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CAN MEAN VALUES OF HELMERT’S
GRAVITY ANOMALIES BE CONTINUED
DOWNWARD DIRECTLY?

Petr Vaníček and Marcelo Santos
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University of New Brunswick, Fredericton

The computation of a precise gravimetric geoid based on the Stokes-Helmert approach requires the
solution of the geodetic boundary value problem. For that, the mean Helmert’s gravity anomaly on the
earth’s topographic surface must be reduced to the geoid, the surface that plays the role of the boundary.
This reduction is a process known as downward continuation. This paper considers the downward continu-
ation as a solution of the discrete inverse Poisson problem. It shows the derivation of a doubly-averaged
upward continuation operator that relates mean Helmert’s gravity anomaly from the boundary to the sur-
face. Downward continuation is then carried out by the inversion of this operator. It is shown that this can
be done rigorously if, and only if, the processes of averaging and downward continuation are commutative
(mutually interchangeable).

Introduction

A quantity u(x,y,z) that satisfies the Laplace
partial differential equation:

∇2 (u) = 0 , (1)

in a region of space is called harmonic in that region.
Transforming the Cartesian coordinates x,y,z into the
usual curvilinear coordinates r,ϕ,λ ≡≡ r, Ω, we can
define the direction “down” as going against the
growth of r. In many geodetic applications, it is
interesting to study the behaviour of a harmonic
quantity (more generally the behaviour of a linear
combination of a harmonic quantity and its vertical
derivative) in the downward direction. For instance,
the downward continuation of Helmert gravity
anomalies from the Earth’s topographic surface onto
the boundary, the geoid, is a key process for the
computation of a precise geoid following the
Stokes-Helmert technique [Vaníček and Martinec
1994; Vaníček et al. 1999] formulated at and used by
University of New Brunswick (UNB). 

The downward continuation of a gravity anom-
aly to the geoid, a continuation process also known
as the inverse Poisson problem, must precede the
solution of the geodetic boundary value problem. By
itself, it can be applied to several field quantities, for
example, to observed gravity values (g), to gravity
disturbances (δg), to disturbing potential (T), or any
combination of these quantities. In the discussions
that follow, the quantity of interest are Helmert’s
gravity anomalies measured on a mesh of cells at the
Earth surface, and their corresponding mean cell val-
ues at the geoid. It is known [e.g., Wong 2002] that
Helmert’s gravity anomalies can be expressed as a
linear combination of a harmonic quantity (T) and its

continuation represents a proper inverse Poisson
problem.

There are two different ways to compute
downward continuation. One way is to formulate
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Le calcul d’un géoïde gravimétrique précis fondé sur l’approche Stokes-Helmert requiert la solution au
problème géodésique de la valeur à la limite. Pour ce faire, l’anomalie gravimétrique moyenne d’Helmert sur
la surface topographique de la Terre doit être réduite au géoïde, la surface qui joue le rôle de limite. Cette
réduction est un processus connu comme étant la « réduction vers le bas ». Le présent article considère la
réduction vers le bas comme une solution au problème de la loi de Poisson inverse discrète. L’article montre
la dérivation de la double moyenne d’un opérateur de réduction vers le haut qui relie l’anomalie gravimétrique
moyenne d’Helmert de la limite à la surface. La réduction vers le bas est ensuite réalisée par l’inversion de cet
opérateur. Il est démontré que ceci peut être effectué rigoureusement si, et uniquement si, les processus de
calcul de la moyenne et de réduction vers le bas sont commutatifs (mutuellement interchangeables).

