On the accuracy of a regional geoid
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Abstract

In the Stokes-Helmert method deployed at UNB, the geoid is determined in
two steps, with different type of data used in each step. The first step consists of
selecting a higher-degree reference spheroid using a satellite-derived potential field
(potential coefficients), estimated from satellite tracking observations. In the second
step, the residual geoid is determined from terrestrial gravity anomalies. Uncertain-
ties of the potential coefficients are propagated to the spheroid according to the law
of propagation of (random error) covariance matrices. In the residual geoid, errors
in the gravity data are propagated through the (modified spheroidal) Stokes inte-
gral to yield point variances. Neglecting the correlations among individual gravity
anomalies, the correlation between any two residual geoidal heights is a function of
the area covered by gravity anomalies used in common by the Stokes integrals at
the two points.

*) First author’s present address: University of K. N. Toosi, Faculty of Civil Engineering, Dept. of
Surveying Engineering, Mirdamad intersection, No. 1346 Valiasr st., Tehran, Iran.



1 Introduction

The accuracy of both a geoidal height at a point, as well as the geoidal height difference
between two neighbouring points is investigated here. This accuracy depends on the
observational uncertainties of the data used, as well as on the method used for the geoid
determination.

In the Stokes-Helmert method employed here [Vani¢ek and Martinec, 1994], the geoid
is determined in two parts: the long wavelength part, and the short wavelength part. The
long wavelength part, also called the reference spheroid [Vanicek et al., 1986] describes the
global variations of the geoid. It is determined from satellite-derived potential coefficients.
The remaining part called the residual (high-frequency) geoid describes the local variations
of the geoid. It is determined from terrestrial gravity data by the generalized Stokes
integral.

The reference spheroid of degree L (Np) is expressed as a finite series of spherical
harmonics. Using spherical approximation [Vani¢ek and Krakiwsky, 1986], we get

Ni(Q) = R Y Ta(9), (1)

where T,,(§2) are the surface harmonics of the disturbing potential, given by

T0) = 3 [T Vonl®) + To Vonl®) ] )
and
?Sm(ﬂ) B cos mA\ = .
| = () Pantsin o) &

are the fully normalized spherical harmonics [Heiskanen and Moritz, 1981, Eqns. (1-73)].
In the formulae above, R is the mean radius of the earth, () is the geocentric direction
defined by geocentric latitude ¢ and longitude A, and Tsm, T:m are the fully normalized
satellite-derived unitless disturbing potential coefficients.

The high-frequency geoid is determined from the generalized Stokes integral, using
a modified spheroidal Stokes’s kernel S*[' [Vani¢ek and Kleusberg, 1987; Vanicek and

Sjoberg, 1991]

EN(Q) = K [[ 8AgHQ) SHw(2,0) ] 42 (4)
where R
K = prong (5)



Q' is the integration variable, 1 is the spherical distance between directions Q and ', v,
is the normal gravity on the reference ellipsoid, and Cy denotes the integration domain:
a spherical cap of radius 9y = 6° in our applications, and §Ag” is the residual gravity
anomaly

§Ag" = Ag — Agy, (6)

where Ag is the "observed” gravity anomaly and Agy, is the (low-frequency) reference
gravity anomaly. The modification of the kernel is carried out in a way that the integration
truncated at 6° distance, leaves minimum error on the geoidal height. This error is
called the truncation error, or the far-zone contribution, which is estimated from a high
resolution global geopotential model, e.g., the GFZ93A model [Gruber and Anzenhofer,
1993].

The generalized Stokes integral acts as a high-pass filter which automatically cuts off
the long wavelength contribution of the terrestrial data and refers the (high-frequency)
residual geoid to the spheroid. We note that when the far-zone contribution is added to
the result of the generalized Stokes integral, we obtain the exact value of the residual
geoidal height. Hence, the geoid at each point is determined as the sum of the spheroid
(Nz) and the residual geoid (§NL),

N = N, + §N&, (7)

where the degree L is the degree of the spheroid, 20 in our application [Vani¢ek and
Krakiwsky, 1986, Sec. (23-4)].

