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Abstract: Since the geoid-generated gravity disturbance is harmonic above the geoid surface if multiplied 
by a geocentric radius, its mean value can be defined so that Poisson’s and analytical upward continuation 
is applied in the integral mean. The proof of equivalence between Poisson’s and analytical upward 
continuation and the application of this equivalence in the evaluation of the integral mean of the geoid-
generated gravity disturbance is discussed in this paper. To evaluate the mean topography-generated 
gravitational attraction within the topography, the analytical continuation can be used only if the 
gravitational attraction itself is analytical, i.e., if the vertical derivatives of all orders exist. In this paper the 
laterally varying topographical density distribution is used to make the gravitational attraction analytical. 
The gravitational attraction in the spectral form is then introduced, and the proof of equivalence between 
the integral mean of gravitational attraction and the integral mean of analytically continued gravitational 
attraction is derived. 
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1. Introduction 
 
To determine the orthometric heights, the mean value of gravity along the plumbline has to be computed. 
The mean gravity is defined as the integral mean of gravity, i.e., as the averaged value of gravity along the 
plumbline within the topography. The gravity can be decomposed into the geoid-generated gravity 
disturbance, normal gravity and gravitational attraction of topographical and atmospheric masses (Vaní�ek 
et al., 2004). To evaluate the mean gravity this decomposition can then be applied to the integral mean of 
gravity so that the mean values of these gravity components are computed separately.  
The mean value of normal gravity can be computed according to well-known Somigliana-Pizzeti’s theory 
(Pizzetti, 1911; Somigliana, 1929), while the effect of atmosphere on the orthometric height is negligible 
(Tenzer et al., 2004).  
Since the geoid-generated gravity disturbance (multiplied by a geocentric radius) is harmonic above the 
geoid surface, i.e., satisfies the Laplace equation, Poisson’s solution to the Dirichlet boundary value 
problem can be applied in the integral mean to evaluate the mean value of the geoid-generated gravity 
disturbance. Considering that any harmonic function is also analytical (see e.g., Rektorys, 1968), the 
analytical upward continuation of the geoid-generated gravity disturbance can also be applied in the 
integral mean. Poisson’s solution to the Dirichlet problem is described by the Poisson integral (e.g., 
Kellogg, 1929), while for the analytical upward continuation the expansion of the geoid-generated gravity 
disturbance into the Taylor series is used.  
The different conditions arise when the mean value of the topography-generated gravitational attraction is 
evaluated within the topography. In this case, the gravitational attraction is not harmonic. Moreover, the 
analytical continuation can be applied only if the gravitational attraction is analytical, so that all its 
derivatives with respect to the plumbline exist between the geoid and the earth surface. Such analytical 
continuation is achieved, for example, if the vertical distribution of topographical density is continuous.  
The analytical continuation for the evaluation of the mean geoid-generated gravity disturbance and mean 
topography-generated gravitational attraction within the topography has been used for the computation of 
the mean gravity in the determination of the orthometric heights in Tenzer et al. (2003). The analytical 
continuation for the evaluation of the mean gravity disturbance was used before also by Hwang and Hsiao 
(2003), and the comparison of the analytical and Poisson’s downward continuation of the gravity 
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anomalies can be found in Huang (2002). In Tenzer et al. (2004), the integral mean of gravitational 
attraction of topographical masses has is used for the computation of the mean value of the topography-
generated gravitational attraction and Poisson’s continuation has been applied in the integral mean of the 
geoid-generated gravity disturbance. In this paper it is shown that these methods are equivalent and thus if 
some difference of results occur, they are caused by the different accuracy of the numerical methods used 
for computations.  
 
2. Mean gravity disturbance   
 
Let us begin with the definition of the mean value of gravity disturbance within the topography, i.e., 
between the geoid surface of which the geocentric radius is denoted by ( )ΩΩ∈Ω∀ gr:O  and the physical 

surface of the earth ( ) ( ) ( )Ω+Ω≅ΩΩ∈Ω∀ O
O : Hrr gt  , where ( )ΩOH  stands for the orthometric height. 

