equation}
\quad \quad \quad + \sum_{n=M+1}^{\infty} \frac{4}{(n-1)^2(n+1)^2} \sigma^2_n(g_{n-1}).
\end{equation}

We can see that while both approximations should give the same biased result, they have different error characteristics. In the next paragraph, we shall attempt to compare the performance of both these approximate techniques with the performance of the Stokes techniques.

Comparison of Stokes's and Hotine's Approaches

Since both of Hotine's approximations, \tilde{N} and \tilde{N}, are biased with respect to the correct Hotine approach and the two Stokes approaches, we have to use the MSEs to compare their respective accuracies. The method we shall use will be to investigate the magnitude of the differences of the MSEs, realizing that the biases in the two Stokes techniques are both zero, making their MSEs equal to their variances.

The difference between the errors in generalized Stokes's formula and in the first Hotine approximation — it makes no sense to evaluate errors in the accurate Hotine formula since it cannot be used directly — is given by the difference between equations (10) and (35). After a little mathematical development, we obtain

\begin{equation}
\text{MSE}(N) - \text{MSE}(\tilde{N})
\end{equation}

\begin{equation}
= 4c^2 \sum_{n=2}^{\infty} \frac{1}{(n-1)^2(n+1)^2} \sigma^2_n(g_{n-1})
\end{equation}

\begin{equation}
\quad \quad \quad + \sum_{n=M+1}^{\infty} \frac{4}{(n-1)^2(n+1)^2} \sigma^2_n(g_{n-1}).
\end{equation}

Clearly, if $\tilde{A}_1 > \tilde{A}_2$ is positive, then the first approximate Hotine approach gives a smaller error than the generalized Stokes approach.

If in equation (42) N is replaced by \tilde{N}, i.e., if the first Hotine approximation is compared against the classical Stokes approach, then the expression changes to

\begin{equation}
\text{MSE}(N) - \text{MSE}(\tilde{N}) = \tilde{A}_1 - \tilde{A}_2.
\end{equation}
References

Alnoy G (1960) Mathematical methods for determination of the gravity potential. In: Communications from the Royal Institute of Technology to the Twelfth General Assembly of the IUGG, Department of Geodasy, Stockholm