2 Variance of the Spheroid of Degree L

For simplicity, let us omit the subscript L from the relevant symbols in this section, bearing
in mind that all the discussion here is related to the spheroid of degree L. Uncertainties in
the disturbing potential coefficients are due to errors in the satellite potential coefficients

estimated from satellite tracking. To estimate o3, the variance of the spheroid, let us
2

s —

denote by (0<, )%, (¢2,.)* the error variance of either cosine (Tsm) or sine (T:m)

potential coefficients in Eqn. (2). By applying the covariance law to the Eqn. (2), we get

satellite

20) = 3 [0 (Ten) + (o2 (Tom) ] )

m=0

where the sum in the square brackets (amplitude of the spherical harmonics) is derived

c 8

from Eqn. (3). In practice, of,_, o2  will be almost the same for any n and m. In fact, a

case can be made that they should really be the same as dependence on longitude cannot



be expected. Putting of, = 02 = Opm results in

() = oXg) = 3 Plo(sin ¢) ol (9)

m=0

2(¢) is the error variance of the surface harmonic Ty, and o2, are the estimated

error variances from the orbit analysis. The error variances c2(p) for the GRIM4-S4
"satellite only” model with respect to degree n in different latitudes are shown in Fig. (1).
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Figure 1: Accuracy performance (error variance in units of 107'¢) of the GRIM4-54 model
in different latitudes

Applying now the covariance law to Eqn. (1) yields

onle) = R* Y oile), (10)

where o3 () is the error variance of the spheroid, a function of the latitude of the com-
putation point.
Let us look now at AN, the spheroidal height difference between points P; and P;,

AN = N; — N;. (11)

The spheroidal heights N; and Nj, determined from satellite potential coefficients at two
points, are statistically correlated. The correlation comes from the fact that the same
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potential coefficients are used in both computations. Applying the covariance law to
Eqn. (11), the error variance of AN is obtained as

oany = on(h) + on() — 2 On(,9;), (12)

where o is given by Eqn. (10) and Cy is the error covariance function. It is expressed
in terms of the error correlation function py as

Cn(2,Q5) = on(Q, Q) on(Q) on(€2;) (13)

To estimate 0%, one has to estimate the two variances o3 (%), o3(£;), and the value of
Cn (8%, Q).

To derive the error covariance Cn(€2;,2;), let us assume a vector of spheroidal heights
N computed at a mesh of m points, using satellite-derived coefficients (see Eqns. 1 and
2). Let ® be the Vandermonde matrix comprised of the spherical harmonic functions and
t the vector of satellite-derived coefficients for the disturbing potential T' (Eqn. 2). The
following matrix equation is then valid

N = &T¢. (14)

There is an estimated error covariance matrix associated with the vector ¢, derived from
the adjustment of the satellite observations. Let us denote it by C,. As the spherical
harmonic functions are globally orthogonal, the C, matrix is diagonal. Applying the
covariance law to Eqn. (14) yields the error covariance matrix of (the vector of spheroidal
heights) NV

Cy =7C, ®. (15)

The error covariance Cn(€;,w;), the element located at 3-th row and j-th column of the
matrix Cp, is obtained from a quadratic form

Cn(0, Q) = of C, @, (16)

where @, and ®; are the 2-th and j-th columns of the Vandermonde matrix. As the matrix
C, is diagonal, and considering Eqns. (1) and (2), we obtain

L n
On(, ) = B 3 Y onm [ Vo) V() + Vo (%) Vo) |, (17)
n=2 m=0
where o2 is the error variance of the satellite coefficients, {; and §; are the directions

of points P; and P;.
The covariance function can now be computed, given the accuracy of the satellite
coefficients. Fig. 2 illustrates the error variance of N as a function of degree n (o2 =
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S o202 ), called the error power spectrum of the gravity field determination of the
GRIM4-54 global geopotential model [Schwintzer et al., 1995]. Fig. 3 shows the covariance
function of N(€;) and N(Q;) (Eqn. 17), along a meridian of the spheroid of degree 20,
determined by the same model.

