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Abstract 

A truncated convolution integral often has to be used as an approximation of a complete 

convolution over the sphere in many Earth science or related studies, such as geodesy, 

geophysics and meteorology.  The truncated integration is necessary because detailed 

input data are not usually available over the entire Earth.  In this contribution, a 

symmetrical mathematical apparatus is presented with which to treat the truncation 

problem elegantly.  Some important aspects are mentioned and one practical example is 

shown for regional gravimetric geoid determination of Canada. 

 

Introduction 

The main topic treated in this paper is the convolution integration over a sphere and 

how to treat it correctly when data are available only in a certain area around the point 

of computation.  An isotropic, i.e. azimuth independent, integration kernel will be 

assumed throughout.  This problem arose from the common practice in geo-scientific 

studies, where in many cases it has not been treated correctly.  Quite often, the 

integration over the sphere is reduced to integration over a small region surrounding the 

computation point, neglecting the integration over the remainder of the sphere.  Of 

course, a physically reasonable integration kernel usually decreases its magnitude with 

the growing spherical distance from the point of interest, which makes the far-zone 

contribution relatively small.  On the other hand, however, the far-zone integration 

domain is usually too large to completely neglect its contribution.  Some theoretical 

aspects of this truncation problem have already been treated in Vaní�ek and Sjöberg 

(1991) and Vaní�ek and Featherstone (1998), as well as by numerous other authors, e.g. 

Evans and Featherstone (2000), Heck and Grüninger (1987), Meissl (1971), Omang 
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and Forsberg (2002), Sjöberg (1986; 1991), Sjöberg and Hunegnaw (2000), Wong and 

Gore (1969), Featherstone et al. (1998).  

This paper consists of two main parts: 1. the mathematical background, and 2. a 

numerical example.  In the first part, it is shown how to perform a convolution 

integration over the sphere correctly from the mathematical point of view.  Symmetrical 

formulae using a series expansion are derived for the integration over the spherical cap 

around the point of computation and for the integration over the rest of the sphere.  The 

second part of the paper shows one practical application in geodesy - determination of 

the precise regional geoid in Canada from a limited gravity data set on the sphere.  

 

Mathematical background 

Consider a general convolution-type integral over the unit sphere 
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where K is an isotropic kernel, a function of the solid spherical angle ψ between the 

evaluation and integration points, f is a function on a sphere, continuous together with 

its first and second derivatives, Ω = (ϕ, λ) is a solid spherical angle denoting the pair of 

spherical co-ordinates ϕ, λ, the spherical latitude and longitude.  The kernel function K 

can be expressed as an infinite orthogonal series expansion in terms of Legendre 

polynomials as the basis functions, which gives 
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where 
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If the function K is continuous together with its first and second derivatives, the series in 

Eq. (2) will be absolutely and uniformly convergent.  The same holds for the function f, 

see (e.g., Rektorys, 1973, p. 605).  The integral in Eq. (1) can also be written as an 

infinite series of the Laplace surface spherical harmonics Yn of the function f as follows 
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Equation (4) can be derived by substitution of Eq. (2) into Eq. (1), assuming that for the 

Laplace surface spherical harmonics of the function f, the following formula holds 
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see also (Heiskanen and Moritz, 1967, Eq. 1-71).  The Laplace surface spherical 

harmonics of f can also be written as follows 
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see also (ibid., Eq. 1-66).  In Eq. (6), nmR  and nmS  are the fully normalised spherical 

harmonic basis functions and nma  and nmb  are the fully normalised spherical harmonic 

coefficients of f defined by the following expressions (ibid., Eq. 1-76 and 1-73) 
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where δ0m is the Kronecker delta and Pnm are the associated Legendre functions.  

Introducing now a spatial truncation at the solid spherical angle ψ0 from the 

computation point, Eq. (1) can be decomposed as 
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where C denotes a spherical cap of an arbitrary radius 0 < ψ0 < π.  In practice, the area 

C corresponds to the domain where detailed input data are known.  The region outside 

the cap (Ω′-C) corresponds to the domain where detailed data are not available.  

Associated with this decomposition, a new truncated kernel is defined as 
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This truncated kernel K* can also be expressed as an orthogonal series expansion in 

terms of Legendre polynomials, see (e.g., Molodensky et al., 1962, p. 147), as follows 
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where for ∀n = 0,1,2,... and 0 < ψ0 < π , the expansion coefficients sn(ψ0) of this series 

expansion are given by 
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The kernel K* is  discontinuous at ψ = ψ0 and therefore the convergence of the series in 

Eq. (11) at this point is not absolute but mean.  Other authors (e.g., Meissl, 1971; Heck 

and Gruninger, 1987; Feathertstone et al., 1998; Evans and Featherstone, 2002) have 

addressed the problem of the continuity of the kernel function and its effect on the rate 

of convergence of the series in Eq. (11) so we shall not delve into this problem here.   

