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Abstract

In the Stokes	Helmert method deployed at UNB� the geoid is determined in
two steps� with di�erent type of data used in each step� The �rst step consists of
selecting a higher	degree reference spheroid using a satellite	derived potential �eld
�potential coe�cients�� estimated from satellite tracking observations� In the second
step� the residual geoid is determined from terrestrial gravity anomalies� Uncertain	
ties of the potential coe�cients are propagated to the spheroid according to the law
of propagation of �random error� covariance matrices� In the residual geoid� errors
in the gravity data are propagated through the �modi�ed spheroidal� Stokes inte	
gral to yield point variances� Neglecting the correlations among individual gravity
anomalies� the correlation between any two residual geoidal heights is a function of
the area covered by gravity anomalies used in common by the Stokes integrals at
the two points�
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� Introduction

The accuracy of both a geoidal height at a point� as well as the geoidal height di�erence
between two neighbouring points is investigated here� This accuracy depends on the
observational uncertainties of the data used� as well as on the method used for the geoid
determination�

In the Stokes�Helmert method employed here �Van���cek and Martinec� 	

��� the geoid
is determined in two parts the long wavelength part� and the short wavelength part� The
long wavelength part� also called the reference spheroid �Van���cek et al�� 	
��� describes the
global variations of the geoid� It is determined from satellite�derived potential coe�cients�
The remaining part called the residual �high�frequency� geoid describes the local variations
of the geoid� It is determined from terrestrial gravity data by the generalized Stokes
integral�

The reference spheroid of degree L �NL� is expressed as a �nite series of spherical
harmonics� Using spherical approximation �Van���cek and Krakiwsky� 	
���� we get
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are the fully normalized spherical harmonics �Heiskanen and Moritz� 	
�	� Eqns� �	������
In the formulae above� R is the mean radius of the earth� � is the geocentric direction

de�ned by geocentric latitude � and longitude �� and T
C

nm� T
S

nm are the fully normalized
satellite�derived unitless disturbing potential coe�cients�

The high�frequency geoid is determined from the generalized Stokes integral� using
a modi�ed spheroidal Stokes�s kernel S�L �Van���cek and Kleusberg� 	
��� Van���cek and
Sj�oberg� 	
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is the integration variable� � is the spherical distance between directions � and �
�

� ��
is the normal gravity on the reference ellipsoid� and C� denotes the integration domain
a spherical cap of radius �� � �� in our applications� and ��gL is the residual gravity
anomaly

��gL � �g � �gL � ���

where �g is the �observed� gravity anomaly and �gL is the �low�frequency� reference
gravity anomaly� The modi�cation of the kernel is carried out in a way that the integration
truncated at �� distance� leaves minimum error on the geoidal height� This error is
called the truncation error� or the far�zone contribution� which is estimated from a high
resolution global geopotential model� e�g�� the GFZ
�A model �Gruber and Anzenhofer�
	

���

The generalized Stokes integral acts as a high�pass �lter which automatically cuts o�
the long wavelength contribution of the terrestrial data and refers the �high�frequency�
residual geoid to the spheroid� We note that when the far�zone contribution is added to
the result of the generalized Stokes integral� we obtain the exact value of the residual
geoidal height� Hence� the geoid at each point is determined as the sum of the spheroid
�NL� and the residual geoid ��NL��

N � NL � �NL � ���

where the degree L is the degree of the spheroid� � in our application �Van���cek and
Krakiwsky� 	
��� Sec� ��������

� Variance of the Spheroid of Degree L

For simplicity� let us omit the subscript L from the relevant symbols in this section� bearing
in mind that all the discussion here is related to the spheroid of degree L� Uncertainties in
the disturbing potential coe�cients are due to errors in the satellite potential coe�cients
estimated from satellite tracking� To estimate 	�N � the variance of the spheroid� let us

denote by �	cnm�
�� �	snm�

� the error variance of either cosine �T
C

nm� or sine �T
S

nm� satellite
potential coe�cients in Eqn� ���� By applying the covariance law to the Eqn� ���� we get
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where the sum in the square brackets �amplitude of the spherical harmonics� is derived
from Eqn� ���� In practice� 	cnm� 	

s
nm will be almost the same for any n and m� In fact� a

case can be made that they should really be the same as dependence on longitude cannot

�



be expected� Putting 	cnm � 	snm � 	nm results in

	�n��� � 	�n��� �
nX

m��

P
�
nm�sin �� 	�nm � �
�

where 	�n��� is the error variance of the surface harmonic Tn and 	�nm are the estimated
error variances from the orbit analysis� The error variances 	�n��� for the GRIM��S�
�satellite only� model with respect to degree n in di�erent latitudes are shown in Fig� �	��
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Figure 	 Accuracy performance �error variance in units of 	 ���� of the GRIM��S� model
in di�erent latitudes
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Applying now the covariance law to Eqn� �	� yields