The (integral) mean value of the gravity disturbance ( )Ωgδ  reads   
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where ( )Ω,rgδ  is the gravity disturbance at point ( )Ω,r .  
The geocentric position is described by the geocentric spherical coordinates φ  and λ ; ( )λφ,=Ω , OΩ∈Ω  

( )�20;2/�2/�O <≤≤≤−∈Ω λφ , and the geocentric radius r ; +ℜ∈r )( )∞+∈ℜ+ ,0 .  

According to Heiskanen and Moritz (1967, eqn. 2-142), the gravity disturbance ( )Ω,rgδ  is defined as the 
difference between the actual gravity ( )Ω,rg  and the normal gravity ( )φγ ,r , so that :,O

+ℜ∈Ω∈Ω∀ r  
( ) ( ) ( )φγδ ,,, rrgrg −Ω=Ω . The gravity ( )Ω,rg  can further be decomposed into the geoid-generated 

gravity ( )Ω,NT rg  and the gravitational attraction of topographical and atmospheric masses ( )Ω,rg t  and 
( )Ω,rg a , respectively, i.e., :,O

+ℜ∈Ω∈Ω∀ r  ( ) ( ) ( ) ( )Ω+Ω+Ω=Ω ,,,, NTNT rgrgrgrg at . The gravity 
disturbance on the right-hand side of eqn. (1) then becomes  

:,O
+ℜ∈Ω∈Ω∀ r                       ( ) ( ) ( ) ( )Ω+Ω+Ω=Ω ,,,, NT rgrgrgrg atδδ ,                                          (2) 

where ( )Ω,NT rgδ  is the geoid-generated gravity disturbance for which the following equation is valid 
(Vaní�ek et al., 2004) 

:,O
+ℜ∈Ω∈Ω∀ r                                 ( ) ( ) ( )φγδ ,,, NTNT rrgrg −Ω=Ω .                                                 (3) 

Regarding eqns. (1) and (2), the mean gravity disturbance ( )Ωgδ  can be evaluated so that the mean geoid-

generated gravity disturbance ( )Ω
NT

gδ  and the mean values of the gravitational attraction of topographical 

and atmospheric masses ( )Ωtg  and ( )Ωag  are computed separately.  

The mean geoid-generated gravity disturbance ( )Ω
NT

gδ  is computed from (Tenzer et al., 2004) 
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The mean value of the topography-generated gravitational attraction ( )Ωtg  is given by (Niethammer, 
1932) 
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The mean value of the gravitational attraction of atmospheric masses ( )Ωag  is defined analogically with 
eqn. (5). 
In the above equations and in all the equations in the sequel, the spherical approximation of the geoid 
surface by the mean radius of the earth R  (Bomford, 1971) is used, and the deflection of the vertical from 
the geocentric radial direction (see Vaní�ek and Krakiwsky, 1986) is not considered. As explained in 
Vaní�ek et al. (2004), the spherical approximation of the geoid surface causes an error of the topography-
generated gravitational attraction, and correspondingly an error of its mean value, at the most of a few 
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microgals. Approximately the same order of error may be expected in the computation of the mean geoid-
generated gravity disturbance. The ellipsoidal correction to the mean gravity disturbance, i.e., the mean 
value of the deflection of the vertical from the geocentric radial direction within the topography, has been 
investigated in Tenzer (2004). According to the numerical estimation of this correction, it can reach up to a 
few hundred microgals.   
 
As mentioned in the Introduction, the geoid-generated gravity disturbance ( )Ω,NT rgδ  multiplied by the 
geocentric radius r  satisfies the Laplace equation for the exterior of the geoid (see Vaní�ek et al., 2004), 
i.e., ( )[ ] 0,:R, NT

O =Ω∆>Ω∈Ω∀ rgrr δ . The geoid-generated gravity disturbance ( )Ω,NT rgδ  on the 
right-hand side of eqn. (4) can then be evaluated applying Poisson’s solution to the Dirichlet boundary 
value problem. 
 
The Poisson integral reads (Kellogg, 1929) 
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The spectral form of the Poisson integral kernel ( )Ω′Ω R,;,K r  in eqn. (6) is given by (ibid)  
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where ( )ψcosPn  are the Legendre polynomials (Hobson, 1931; Mac Millan, 1930) for the argument of 
cosine of the spherical distance ψ . 
 