Inserting Eq. (10), the first integral on the right-hand-side of Eq. (9) can be re-

written as 
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Substituting for K* from Eq. (11), gives 
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The integral in Eq. (13) can now be derived in terms of the Laplace surface spherical 

harmonics, similarly to Eq. (4) when taking into account Eq. (5) 
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Returning to Eq. (10), a complementary kernel K** can be defined as 
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which has the following orthogonal series expansion 
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where for ∀n = 0,1,2,...; 0 < ψ0 < π , the expansion coefficients are 
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The second integral on the right-hand-side of Eq. (9) may then be expressed 

analogously to Eq. (15) as 
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Equations (15) and (19) provide an effective symmetrical apparatus for dealing with any 

truncation problem encountered in the studies of the Earth, or any other problem on the 

sphere.  It is important to note that the division of the integration area Ω′ into a spherical 

cap and the rest of the sphere does not correspond to an exact separation in the 

frequency domain: each partial integral must be expressed as a series containing all 

frequencies.  

Since the sum K*(ψ) + K**(ψ) must be equal to K(ψ), the following must also 

hold, as can be seen comparing Eqs. (12) and (18) with Eq. (3)  
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Indeed, putting together Eqs. (9), (15) and (19) gives 
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which is the same result as Eq. (4). 

 

A numerical example over Canada 

A good example where the above theory is applied is in the determination of the geoid 

using local gravity data and a global geopotential model, the latter of which is expressed 
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in terms of spherical harmonics.  Here, the low frequency part of the function given by 

Eq. (4) is computed separately from an existing global geopotential model.  Then the 

apparatus described above can be applied to the rest of the frequencies.  In such a case, 

the first term on the right-hand-side of Eq. (9) is computed using the detailed input data 

and the second term, representing the medium and high-degree part of the far-zone 

contribution, is estimated from a high-degree global geopotential model.  

The geoid is defined as the surface that intersects the direction of gravity at right 

angles and from which the surface of the world ocean is a part (Gauss, 1828, p. 49), or 

as the equipotential surface that best approximates the mean sea level over the whole 

Earth (Vaní�ek and Krakiwsky, 1986, p. 87), if  the sea surface topography is neglected.  

The geoid is a surface of great theoretical and practical importance, with many practical 

applications such as: study of the deep Earth mass anomalies, vertical positioning, 

geodynamics, etc. (e.g., Vaní�ek and Christou, 1994).  

A solution for the geoid obtained from terrestrial gravity data, in a spherical 

approximation, is known as Stokes’s integral (Stokes, 1849) 
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Equation (22) is a global convolution integral which transforms the gravity anomalies 

∆g to geoid heights N.  In Eq. (22), R is the radius of the reference sphere, γ0 is normal 

gravity on the reference ellipsoid, and S(ψ) is Stokes’s function.  Stokes’s function may 

be represented in a spatial form (e.g., Heiskanen and Moritz, 1967, Eq. 2-164 or 

Vaní�ek and Krakiwsky, 1986, Eq. 22.15) as 
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or in a spectral form as 
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where Pn(cosψ) is the Legendre polynomial of degree n.  From the point of view of the 

boundary-value problem solution, Stokes’s function is simply a Green’s function.  It 

may also be regarded as a homogeneous and isotropic integration kernel. Stokes’s 

integral is thus the Green’s type of solution to the geodetic boundary-value problem 

(Vaní�ek and Krakiwsky, 1986, pp. 519-520).   

It is clear that Stokes’s integral (Eq. 22) requires knowledge of the gravity 

anomalies over the whole Earth.  However, this poses a problem because there is a lack 

of data in many regions, due to restricted field access or data confidentiality clauses. 

Vaní�ek and Kleusberg (1987), for example, suggest separating the summation over n in 

Stokes’s function (Eq. 24) into low- and high-degree frequency parts 
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In this example, the value of �=20 was chosen since this is the degree beyond which 

satellite-only global geopotential models become less reliable (excepting those likely to 

be derived from the current and planned dedicated satellite gravimetry missions, e.g., 

Rummel et al., 2002).  Many authors prefer to use a high-degree global geopotential 
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model based on combined satellite-terrestrial observations up to, typically, �=360.  Such 

an approach would reduce the truncation error, but on the other hand all errors coming 

from a high-degree geopotential model would affect the solution.   While the new 

generation of global geopotential models based on the current and planned dedicated 

satellite gravimetry missions will bring a significant improvement in accuracy of the 

medium degree geopotential coefficients (ibid.), the problems of terrestrial gravity data 

in combined global geopotential models will remain.  