	�N ��� � R�
LX

n��

	�n��� � �	 �

where 	�N��� is the error variance of the spheroid� a function of the latitude of the com�
putation point�

Let us look now at �N � the spheroidal height di�erence between points Pi and Pj �

�N � Nj � Ni � �		�

The spheroidal heights Ni and Nj� determined from satellite potential coe�cients at two
points� are statistically correlated� The correlation comes from the fact that the same

�



potential coe�cients are used in both computations� Applying the covariance law to
Eqn� �		�� the error variance of �N is obtained as

	��N � 	�N��i� � 	�N��j� � � CN��i��j� � �	��

where 	�N is given by Eqn� �	 � and CN is the error covariance function� It is expressed
in terms of the error correlation function 
N as

CN��i��j� � 
N ��i��j� 	N��i� 	N��j� � �	��

To estimate 	��N � one has to estimate the two variances 	�N ��i�� 	
�
N��j�� and the value of

CN ��i��j��
To derive the error covariance CN ��i��j�� let us assume a vector of spheroidal heights

N computed at a mesh of m points� using satellite�derived coe�cients �see Eqns� 	 and
��� Let � be the Vandermonde matrix comprised of the spherical harmonic functions and
t the vector of satellite�derived coe�cients for the disturbing potential T �Eqn� ��� The
following matrix equation is then valid

N � �
T t � �	��

There is an estimated error covariance matrix associated with the vector t� derived from
the adjustment of the satellite observations� Let us denote it by �Ct� As the spherical
harmonic functions are globally orthogonal� the �Ct matrix is diagonal� Applying the
covariance law to Eqn� �	�� yields the error covariance matrix of �the vector of spheroidal
heights� N

CN � �
T �Ct � � �	��

The error covariance CN��i� �j�� the element located at i�th row and j�th column of the
matrix CN � is obtained from a quadratic form

CN��i��j� � !T
i
�Ct !j � �	��

where !i and !j are the i�th and j�th columns of the Vandermonde matrix� As the matrix
�Ct is diagonal� and considering Eqns� �	� and ���� we obtain

CN ��i��j� � R�
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where 	�nm is the error variance of the satellite coe�cients� �i and �j are the directions
of points Pi and Pj �

The covariance function can now be computed� given the accuracy of the satellite
coe�cients� Fig� � illustrates the error variance of N as a function of degree n �	�n �

�



Pn
m�� �	

�
nm�� called the error power spectrum of the gravity �eld determination of the

GRIM��S� global geopotential model �Schwintzer et al�� 	

��� Fig� � shows the covariance
function of N��i� and N��j� �Eqn� 	��� along a meridian of the spheroid of degree � �
determined by the same model�

We note here that if 	nm in the above formulae were not dependent on m� i�e�� if for
all m we could write 	nm � 	n� then Eqn� �	�� would reduce to �Sideris and Schwartz�
	
���

CN��i��j� �
LX

n��

	�n Pn� cos ���i��j� � � CN ��ij� � �	��

where �ij � ���i��j� is the spherical distance between directions �i and �j� Under these
circumstances� the error covariance CN becomes isotropic�
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Figure � Error power spectrum of the GRIM��S� model
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Figure � Error covariance function of the spheroid of degree � along a meridian �m��
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� Variance of �N and ���N�

In this section� we also omit L� simplifying �NL to �N � The residual geoid �N obtained
from the Stokes integral �Eqn� �� is subject to errors in the gravity anomalies ��gL in
the integration domain� The error variance of the geoid is derived by the covariance law
applied to the Stokes integral� Let us call this variance by 	��N � It will be derived in the
next section�

The di�erence between residual geoidal heights at points Pi and Pj is given as

���N� � �Nj � �Ni � �	
�

where �Nj or �Ni are both determined from Eqn� ���� By applying the covariance law to
Eqn� �	
�� the error variance of ���N� is obtained as

	����N	 � 	��N��i� � 	��N��j� � � C�N ��i��j� � �� �

where C�N is the error covariance function of the residual geoid� It is related to the error
correlation function 
�N by