We note here that if oy, in the above formulae were not dependent on m, i.e., if for
all m we could write opm = oy, then Eqn. (17) would reduce to [Sideris and Schwartz,

1987]
L

Cn(2,9Q5) = Y op Pa[cos 9(92:,9;) ] = Cn(dy;) , (18)

n=2
where 1;; = ¥(£2;,Q;) is the spherical distance between directions €; and ©;. Under these
circumstances, the error covariance Cy becomes isotropic.
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Figure 2: Error power spectrum of the GRIM4-S4 model
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Figure 3: Error covariance function of the spheroid of degree 20 along a meridian [m?]



3 Variance of 0N and A(JN)

In this section, we also omit L, simplifying §N¥ to §N. The residual geoid §N obtained
from the Stokes integral (Eqn. 4) is subject to errors in the gravity anomalies §Ag” in
the integration domain. The error variance of the geoid is derived by the covariance law
applied to the Stokes integral. Let us call this variance by oZy. It will be derived in the
next section.

The difference between residual geoidal heights at points P; and P; is given as

A(6N) = 6N; — 6N; (19)

where § N; or 6 N; are both determined from Eqn. (4). By applying the covariance law to
Eqn. (19), the error variance of A(6N) is obtained as

dhen) = sn(%) + oin(Q) — 2 Con(, Q) , (20)

where Csy is the error covariance function of the residual geoid. It is related to the error
correlation function pgy by

Con(§2:,82) = psn (2, Q) osn () osn(§Y;) - (21)

3.1 Covariance of 4N

Let us consider the errors in residual gravity anomalies §Ag used in the Stokes integration
to be statistically independent. The gravity anomalies are really not independent; they are
at least correlated through errors in the reference gravity anomalies (see Eqn. 6). Dealing
with this problem is out of the scope of this paper. Assuming independent anomalies,
the errors of geoidal heights § N; and 6 N;, computed at two points farther than ¢ = 12°
apart, would be statistically independent; the distance of 12° equals to twice the radius
of the integration domain and for @ > 12°, there is no overlap of the two integration
domains. The statistical correlation will arise though if some data are shared by the
two integrals. This will be the case for points closer than 12°, i.e., when the integration
domains intersect (see Fig. 4). The area ¢ = C; N C; contains the gravity data shared by
the integrations over C; and C}.

To formulate the covariance function Csy (Eqn. 21), we again employ an algebraic
approach. Denoting by 8 N the vector of the geoidal heights computed at a mesh of m
points, and d Ag the vector of gravity data required by the Stokes integral to compute
O N, we can write the following system of linear equations

SN = S6Ag, (22)



Figure 4: Intersection of the integration domains

where S is the Stokes matrix operator, with its elements
sie = Ki S™ (i) Aag (23)

being the values of the Stokes kernel (S*L(14)) multiplied by the area of the surface
integration element (Aa;) at the gravity point Py and by K, (see Eqn. 4). The kernel
S*L' runs through the spherical cap C; of radius 9 = 6°, centred at point P;. In other
words, the 2-th row vector of the matrix § multiplied by the vector d Ag equals to the
numerical integration (summation) of the Stokes’s integral (over the cap C;), resulting in
the numerical value of residual geoidal height éN; (element of vector d V).

Applying the covariance law to Eqn. (22) yields

Csy = S Csag ST, (24)

where Cgag is the error covariance matrix of the gravity anomalies. The element ¢;; of the
matrix Cgy, is the error covariance between 6 N; and 6 N;. This element can be obtained
from the matrix equation (above) as the quadratic form

Cz'j = SZ C&Ag ST s (25)

7

where S; and S; are the 2-th and j-th row vectors of the matrix §. The operator S;, in
the spherical coordinates system, has the form