Petr Vaníček
vanicek@unb.ca

Marcelo Santos
msantos@unb.ca

vertical derivative ∂Τ ∂r∂Τ ∂r . Thus their downward

                            



G  E  O  M  A T  I  C  A

the downward continuation as an analytical problem,
e.g., by Taylor series expansion of the quantity to
be continued downward, or as a solution of Poisson
integral equation [Huang 2002] shown here in
spherical approximation as applied to gravity
anomaly ∆g:

(2)

where K is called the Poisson integration kernel and
R is the mean radius of the Earth, S is the sphere of
integration and H(Ω) is the terrain height at point Ω.
This equation has to be discretised [Sun and Vaníček
1996] as: 

∆∆g′′ = B ∆∆g , (3)

where ∆∆g is the gravity anomaly at the Earth surface,
∆∆g’ is the gravity anomaly on the geoid and B is a
matrix of coefficients assembled from the values of
Poisson’s kernel. This discretisation results in the
necessity of solving large systems of linear equa-
tions, complicated by situations when dealing with
sparse and ill-conditioned coefficient matrices. 

Discrete models can be based on point-point,
point-mean and mean-mean relationships between
gravity anomalies on the Earth surface and on the
geoid [Huang 2002], each model is diagrammati-
cally illustrated in Figure 1. In this paper, we focus
on the mean-mean model to the exclusion of the
other two models. We shall be trying to answer the
following question: Given mean Helmert’s anom-
alies at the surface of the Earth, is it possible to
directly derive mean Helmert’s anomalies on the
geoid? The answer to this question is very impor-
tant for those of us who are interested in computing
the geoid by means of numerical integration of the
product of Stokes’s kernel with gravity anomalies.
This numerical integration calls for the availability
of mean anomalies on the geoid. On the other hand,
the gravity anomalies available from the pre-pro-
cessing of observed gravity data at the Earth sur-
face are usually of the mean kind. Also, dealing
with mean anomalies instead of point anomalies
makes the computations much faster.

This paper presents the development of a rig-
orous formula for the downward continuation of
mean Helmert’s gravity anomalies using the dis-
crete form of the Poisson integral equation Eq.(2).
The downward continuation is accomplished
numerically by inverting a doubly-averaged

Vaníček 1996]. 

Cell-Averaging Operator

The development described in the next sections
introduces a mathematical apparatus that we call
linear cell-averaging operator, which transforms the
set of gravity anomalies inside each cell into mean
cell gravity anomaly, leading later to the develop-
ment of the doubly-averaged upward continuation
operator. Let’s assume that we have Helmert’s
gravity anomalies on the geoid in a rectangle ℜ
containing M times N, say 5′ by 5′ geographical
cells [Sun and Vaníček 1998]. Such a rectangle is
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∀Ω : ∆g' Ω ≈ R
4π R + H Ω

K
s

Ω,Η Ω , Ω' ∆g Ω dΩ' ,

Figure 1a: Point-point model.

Figure 1b: Point-mean model.

Figure 1c: Mean-mean model.

upward continuation linear operator B Sun and
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visually illustrated in Figure 2, which shows a rep-
resentation on the geoid and its counterpart on the
Earth’s surface. Let us further assume that in each 5′
by 5′ cell Cmn, we have Im times Jn values of regu-
larly distributed Helmert’s anomalies (Figure 3). Let
us denote these values by:

∀m = 1,2…,M;n = 1,2,…,N;i = 1,2,…,Im;j =
1,2,…,Jn : ∆gg(Ωij) = ∆gij . (4)

Let us define, as usual, the mean Helmert’s
gravity anomalies in the individual cells Cmn on the
geoid as integral averages:

(5)

where Amn is the area of the Cmn cell. The mean
gravity anomaly can be expressed approximately as:

(6)

Using matrix notation we can re-write Eq.(6)
as follows:

(7)

where Un is the vector of Jn values of (1/Jn), Um is
the vector of Im values of 1/Im, and ∆g is the Im by Jn

matrix of Helmert’s anomaly values ∆gij contained
in the Cmn cell.