C�N��i��j� � 
�N ��i��j� 	�N��i� 	�N ��j� � ��	�

��� Covariance of �N

Let us consider the errors in residual gravity anomalies ��g used in the Stokes integration
to be statistically independent� The gravity anomalies are really not independent� they are
at least correlated through errors in the reference gravity anomalies �see Eqn� ��� Dealing
with this problem is out of the scope of this paper� Assuming independent anomalies�
the errors of geoidal heights �Ni and �Nj� computed at two points farther than � � 	��

apart� would be statistically independent� the distance of 	�� equals to twice the radius
of the integration domain and for � � 	��� there is no overlap of the two integration
domains� The statistical correlation will arise though if some data are shared by the
two integrals� This will be the case for points closer than 	��� i�e�� when the integration
domains intersect �see Fig� ��� The area � � Ci �Cj contains the gravity data shared by
the integrations over Ci and Cj�

To formulate the covariance function C�N �Eqn� �	�� we again employ an algebraic
approach� Denoting by �N the vector of the geoidal heights computed at a mesh of m
points� and ��g the vector of gravity data required by the Stokes integral to compute
�N � we can write the following system of linear equations

�N � S ��g � ����

�
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Figure � Intersection of the integration domains
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where S is the Stokes matrix operator� with its elements

sik � Ki S
�L��ik� �aik � ����

being the values of the Stokes kernel �S�L��ik�� multiplied by the area of the surface
integration element ��aik� at the gravity point Pk and by Ki �see Eqn� ��� The kernel
S�L runs through the spherical cap Ci of radius � � ��� centred at point Pi� In other
words� the i�th row vector of the matrix S multiplied by the vector ��g equals to the
numerical integration �summation� of the Stokes�s integral �over the cap Ci�� resulting in
the numerical value of residual geoidal height �Ni �element of vector �N ��

Applying the covariance law to Eqn� ���� yields

C�N � S C��g S
T � ����

where C��g is the error covariance matrix of the gravity anomalies� The element cij of the
matrix C�N � is the error covariance between �Ni and �Nj� This element can be obtained
from the matrix equation �above� as the quadratic form

cij � Si C��g S
T
j � ����

where Si and Sj are the i�th and j�th row vectors of the matrix S� The operator Si� in
the spherical coordinates system� has the form

Si �
h
� � � � Ki S

�L
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�
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i
� ����

where sin �i��
�

� comes from the expression of the surface integration element and �i��
�

�
is the spherical distance of point ��

�

� �Fig� �� from point Pi�
The compact form of cij � denoted by C�N �Pi� Pj� in Eqn� ��	� can be now written as

cij � C�N�Pi� Pj� � Ki Kj
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where �
�

and �
 are two points in the domain � � Ci � Cj �Fig� ��� S�L
i ��

�

� is the
Stokes kernel de�ned in the cap Ci� S�L

j ��
� is the kernel de�ned in the cap Cj� �j��
�
is the spherical distance of point ��
� from the centre Pj � Ki is the Stokes constant at
Pi the centre of Ci� Kj is the constant at Pj � the centre of Cj� and C��g��

�

��
� is the
covariance function �a kernel� de�ned for the pairs of points �

�

and �
� The covariance
function represents those �elements� of the error covariance matrix C��g �Eqn� ���� in
the compact space� that are contained in the domain ��

Assuming independent gravity anomalies ���g�� then the error covariance function
C��g��

�

��
� reduces to a Dirac delta function �Korn and Korn� 	
���� de�ned as

C��g��
�

� �
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�

� �
 � ����

where 	���g��
�

� is the error variance of gravity anomaly at point �
�

� Taking the delta
function into account� Eqn� ���� reduces to

C�N ��i��j� � Ki Kj
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Further� the kernel S�L
j ��

�

� is di�erent from  only in a portion of Ci� i�e�� in the area ��
Hence� the integration domain �Ci� is reduced to �
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This is the error covariance function between residual geoidal heights ��N�� at points Pi
and Pj � see Fig� ��

A special case of this function is the variance 	��N��i� at point Pi� when Pj moves
towards the Pi� yielding

	��N��i�
�
� K�

i

Z Z
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h
S�L
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�
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	���g��
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As Pj moves to Pi� the integration domain � increases to Ci� Writing error variances at
points Pi and Pj� and assuming uniform accuracy 	��N��

�

� for the gravity anomalies� and
taking Ki

�
� Kj� the correlation function 
�N is obtained from Eqn� ��	�� Substituting for

the error covariance and variances from Eqns� �� � and ��	� we get


�N ��i��j� � ����
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and realizing that Ci � Cj � C�� we �nally get
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where S�L
� ��

�

� is the Stokes kernel� de�ned in the spherical cap C�� Clearly� as Pj �
Pi� 
�N��i��j�� 	� as it should�

��� Numerical Evaluation of ��N

The correlation function can now be numerically evaluated� The modi�ed spheroidal
Stokes kernel can be approximated within the �� spherical cap by the function