Let us denote the low-degree part of Stokes’s kernel by S
�
(ψ) and the high 

degree part by S�(ψ).  This high degree part of Stokes’s kernel is called the spheroidal 

Stokes kernel (Vaní�ek and Kleusberg (1987).  Substituting Eq. (25) into Eq. (22), the 

geoid height can also be split into a low degree part N
�
(Ω), called the reference spheroid 

(ibid.), and a high-degree contribution N�(Ω), so that 
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where, the low-frequency geoid is 
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The integration in Eqs. (27) and (28) is still global at this stage of the derivation. 

It is most sensible to determine the low-frequency part of the geoid N
�
(Ω) (Eq. (27) 

from satellite-only measurements with a sufficient accuracy from Eq. (21) with 

K(ψ)=S
�
(ψ), f(Ω)=∆g(Ω) and n∈<0,20>.  More specifically, it is evaluated in practice 

using fully normalised coefficients of a truncated spherical harmonic series of a 

satellite-only global geopotential model.  This long-wavelength part of the geoid over 

Canada, computed from the GRIM4-S4 satellite-only global geopotential model 

(Schwintzer et al., 1997) is shown in Fig. 1.  The modified Stokes integration is then 

employed for the high-degree part of the geoid height according to Eq. (28).  Even 

though frequency division has been used, the problem with lack of the gravity data in 

some regions still remains.  In order to address this problem, the integration domain is 

split into a spherical cap of ψ0=6° and the rest of the reference sphere, as it is defined in 

the more general sense in Eq. (9).  This gives 
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Integration over the spherical cap (first term on the right-hand-side of Eq. 29) 

estimates part of the high-frequency components of the geoid height.  This part is often 

called the residual geoid model �

CN  and it can be obtained in a spatial domain using a 

numerical integration, or can be computed using Fourier techniques after some 

approximations.  The residual geoid model over Canada, computed from gravity and 

terrain data available for Canada and nearby seas using the modified spheroidal Stokes's 

function, which is described below, is shown in Fig. 2.  Integration over the rest of the 

sphere usually yields a much smaller-valued term (typically in decimetres, whereas the 
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contribution from the cap is typically a few metres).  Thus, it is possible to determine it 

from a high-degree global geopotential model with a sufficient accuracy according to 

Eq. (19) with K(ψ)=S�(ψ), f(Ω)=∆g(Ω) and n∈<21,360>.  This part is then the medium-

degree far-zone contribution �

CN −Ω′ .  The remaining high-frequency terms (n>360) 

contribute to geoid height less then 1cm, as it was shown by (Martinec, 1993), and can 

therefore be neglected. 

If the global information is in any way of a questionable quality, it is advisable 

to minimise the far-zone contribution term by modifying the spheroidal Stokes’s kernel.  

One such modification was introduced by Vaní�ek and Kleusberg (1987), which 

minimises the truncation term in a least-square sense according to idea of Molodenskij 

et al., (1962).  Other procedures of modification can be found in the articles cited in the 

Introduction.  The result of the Vaní�ek and Kleusberg (1987) modification is called the 

Molodenskij-like modified spheroidal Stokes’s kernel.  The far-zone contribution 

computed using the Molodenskij-like modified spheroidal Stokes’s kernel and the 

EGM96 combined satellite-terrestrial global geopotential model (Lemoine et al., 1998) 

to a degree and order 360 is displayed in Fig. 3.  From this figure, it can be seen that 

even the minimised far-zone contribution term reaches the magnitude of a few 

decimetres over Canada and therefore cannot be neglected.  The final geoid height is 

obtained as a sum of the reference spheroid, residual geoid and the far-zone contribution 

as: 

 

( ) ( ) ( ) ( ).Ω+Ω+Ω=Ω −Ω′
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Finally, several additional correction terms are also required to satisfy the harmonicity 

of the Stokes solution to the geodetic boundary value problem (e.g., Vaní�ek et al., 
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1999).  These have been included in the computations, but are quite different in scope to 

the mathematical apparatus presented in this paper and thus not included in the 

discussion here.  The final geoid model over Canada is shown in Fig. 4. 

 

Concluding remark 

The mathematical theory described in the first part of this paper, and one application to 

geodesy presented in the second part of the paper, are meant to be of an assistance to 

those who deal with convolution integrals over a sphere and who often have to deal with 

a lack of complete global data coverage.  We show herein a mathematical tool for 

treating this problem correctly not only from the theoretical point of view, but also to 

certain extent, from the numerical point of view. 
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