For simplicity, let us assume in the sequel that
the number ImJn of values of ∆gij in each cell Cmn is
“sufficiently high”, and the same in both directions
equal to IJ = I2 = κ. We can thus visualize the dis-
tribution of these values as being on an identical
regular square grid (say, 30″ by 30″) in each 5′ by
5′ cell. Further, let us introduce the vectorial form
of ∆g, vecmn(∆g), that contains all κ values of ∆g in
the Cmn cell in the form of one numerical vector.
Using the vectorial form, the mean value µ[∆g]mn

in each cell can be expressed as: 

µ[∆g]mn = κ-1VT vecmn(∆g), (8)

where V is the vector of values of 1. The linear oper-
ation that transforms the complete vector of M N κ
gravity anomalies ∆g in the whole rectangle ℜ, let us

denote it by vec(∆g), to a vector of N M mean cell
anomalies µ[∆g]mn, let us call it by just vec

(µ[∆g]), reads: 

vec(µ[∆g]) = κ−1WT vec(∆g), (9)

where WT is a M N by M N κ matrix composed of
properly positioned V vectors surrounded by 0 vec-
tors. This matrix can be called the cell-averaging
operator. It is an orthogonal matrix with the fol-
lowing property:

WTW = I, (10)

where I is a unit matrix of a dimension M N. We
emphasize here that while the dimension of
vecmn(∆g) is κ, the dimension of vec(∆g) is MN κκ.

247

Figure 2: Rectangle ℜ on the geoid and its counterpart ℜ’ on the surface.

Figure 3: Regularly distributed gravity anomalies
inside a cell.

∀m = 1,2,…,M ;n = 1,2,…,N : µ ∆gg Ωmn

= µ ∆g mn = 1
A mn

∫
Cmn

∆gg Ω dΩ ,

∀m = 1,2,…,M ;n = 1,2,…,N : µ ∆g mn ≈ 1
ImnJn

Σ
j = 1

Jn
Σ

i = 1

Im
∆g ij .

∀m = 1,2,…,M ;n = 1,2,…,N : µ ∆g mn≈≈UT
m∆gUn,
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Discrete Poisson Upward
Continuation

In the next step of the development, let us take
the Poisson upward continuation of Helmert’s grav-
ity anomalies from the geoid to the earth surface as
given by Eq. (2). In discrete form over the rectan-
gle ℜ and using matrix notation, the Poisson
upward continuation reads, cf., Eq. (3): 

vec(∆g’) ≅ B vec(∆g) , (11)

where matrix B is composed of values bkk’ :

(12)

where subscripts k and k’ denote the position of ele-
ments (i,j)mn and (i,j)′mn in the vectors vec (∆g) and
vec(∆g′) [Vaníček et al. 1996].

Doubly-Averaged
Upward Continuation

In the next step, let’s evaluate the mean Helmert
gravity anomalies µ[∆g′] on the Earth surface. The
vector of these mean gravity anomalies can be
obtained by applying the linear operation (9) as:

vec (µ[∆g′]) = κ-1WT vec (∆g′). (13)

Let us now have a look at the “other product”
of matrices W and WT which will come handy in
the forthcoming development. The product W WT

is a block-diagonal matrix, where each diagonal
sub-matrix is composed of 1’s. We can thus write:

W WT = (I + D), (14)

where D is a (square) block-diagonal matrix com-
posed of off-diagonal elements that are all equal to
1 and diagonal elements equal to zero as well as all
other off-diagonal block structures, and I is the
identity matrix of a dimension M N κ, cf., Eq.(10).

Now, combining Eqs. (11) and (13), we obtain:

vec (µ[∆g′]) = κ-1WT B vec (∆g), (15)

which gives us the vector of mean values on the
Earth surface from the vector of point values on the
geoid. To get the vector of mean values (on the
geoid) on the right-hand side, we have to express
vec (∆g) by means of the mean values vec (µ[∆g]).

It can be done by using Eq.(9). We rewrite Eq.(9) as:

κW vec(µ[∆g]) = WWT vec(∆g) . (16)

Substituting for W WT from Eq.(14), we get:

κW vec(µ[∆g]) = (I + D) vec(∆g)
= vec(∆g) + Dvec(∆g) (17)
= vec(∆g) + κ – 1) W vec(µ[∆g]) –  

vec(r) ,

where vec (r) is the vector of residuals r = ∆g -
µ[∆g] (subscripts are left out for simplicity) on the
geoid. For each cell, the average of residuals, µ(r),
is equal to zero, thus the expected value of the vec-
tor vec (r) is 0. 