S����
�
� ��������� �

	�

���

�
� ����
�� ln

�
�

�

�
� 	������	� �� ln

�
�

�

�
� ����

to the accuracy of better than 	 �� �Van���cek and Kleusberg� 	
���� This accuracy was
shown to be good enough for evaluating the geoid with an error less than 	 cm �ibid�
and it is certainly good enough for evaluating the correlation in practice� where an error
of 	" should be considered small enough� The correlation function� Eqn� ����� is the
ratio of two surface integrals� In the denominator is the integral of the squared Stokes�s
kernel over the whole spherical cap of radius �� � ��� The integrand is singular at the
centre of the cap� but the singularity is removed in the spherical coordinates system� The
integral is �nite and equals approximately to  �
���� We note that this number seems to
be acceptably close to 	�

The integral in the numerator is taken over the intersection area �� and involves the
product of two kernels� referred to points Pi and Pj� Fig� �� The integral is written in a
more explicit form asZ Z

�
S�L��i��i��

�

�� S�L��j��j ��
�

�� sin �j��
�

� sin �i��
�

� d�
�

� ����

where �i and �j de�ne the points Pi and Pj � �i and �j are the spherical distances� and
�

�

de�nes the dummy point P �� At a �rst look� the integral seems to be a function of �i

and �j � but writing the integral in the polar coordinate system at the pole Pi with polar
coordinates of �i and  �azimuth� as

I��� �
Z Z

�
S�L��i� S

�L��j����i� �� sin �j����i� � sin �i d�i d � ����

	 



where �j �see the triangle PiP �Pj� is a function of �i� �� and the azimuth � shows that
the integral is really a function of � # the spherical distance between points Pi and Pj �

For the numerical evaluation of the correlation function� a planar approximation is
employed the spherical caps Ci and Cj are regarded as plane circles� Fig� � illustrates
the case of � � ��� In this case� the area of the integration is divided into four quadrants
OAD�OAB�OBC� and OCD� Because the Stokes kernel is homogeneous and isotropic�
the integral over the area � equals to four times the integral over� for instance� the area
OAB�

I��� � �
Z Z

�OAB	
S�L��i� S

�L��j� sin �j sin �i d�i d � ����

In the area �OAB�� the kernel S�L��i� remains a regular function� while the kernel S�L��j�
is singular at point Pj � The integration is carried out in the polar coordinate system
with origin at Pi� and the singularity is treated separately� In the case � � ��� see�
i�e�� Fig� �� the integration can be again divided into � segments in the same coordinate
system� provided that there would be no singularity of the Stokes kernels in this case� The
correlation function obtained is shown in Fig� �� it decreases monotonically� from unity
at the  � spherical distance to zero at a spherical distance of 	���
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Figure � Integration over the area �� for � � ��
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Pi � Pj
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The integration was performed numerically for � 	�  � 	�� � at a step of  � 	 de�
gree of arc in both variables� For practical applications� the correlation function can be
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Figure � Correlation function of the residual geoid

approximated by the following function


�N��� � 	 � a ln �	 � �� � b �� � ����

to the accuracy of  � 	 �root mean squares error of �t�� where

a � �  ��������� �

b � �  �   	� � �

for � expressed in degrees of arc�

��� Relative Accuracy of the Geoid

The accuracy of the geoid� 	�N � is obtained from Eqn� ��� by applying the covariance law

	�N � 	�NL
� 	��NL � ��
�

where on the right hand side are the variances of the spheroid and the residual geoid�
considered here independent� In fact� these variances are statistically dependent �corre�
lated�� due to the use of �gL in derivation of ��gL �see Eqn� ��� The correlations call for
a separate investigation�

For the investigation of relative accuracy� Eqn� ��� is re�written for the di�erences of
quantities involved� as

�N � �NL � ���NL� � �� �

	�



For the reason just discussed� the relative quantities �above� are also correlated� In
the case of a higher degree spheroid ��� ��� � being used as a reference �She et al��
	

��� there are even correlations between �gL and the �observed� �g� too� Assuming
independence and applying the variance law to Eqn� �� �� we obtain the error variance of
the geoid di�erence as the sum

	��N � 	��NL
� 	����NL	 � ��	�

of the variances of the two components�
After the correlation functions for the spheroid and the high�frequency geoid are de�

rived �Eqns� 	� and � �� they are added together to give the variance of the total geoidal
height di�erences� We obtain