Si= ..., K SO sin (), .., (26)

where sin 1;(Q") comes from the expression of the surface integration element and (")
is the spherical distance of point "Q"” (Fig. 4) from point P;.
The compact form of ¢;;, denoted by Csn(P;, P;) in Eqn. (21) can be now written as

cij = C&N(Pi;Pj) = KZ Kj //C SZ*L(Q’) sin ’l,bz(ﬂl) X

x [ / /C ST sin gy () Csag(, Q) dﬂ”] Q' | (27)
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where Q" and Q" are two points in the domain ® = C; U C; (Fig. 4), S**(Q') is the
Stokes kernel defined in the cap C, SJ*L(Q) is the kernel defined in the cap C;, 1;())
is the spherical distance of point "Q)"” from the centre P;, K; is the Stokes constant at
P; the centre of C;, K, is the constant at P;; the centre of C;, and C(sAg(Q’,Q”) is the
covariance function (a kernel) defined for the pairs of points Q' and Q. The covariance
function represents those ”"elements” of the error covariance matrix Csag (Eqn. 24), in
the compact space, that are contained in the domain R.

Assuming independent gravity anomalies (§Ag), then the error covariance function

Csag(Q', Q") reduces to a Dirac delta function [Korn and Korn, 1968], defined as

0 for Q' #£ Q

C&AQ(Q _Q) = { UgAg(Q’) for O = O ) (28)

where U?AQ(Q’) is the error variance of gravity anomaly at point . Taking the delta
function into account, Eqn. (27) reduces to

Csn(wi, ;) = K; K; // SIE(Q) SIE(Q) x

! !

x sin 9;(Q) sin %i(Q) 08,,(Q) dOQ . (29)

Further, the kernel SJ’-‘L(Q’) is different from 0 only in a portion of C}, i.e., in the area 9.
Hence, the integration domain (C;) is reduced to ¢

Csn(,9Q5) = K; K; //19 S:E(Q) S;L(Q’) x

! !

X sin ¢j(Q’) sin (02 ) U(mg(ﬂ ) dQ .

This is the error covariance function between residual geoidal heights (6§ N), at points P;
and Pj, see I'ig. 4.

A speaal case of this function is the variance ojp(;) at point P;, when P; moves

(30)

towards the F;, yielding

oin(Q) = K} // S*L sin () )] Tiag(0

! !

) dQ . (31)
As P; moves to P;, the integration domain ¥ increases to C;. Writing error variances at
points P; and P;, and assuming uniform accuracy U?N(Q’) for the gravity anomalies, and
taking K; = K, the correlation function pgy is obtained from Eqn. (21). Substituting for
the error Covariance and variances from Eqns. (30) and (31) we get

psn (2, 825) = (32)



s S )S*L( ) sin i(Q) sin 9() O
T ISP s T 4T e, [SH) sin (@) dey
and realizing that C; = C; = Cy, we finally get

s SIE(Q) S3E(Q) sin 45;(Q) sin 9;(Q') 4O
Jo, [ SEE(Y) sin 4ho(Q) ]* O

where SSL(Q’) is the Stokes kernel, defined in the spherical cap Cy. Clearly, as P; —
P, psn(£:,85) — 1, as it should.

?

psnv($i, 85) = ’ (33)

3.2 Numerical Evaluation of pgy

The correlation function can now be numerically evaluated. The modified spheroidal
Stokes kernel can be approximated within the 6° spherical cap by the function

1.9972
S'(9) = —32.43544 + L0121

— 3.44927 In (%) — 173.24417 4 In (%) . (34)

to the accuracy of better than 107 [Vani¢ek and Kleusberg, 1987]. This accuracy was
shown to be good enough for evaluating the geoid with an error less than 10 c¢m [ibid]
and it is certainly good enough for evaluating the correlation in practice, where an error
of 1% should be considered small enough. The correlation function, Eqn. (33), is the
ratio of two surface integrals. In the denominator is the integral of the squared Stokes’s
kernel over the whole spherical cap of radius ¥y = 6°. The integrand is singular at the
centre of the cap, but the singularity is removed in the spherical coordinates system. The
integral is finite and equals approximately to 0.9558. We note that this number seems to
be acceptably close to 1.