Inserting the Poisson integral from eqn. (6) into eqn. (4), the mean value of the geoid-generated gravity 

disturbance ( )Ω
NT

gδ  becomes (Tenzer et al., 2004) 
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where  ( )( )
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H
is the “mean Poisson’s kernel” that has to be convolved with 

the ( )Ω,RNTgδ
 

over the whole earth. The mean value ( )Ω
NT

gδ  can also be evaluated applying the 
analytical upward continuation in the integral mean. The analytical upward continuation is obtained by 
expanding the gravity disturbance ( )Ω,NT rgδ  into the Taylor series starting at the geoid, so that 
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Substituting eqn. (9) back to eqn. (4), the following solution is obtained  
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Since the mean value ( )Ω
NT

gδ  in eqn. (10) is defined within the topography, the term R−r  from eqn. (9) 

is equal to the orthometric height ( )ΩOH . The first term on the right-hand side of eqn. (10), i.e., the geoid-
generated gravity disturbance ( )Ω,RNTgδ  at the geoid surface, can be expressed in terms of the surface 

spherical harmonics ( )ΩNT
ngδ  (Heiskanen and Moritz, 1967, eqn. 1-86) 
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Computing the mean geoid-generated gravity disturbance ( )Ω
NT

gδ  according to eqns. (8) and (10), the 
geoid-generated gravity disturbances must be known at the geoid surface. To obtain the geoid-generated 
gravity disturbances ( )Ω,RNTgδ  on the geoid from its values ( )[ ]Ωtrg NTδ

 

at the earth surface, the inverse 
Dirichlet’s problem (described by the Poisson integral equation, see e.g., Vaní�ek et al., 1996) has to be 
solved. The different method for a computation of the mean geoid-generated gravity disturbance has been 
introduced in Tenzer et al. (2004). According to this method, the mean value is obtained directly from the 
values ( )[ ]Ωtrg NTδ

 

at the earth surface so that the Poisson integral equation is applied in the integral mean. 
As follows from eqns. (9) and (10), the radial derivatives of the geoid-generated gravity disturbances 
referred to the geoid surface are required in order to evaluate the analytical upward continuation. As 
shown in the next paragraph (see eqn. 27), these derivatives can be expressed in terms of spherical 
harmonics of the geoid-generated gravity disturbance. Thereby, all orders of the radial derivatives of 

( )Ω,NT rgδ  are defined as a function of the geoid-generated gravity disturbances ( )Ω,RNTgδ
 

at the geoid 
surface, and thus can be computed from them for instance by numerical integration.  
 
In Martinec (1998), the gravitational attraction ( )Ω,rg t  is defined as a negative radial derivative of the 

gravitational potential ( )Ω,rV t  of topographical masses. Thereby, the mean value ( )Ωtg  in eqn. (5) takes 
the following form  
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Furthermore, evaluating the integral on the right-hand side of eqn. (12), the equation can be rewritten as 
(Santos et al., 2003) 
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tt
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The above equation states that the mean value of the gravitational attraction ( )Ωtg  is defined as the 

difference of the gravitational potentials ( )Ω,RtV  and ( )[ ]Ωt
t rV , which are referred to the geoid and the 

earth surface, and divided by the orthometric height ( )ΩOH . 
 
Considering the laterally varying distribution of the topographical density ( )Ωρ , for the definition of the 
laterally varying topographical density see Martinec (1993), the gravitational potential of topographical 
masses ( )Ω,rV t  is defined by the Newton volume integral (e.g., Martinec, 1998, eqn. 3.3), which reads 
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where G  denotes Newton’s gravitational constant, and ( )Ω′′Ω ,;, rr�  is the spatial distance of a two points 
( )Ω,r  and ( )Ω′′,r .  
The gravitational attraction of topographical masses ( )Ω,rg t  is given similarly by (ibid)   
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For the laterally varying distribution of topographical density, the radial derivative of topography-
generated gravitational attraction ( ) rrg t ∂Ω∂ /,  together with the higher-order radial derivatives of 

( )Ω,rg t  exist at the interval ( )Ω+∈ ORR, Hr , if the radial derivatives ) :,1 ∞+∈∀ k  