Equation (17) can be rewritten as:

vec(∆g) = W vec(µ[∆g]) + vec(r) , (18)

and substituted back into Eq.(15) with the follow-
ing result

vec(µ[∆g′]) = κ–1 WT B vec(∆g)

= κ–1 WT B{W vec(µ[∆g]) + vec(r)}.
(19)

The quadratic form κ -1WT B W is the doubly

can be also denoted by µ[µ(B)]. It is obtained from
the values of B (cf. Eq. (12)) by taking areal aver-
ages over the locations contained in the individual
cells, both on the geoid and on the surface of the
Earth. For the simplified case described above,
these would be the averages over the 100 (κ = I2)
30″ values in each 5′ by 5′ cell. So finally we get:

vec (µ[∆g’]) = µ[µ(B)] vec (µ[∆g]) - κ-1 WT B vec (r).
(20)

How about the second term in Eq. (20)? We
have seen that the average of the residuals r in each
cell on the geoid is equal to zero. Therefore, the
mean of the residuals r on the geoid over the whole
area ℜ is equal to 0:

∀r ∈ℜ: Ε(r) ≈ µ(r) = WΤ vec (r) = 0. (21)

The same equation can be written about the
residuals r’ = ∆g’ - µ[∆g’] on the surface of the Earth

∀r′ ∈ℜ: Ε(r′) ≈ µ(r′) = WΤ vec (r′) = 0. (22)

On the other hand, the interpretation of the
term WT B vec (r) is that it represents the residuals
on the geoid continued upward to the surface of the
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∀k, k' = 1,2,…, MNκ : b kk, =
K Ωk, H Ωk , Ωk'

1 +
H Ωk

R ,

averaged upward continuation operator B that
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Earth and is then averaged. This process is clearly
different from the process needed to arrive at the
residuals r’ dealt with in Eq.(22). Thus only if the
order of application of upward continuation and
averaging are interchangeable, i.e., if these two
operations are commutative, can the term in ques-
tion be expected to go to 0. It seems to us that the
two operations being both linear should be commu-
tative, but we have not worked out a rigorous proof. 

Solution

Assuming the commutativity of the two opera-
tions discussed in the previous section, the correct
form for the upward continuation of mean
Helmert’s anomalies then has the following form:

vec (µ[∆g′]) = µ[µ(B)] vec (µ[∆g]). (23)

showing that if the anomalies to be upward contin-
ued are averaged, and if we are also interested in
producing mean anomalies on the surface of the
Earth, the upward continuation operator has to be
doubly averaged as well. The downward continua-
tion is computed from the obvious formula: 

vec (µ[∆g]) = µ[µ (B)]-1 vec (µ[∆g′]) (24)

if the inverse of the doubly averaged operator
exists. The regularity of µ[µ (B)] for 5′ by 5′ cells
was shown by Vaníček et al. [1996].

Still under the assumption of commutativity and
the regularity of the doubly averaged upward contin-
uation Poisson operator, our derivations show that it
is possible to downward continue directly the mean
Helmert’s gravity anomalies from the earth surface
to the geoid. The resulting mean Helmert’s anom-
alies on the geoid can be then used directly in the
numerical integration of the Stokes integral.

Concluding Remarks

Downward continuation of Helmert gravity
anomalies, from the earth’s topographic surface
onto the geoid, is a very important part in the com-
putation of a precise geoid following a procedure
known as the Helmert-Stokes technique. A badly
performed downward continuation will have perni-
cious effects on the quality of the computed geoid.
This paper shows how the downward continuation
of gravity anomalies can be accomplished by
inverting a doubly-averaged upward continuation
operator. A linear cell-averaging operator that
transforms sets of gravity anomalies, inside rectan-

gular cells, into mean gravity anomalies is then
defined. The cell-averaging operator interacts with
a matrix B composed of the product of the attenua-
tion factor [R / (R + H(Ω))] with the Poisson Kernel
values, which relates mean gravity anomalies on
the geoid with corresponding mean gravity anom-
alies at height H on the Earth. Exploring further
properties of the cell-averaging operator allows for
the development of the doubly-averaged upward
continuation operator. 