	��N � 	�N��i� � 	�N ��j� � � 
N ��i��j� 	N��i� 	N��j� �

� 	��N��i� � 	��N��j� � � 
�N��i��j� 	�N ��i� 	�N��j� � ����

� Numerical Results

To show the error correlation in geoid computation� seven points on the meridian of �� �

east were selected� The �rst point is located at the latitude of ��� north and the last at
the latitude of � � north� The spacing between adjacent points is 	�� ��� ��� ��� 	 �� ����
respectively� see Tab� �	�� Table ��� refers to the spheroid of degree � � using the GRIM��
S� geopotential model� The covariance matrix was evaluated from Eqn� �	��� Standard
deviations �SD�� i�e�� the square root of the diagonal elements of the covariance matrix�
are also shown in this table� Table ��� displays the error correlation coe�cients for the
residual geoid� computed from Eqn� ����� while Tab� ��� shows the corresponding error
covariances� both for the UNB ��� geoid model �Van���cek et al�� 	
���� Table ��� presents
the complete geoid �the sum of the spheroid and the residual geoid� at the selected seven
points� and the corresponding covariance matrix �the sum of the matrices shown in Tabs�
��� and ���� Finally� Tab� ��� shows the geoidal height di�erences and their standard
deviations� computed using Eqn� ��	�� all referred to the southernmost point�

� Conclusions

The error covariance function of spheroid �Fig� ��� show positive correlation between
spheroidal heights of two points at distances less than 
  km� This indicates a better
relative accuracy than the absolute accuracy of the spheroid� i�e�� the errors in the satellite�
derived �eld are somewhat canceled out in spheroidal height di�erences� In the residual

	�



geoid� the correlation function decreases to zero at 	�� spherical distance between two
points� The correlation is a function of the area covered by the gravity data� shared by
the Stokes integrals at the two points� The correlation is positive �Fig� ��� indicating
again a better relative accuracy of the residual geoidal heights� In the derivation of
the correlation function� the observations �surface gravity anomalies� have been assumed
statistically independent and of uniform accuracy� In the real situation� however� the
gravity anomalies are statistically correlated and are usually of di�erent accuracies� The
impact of this on the residual geoid correlation has not been investigated here�
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No Latitude Longitude
	 ��� �� �

� ��� �� �

� ��� �� �

� ��� �� �

� ��� �� �

� ��� �� �

� � � �� �

Table 	 Positions of seven test points

No S�� SD Cov
�m� �m�

	 �	����	  � �	  �  �
� �	����  � ��  �  �  �  �
� �	�����  � ��  �  �  �  �  �  �
� �	�� ��  � �
 � �  �  �    �  �  �  �
� �	�����  �	 � � �  � � �  � � �  �  �  	  � 	 
� �	��� �  �		
  �  �  �  �  �  	 � �  � � �  �  � 	�
� �	���	  �	�	  �  �  �  �  �  � � �  	 � �  �  � 	�  � 	�

Table � Spheroid S�� and its covariance matrix
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No Cor
	 	�    
�  ����� 	�    
�  ����	  ����� 	�    
�  � ���  �		�
  ����	 	�    
�  �     �     �  �  �		�
 	�   
�  �     �     �     �     �  � 	�    
�  �     �     �     �     �    ����� 	�    

Table � Matrix of correlation coe�cients

No �N�� SD

�m� �m�
	 � ���  � �  �  	�
� ����	  � �  �  		  �  	�
� �����  � �  �   �  �  	�  �  ��
� � ��	  �	
  �   �  �   
  �  �
  � ��	
�  ���  ���  �     �     �     �  ��  �	���
� ����  � 
  �     �     �     �     �     �  �	
� � ���  � �  �     �     �     �     �     �  ��  �  ��

Table � UNB��� �residual geoid� ��N��� and its covariance matrix
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No N SD

�m� �m�
	 �	
�� 	  � 
  �  ��
� ��	� �  � 
  �  �	  �  ��
� �	
����  �	  �  ��  �  ��  � 	 �
� �	�����  ��	 � �  	�  �   
  �  �
  � ��	
� �	��� �  ��� � �  � � �  � � �  �  �  ��  �	���
� �	�� ��  �	�  �  �  �  �  �  	 � �  � � �  �  � ��	
� �	����  �	�  �  �  �  �  �  � � �  	 � �  �  � 	��  � �	�

Table � Total geoid �spheroid � residual geoid� and its covariance matrix

No Distance �m� �N �m� SD �m� Error per unit distance �	 ���
	  �    �   
�  		 �	���
  � ��  �� 
�  �� � ����  � ��  ���
�  �� ���	�  ����  ��	
� 	�� ���
�  ��
	  ���
� ��� ����
  �	��  � �
� ��� ����	  �	�	  � �

Table � Geoidal height di�erences and their standard deviations
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