The integral in the numerator is taken over the intersection area ¥, and involves the
product of two kernels, referred to points P; and P;, Fig. 5. The integral is written in a
more explicit form as

[ 8090, 2)) S Wy(25,9)) sin (@) sin () 42, (35)

where €); and ; define the points P; and P, 1; and 1); are the spherical distances, and
Q) defines the dummy point P’. At a first look, the integral seems to be a function of €
and ;, but writing the integral in the polar coordinate system at the pole P; with polar
coordinates of ¥; and a (azimuth) as

= [ S S, %0 0) sin (%00 sin i dys da,  (36)
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where 1; (see the triangle P, P'P;) is a function of 1;, 9, and the azimuth «, shows that
the integral is really a function of 9 — the spherical distance between points P; and P;.
For the numerical evaluation of the correlation function, a planar approximation is
employed: the spherical caps C; and C; are regarded as plane circles. Fig. 5 illustrates
the case of ¢ < 1. In this case, the area of the integration is divided into four quadrants:
OAD,OAB,0OBC, and OCD. Because the Stokes kernel is homogeneous and isotropic,

the integral over the area ¥ equals to four times the integral over, for instance, the area

0AB,
1g) = 4 | /(OAB) S*H(ihi) S*E(h;) sin by sin i diy dav (37)

In the area (OAB), the kernel §*£(4;) remains a regular function, while the kernel S*£(4;)
is singular at point P;. The integration is carried out in the polar coordinate system
with origin at P;, and the singularity is treated separately. In the case @ > 1, see,
i.e., Fig. 4, the integration can be again divided into 4 segments in the same coordinate
system, provided that there would be no singularity of the Stokes kernels in this case. The
correlation function obtained is shown in Fig. 6; it decreases monotonically, from unity
at the 0° spherical distance to zero at a spherical distance of 12°.

y

Figure 5: Integration over the area 4, for ¥ < 1y

The integration was performed numerically for ¢ €< 0,12° > at a step of 0.01 de-
gree of arc in both variables. For practical applications, the correlation function can be
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Figure 6: Correlation function of the residual geoid

approximated by the following function

psn($) = 1 + aln(l+4) + by”, (38)

to the accuracy of 0.01 (root mean squares error of fit), where

a = — 0.46824364 ,
b = + 0.00012060 ,

for 1 expressed in degrees of arc.

3.3 Relative Accuracy of the Geoid

The accuracy of the geoid, o3, is obtained from Eqn. (7) by applying the covariance law

oy = on, + Twe (39)
where on the right hand side are the variances of the spheroid and the residual geoid,
considered here independent. In fact, these variances are statistically dependent (corre-
lated), due to the use of Agy, in derivation of §Ag” (see Eqn. 6). The correlations call for
a separate investigation.

For the investigation of relative accuracy, Eqn. (7) is re-written for the differences of
quantities involved, as

AN = ANp + A(6N%). (40)
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For the reason just discussed, the relative quantities (above) are also correlated. In
the case of a higher degree spheroid (360x360) being used as a reference [She et al.,
1993], there are even correlations between Agr and the "observed” Ag, too. Assuming
independence and applying the variance law to Eqn. (40), we obtain the error variance of
the geoid difference as the sum

OAN = Oan, + UzA(&NL)a (41)

of the variances of the two components.

After the correlation functions for the spheroid and the high-frequency geoid are de-
rived (Eqns. 12 and 20), they are added together to give the variance of the total geoidal
height differences. We obtain

iy = ox() + ox() — 2 py(%,Q;) on () on(Q;) +
+ oin () + o () — 2 psn(2%,9;) osn () osn(9;) (42)

4 Numerical Results

To show the error correlation in geoid computation, seven points on the meridian of 240°
east were selected. The first point is located at the latitude of 45° north and the last at
the latitude of 70° north. The spacing between adjacent points is 1°, 2°, 4°, 6°, 10°, 25°,
respectively, see Tab. (1). Table (2) refers to the spheroid of degree 20, using the GRIM4-
S4 geopotential model. The covariance matrix was evaluated from Eqn. (15). Standard
deviations (SD), i.e., the square root of the diagonal elements of the covariance matrix,
are also shown in this table. Table (3) displays the error correlation coefficients for the
residual geoid, computed from Eqn. (37), while Tab. (4) shows the corresponding error
covariances, both for the UNB ’86 geoid model [Vanicek et al., 1986]. Table (5) presents
the complete geoid (the sum of the spheroid and the residual geoid) at the selected seven
points, and the corresponding covariance matrix (the sum of the matrices shown in Tabs.
(2) and (4). Finally, Tab. (6) shows the geoidal height differences and their standard

deviations, computed using Eqn. (41), all referred to the southernmost point.