The commutativity of upward continuation and
averaging operators should be proved rigorously. So
far we have done numerical evaluations, which
ascertain the equivalence of operators derived using
the commutative diagram presented in Appendix A.
We have also evaluated the equivalence of Eq. (23)
and (24) by a set of ∆g′ mean values on the surface.
These values were downward continued, upward
continued, and compared to the original ∆g′ mean
values. The results were identical.
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Appendix A

A very interesting way to visualize the prob-
lem discussed in this paper is through the the use of
a commutative diagram, such as the one shown in
Figure A.1. In it, the two upper ellipses contain
gravity anomalies, point and mean, referred to the
Earth’s surface. The two lower ellipses contain
gravity anomalies, point and mean, on the surface
of the geoid. The arrows represent the operations
that connect those quantities. 

To work with commutative diagrams, two
basic rules should be followed: (i) start at the “point
of arrival” and work backwards towards “point of
departure”; and, (ii) must not commute operators. If
used properly, the same results are obtained follow-
ing different routes (arrows). For example, moving

from the lower left (LL), which contains vec(∆g),
to the upper left (UL), which contains vec(∆g′),
using operator B, we obtain Eq. (11) :

vec(∆g′) = B vec(∆g). (A.1)

Moving now from the LL to the lower right
(LR), which contains vec(µ[∆g]), and using operator
WT , we arrive at:

vec(µ[∆g]) =WT vec(∆g). (A.2)

We note that if the operation is an “averaging
operation” we have to divide the right-hand side by
the number of elements, κ, in the cell changing the
equation to (cf., Eq.(9)):

vec(µ[∆g]) = k -1WT vec(∆g). (A3)

The same reasoning can be applied to moving
from the UL to the upper right (UR), and using the
same operator WT, we retrieve Eq. (13):

vec(µ[∆g′]) = κ -1WT vec(∆g′). (A.4)

Other relations can be established. For exam-
ple, going from the LL to the UR, clockwise, using
operators B and WT, we get back to Eq. (15):

vec (µ[∆g′]) = κ -1WT B vec (∆g). (A.5)

Going now from the LL to the UR, counter-
clockwise, using operators µ[µ(B)] and WT, we
arrive at the equation:
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Figure A.1 – Commutative diagram.
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vec (µ[∆g′]) = κ-1 µ[µ(B)] WT vec (∆g). (A.6)

In the absence of a rigorous proof on the equiv-
alence between Eq. (A.5) and Eq. (A.6), we per-
formed a numerical evaluation to ascertain their
equivalence. We formed a set of regularly spaced
simulated mean gravity values on the geoid in 4
cells, building the operator WT accordingly. The
result of the evaluation certified the equivalence of
those equations. 

Let us look back at Eq. (19):

vec (µ[∆g′]) = κ-1 WT B W vec (µ[∆g]) - κ-1 WT

B vec (r), (A.7)

which should be equivalent to moving from the LR
to the UR, using operator µ[µ(B)]:

vec (µ[∆g′]) = µ[µ(B)] vec (µ[∆g]), (A.8)

where µ[µ(B)] is equivalent to κ-1 WT B W. Eq.
(A.8) is the same as the final solution presented in
Eq. (23). The term κ-1 WT B vec(r) is not part of the
commutative diagram, meaning that the operations
discussed are commutative only if the assumption
that the expected value of the residuals r be equal
to zero is true, resulting in the whole term k-1 WT B
vec (r) tending to zero. 

The downward continued solution coming from
the commutative diagram is the same as Eq. (24): 

vec (µ[∆g]) = µ[µ(B)] -1 vec (µ[∆g′]). (A.9)
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