( ) 1k11k /,;, +−+ ∂Ω′′Ω∂ rrr�  of reciprocal value of the spatial distance exist at this interval. It has been shown 
in Tenzer et al. (2003) that all orders of the radial derivatives of the reciprocal spatial distance exist. Thus, 
the gravitational attraction ( )Ω,rg t  as defined in eqn. (15) is analytical and for the evaluation of the mean 
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value ( )Ωtg  the analytical continuation can be applied. The analytical continuation of gravitational 
attraction ( )Ω,rg t  can also be formulated for any density distribution that is continuous in the radial 
direction. 
By analogy with eqn. (9), the analytical upward continuation of gravitational attraction ( )Ω,rg t  is given 
by  

:R,O ≥Ω∈Ω∀ r          ( ) ( ) ( ) ( ) ( )
R

1k

1k

0R
k

k

0

,
!
R,

!
R

,
=

+

+∞

==

∞

= ∂
Ω∂−−=

∂
Ω∂−=Ω ��

r

t

k

k

r

t

k

k
t

r
rV

k
r

r
rg

k
r

rg .               (16) 

Substituting eqn. (16) to eqn. (5), and integrating with respect to the geocentric radial distance r , the 
following result is obtained 
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where (with in accordance with eqn. 10) the difference R−r
 

 is equal to the orthometric height ( )ΩOH . 
 
3. Equivalence between Poisson’s and analytical continuation 
 
To proof the equivalence between Poisson’s and analytical upward continuation as described by eqns. (6) 
and (9) respectively, the geoid-generated disturbing gravity potential ( )Ω,NT rT  is first expanded into a 
series of solid spherical harmonics ( )ΩNT

nT . According to Heiskanen and Moritz (1967, eqn. 1-87b) the 
series reads 
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where  
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Performing the negative radial derivative of eqn. (18), the relation between the geoid-generated gravity 
disturbance ( )Ω,NT rgδ  and the solid spherical harmonics ( )ΩNT

nT  is obtained 
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By analogy with eqn. (18), the geoid-generated gravity disturbance ( )Ω,NT rgδ  can be expressed in terms 
of solid spherical harmonics ( )ΩNT

ngδ  as follows 
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Comparing eqns. (20) and (21), the well-known relation between the spherical harmonics ( )ΩNT
nT  and 

( )ΩNT
ngδ  is obtained (Heiskanen and Moritz, 1967)  
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Substituting Poisson’s integral kernel from eqn. (7) back to eqn. (6), the Poisson integral becomes 
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The interchange of summation and integration is permissible in eqn. (23), because the expansion into a 
series of the Legendre polynomials converges uniformly and absolutely for R>r (see, Moritz, 1980). 
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Considering the expression for the surface spherical harmonics ( )ΩNT
ngδ  in eqn. (11) and taking into 

account also the relation between the spherical harmonics ( )ΩNT
nT  and ( )ΩNT

ngδ  in eqn. (22), the Poisson 
integral from eqn. (23) takes the following form  
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Assuming that R−r
 

is much smaller than R , the binomial theorem (e.g., Rektorys, 1968) can be applied 
in eqn. (24). It yields  
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The first-three terms of the development with respect to k  in eqn. (25) read 
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where the first term is (according to eqn. 11) equal to the geoid-generated gravity disturbance ( )Ω,RNTgδ  
referred to the geoid surface. 
 
The analytical upward continuation of the geoid-generated gravity disturbance is defined by eqn. (9), 
where the radial derivatives of ( )Ω,NT rgδ

 
can be written as follows 
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Substitution of eqn. (27) into eqn. (9) yields the expression identical to the expression in eqn. (25), which 
is obtained from the Poisson integral. Thereby, the proof of equivalence between Poisson’s and analytical 
upward continuation is concluded. 
 
Inserting eqn. (27) into the expression in eqn. (10), which is obtained so that the analytical upward 
continuation of the geoid-generated gravity disturbance is applied in the integral mean, the mean value of 

the geoid-generated gravity disturbance ( )Ω
NT

gδ  can be described in terms of the solid spherical 
harmonics ( )ΩNT

nT  as follows 
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Since Poisson’s and analytical upward continuation of the geoid-generated gravity disturbance is 
equivalent, the same formula as in eqn. (28) is obtained if the Poisson integral in eqn. (25) is substituted to 
the integral mean in eqn. (4). 
 