5 Conclusions

The error covariance function of spheroid (Fig. 3), show positive correlation between
spheroidal heights of two points at distances less than 900 km. This indicates a better
relative accuracy than the absolute accuracy of the spheroid, i.e., the errors in the satellite-
derived field are somewhat canceled out in spheroidal height differences. In the residual
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geoid, the correlation function decreases to zero at 12° spherical distance between two
points. The correlation is a function of the area covered by the gravity data, shared by
the Stokes integrals at the two points. The correlation is positive (Fig. 6), indicating
again a better relative accuracy of the residual geoidal heights. In the derivation of
the correlation function, the observations (surface gravity anomalies) have been assumed
statistically independent and of uniform accuracy. In the real situation, however, the
gravity anomalies are statistically correlated and are usually of different accuracies. The
impact of this on the residual geoid correlation has not been investigated here.
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No Latitude Longitude

1 45° 240°
2 46° 240°
3 48° 240°
4 52° 240°
3 58° 240°
6 63° 240°
7 70° 240°

Table 1: Positions of seven test points

No S20 SD Cov

[m]  [m]

-18.541  0.081 0.007

-17.650 0.082 0.006  0.007

-16.345 0.084 0.005 0.006 0.007

-15.074 0.089 -0.002  0.000 0.004 0.008

-14.328  0.102 -0.006 -0.006 -0.005 0.001  0.010

-14.602 0.119 0.002  0.002 0.001 -0.003 -0.004 0.014
-14.310  0.121  0.002  0.002  0.002 -0.001 -0.005 0.013 0.015

=1 O O = W N —

Table 2: Spheroid Syo and its covariance matrix
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No Cor
1 1.0000
2 0.6756 1.0000
3 0.3541 0.4865 1.0000
4 0.0677 0.1149 0.2541 1.0000
5 0.0000 0.0000 0.0020 0.1149 1.000
6 0.0000 0.0000 0.0000 0.0000 0.002 1.0000
7 0.0000 0.0000 0.0000 0.0000 0.000 0.4865 1.0000
Table 3: Matrix of correlation coeflicients
No 6Ny, SD
] [m]
1 -0.76 0.04 0.0016
2 -3.41 0.04 0.0011 0.0016
3 -3.53 0.06 0.0008 0.0012 0.0036
4 -0.71 0.19 0.0005 0.0009 0.0029 0.0361
5 0.62 0.35 0.0000 0.0000 0.0000 0.0076 0.1225
6 2.56 0.09 0.0000 0.0000 0.0000 0.0000 0.0000 0.0081
7 -0.35 0.08 0.0000 0.0000 0.0000 0.0000 0.0000 0.0035 0.0064

Table 4: UNB’86 "residual geoid” (6§ Nyg) and its covariance matrix
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N SD

(m]  [m]

=1 O O k= W N

-19.301  0.09  0.0086

-21.060 0.09 0.0071  0.0086

-19.875 0.10 0.0058  0.0072  0.0106

-15.784 0.21 -0.0015 0.0009 0.0069  0.0441

-13.708  0.36  -0.0060 -0.0060 -0.0050 0.0086  0.1325

-12.042  0.15 0.0020  0.0020  0.0010 -0.0030 -0.0040 0.0221
-14.660 0.15 0.0020  0.0020  0.0020 -0.0010 -0.0050 0.0165 0.0214

Table 5: Total geoid (spheroid 4 residual geoid) and its covariance matrix

No Distance [m] AN [m] SD [m] Error per unit distance [107°]

1 0.000  0.000

2 0110 -1.759  0.055 0.50
3 0330 -0.574  0.087 0.26
4 0770 3.517  0.236 0.31
3 1430 5.593  0.391 0.27
6 2530 7.259  0.163 0.06
7 2750 4.641  0.161 0.06

Table 6: Geoidal height differences and their standard deviations
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