4. Equivalence between the integral mean of gravitational attraction and the integral mean of 

analytically continued gravitational attraction 
 
Studying Newton’s volume integral in the spectral domain, the requirement of convergence of the series 
expansion into the Legendre polynomials has to be taken into account. Therefore, the radial component of 
the volume domain of Newton’s integral is separated into the sub-intervals for rr ′<  and rr ′> , 
corresponding to the two convergence domains: the external and the internal. The reciprocal value of the 
spatial distance ( )Ω′′Ω− ,;,1 rr�  is then expanded into a series of the Legendre polynomials ( )ψcosPn  as 
follows (Hobson, 1931; see also Pick et al., 1973, eqn. D-14; 4 and 5, and D-18; 1) 



 

 7 

:0,;�,0 >′∈∀ rrψ          ( )
( )

( )
	
	




	
	

�

�

′<�
�

�
�
�

�
′′

′≥�
�

�
�
�

� ′

=Ω′′Ω

�

�
∞

=

∞

=−

0
n

0
n

1

.,cosP
1

,,cosP
1

,;,

n

n
n

n

rr
r
r

r

rr
r
r

rrr

ψ

ψ
�                                     (29) 

From eqn. (29), the radial derivatives of the reciprocal spatial distance with respect to r  are found to be 
:,0,;�,0 +ℑ∈>′∈∀ krrψ        
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Inserting the first radial derivative of ( )Ω′′Ω− ,;,1 rr�  from eqn. (30) into eqn. (15), the spectral form of the 
topography-generated gravitational attraction ( )Ω,rg t  is obtained   
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The above expression for the gravitational attraction ( )Ω,rg t  is herein defined only for the laterally 
varying topographical density distribution. If more precise information about topographical density exist, 
the 3D model can for instance be defined so that the vertical density distribution is a function of the 
geocentric radius r  within each topographical column ( )Ω+∈ OR,R Hr . A similar approach has been 

formulated for the atmospheric effect on gravitational potential and attraction by Sjöberg (1998 and 1999), 
and later investigated by Novák (2000). According to this approach, the vertical distribution of 
atmospheric density is defined as a function of atmospheric density at the sea surface and the height above 
the sea.  
 
At the exterior of the geoid ( )RO >∩Ω∈Ω r , the gravitational attraction in eqn. (31) can be rewritten as 
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Applying the binomial theorem, eqn. (32) takes the following form 
:R,O >Ω∈Ω∀ r  
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As mentioned in the Introduction, the analytical upward continuation of gravitational attraction is 
permissible only under a certain assumption for the topographical density distribution, while for the mean 
topography-generated gravitational attraction defined as the integral mean in eqn. (13) no assumption 
about topographical density distribution is needed. In this case, the proof of equivalence between the 
integral mean of gravitational attraction and the integral mean of the analytically upward continued 
gravitational attraction will be derived under the assumption of laterally varying topographical density. 
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The gravitational attraction ( )Ω,rg t  for the lateral model of the topographical density expressed in the 
spatial domain is introduced in the previous section (see eqn. 33). In the next section, the identical 
expression is derived by using the analytical upward continuation of gravitational attraction. 
Consequently, the proof of equivalence between the integral mean of gravitational attraction and the 
integral mean of the analytically upward continued gravitational attraction is finally derived. 
 
According to eqn. (16), the gravitational attraction ( )Ω,rg t  can be evaluated using the analytical upward 
continuation of the same referred to the geoid surface. Substitution of eqn. (15) into eqn. (16) yields 

:R,O >Ω∈Ω∀ r                              
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Inserting for the radial derivatives of the reciprocal spatial distance in eqn. (34) from eqn. (30) and 
considering that they are referred to the geoid surface, the gravitational attraction ( )Ω,rg t  becomes 
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Regarding the following identities 
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and
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it can be seen by comparing eqns. (35) and (33) that they are identical except for the different summation 
with respect to n

 
starting from 1: +=ℑ∈∀ + knk  instead of 0=n  in the series expansion for the external 

convergence domain rr ′< . Substituting the identities from eqns. (36) and (37) back to eqn. (35), i.e., 
:R,O >Ω∈Ω∀ r
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(38) 

and further, expanding the expression in eqn. (38) with respect to k , the following series is found 
:R,O >Ω∈Ω∀ r  
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The same result is obtained from eqn. (33). Thereby, the analytically upward continued gravitational 
attraction ( )Ω,rg t  in eqn. (38) is equivalent to its direct definition by Newton’s integral in the spatial 
domain (eqn. 33) described herein for the laterally varying topographical density.  
 
By analogy with the above proof, the equivalence between the integral mean of gravitational attraction and 
the mean value of the analytically continued gravitational attraction can be shown. 
Regarding eqn. (16), the gravitational potential of topographical masses ( )[ ]Ωt

t rV  referred to the earth 
surface in eqn. (13) can be evaluated by applying the analytical upward continuation of gravitational 
potential, so that  
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Substituting eqn. (40) into eqn. (13), the integral mean of gravitational attraction of topographical masses 
takes the following form 
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which is equal to the integral mean of the analytically upward continued gravitational attraction in eqn. 
(17). 
 
5. Summary and Conclusions 
 
Realizing that the geoid-generated disturbing gravity potential ( )Ω,NT rT  satisfies the Laplace equation 

within the topography while the topography-generated gravitational potential ( )Ω,rV t  does not, this basic 
physical property dictates which mathematical method is to be used for the evaluation of the 
corresponding mean values.  To evaluate the mean geoid-generated gravity disturbance within the 
topography, Poisson’s solution to the Dirichlet boundary value problem or the analytical upward 
continuation are applied. As follows from the proof in section 3, these methods are equivalent.  
To evaluate the mean value of the topography-generated gravitational attraction, two methods are 
available. Integrating the gravitational attraction of topographical masses within topography, its mean 
value is defined as the difference of the gravitational potential referred to the geoid and the earth surface 
divided by the orthometric height. The computation is then realized solving the Newton volume integral 
over the actual, or modeled topographical density distribution. For the analytical continuation approach, 
the laterally varying model of topographical density, or some such model has to be adopted. In paragraph 
4, the proof of equivalence between the integral mean of gravitational attraction and the mean analytically 
upward continued gravitational attraction has been derived, assuming the lateral density distribution in 
both cases. This shows the restricted circumstances under which the analytical continuation may be used, 
while the potential approach does not incur any such restrictions. 
 
Acknowledgments: This research was supported by the GEOIDE Centre of Excellence and by NSERC 
Discovery Grant. Discussions with Professor W. Featherstone and Dr. M. Kuhn of Curtin University, WA, 
are also gratefully acknowledged. 
 
 
References: 
 
Bomford G., 1971: Geodesy. 3rd edition, Clarendon Press, Oxford. 
 
Heiskanen W. H., Moritz H., 1967: Physical geodesy. W.H. Freeman and Co., San Francisco. 
 
Hobson E.W., 1931: The theory of spherical and ellipsoidal harmonics. Cambridge University Press, 
Cambridge. 



 

 10 

 
Huang J., 2002: Computational methods for the discrete downward continuation of the Earth gravity and 
effects of lateral topographical mass density variation on gravity and the geoid, PhD thesis, Dept. of 
Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, Canada. 
 
Hwang C., Hsiao Y.S., 2003: Orthometric correction from leveling, gravity, density and elevation data: a 
case study in Taiwan. Journal of Geodesy, Vol. 77, pp. 279-291.  
 
Kellogg O.D., 1929: Foundations of potential theory. Springer. Berlin. 
 
Mac Millan W.D., 1930: The theory of the potential. Dover, New York. 
 
Martinec Z., 1993: Effect of lateral density variations of topographical masses in view of improving geoid 
model accuracy over Canada. Final report of contract DSS No. 23244-2-4356, Geodetic Survey of Canada, 
Ottawa. 
 
Martinec Z., 1998: Boundary value problems for gravimetric determination of a precise geoid. Lecture 
notes in earth sciences, Vol. 73, Springer. 
 
Moritz H., 1980: Advanced physical geodesy. Abacus Press, Tunbridge, Wells. 
 
Niethammer T., 1932: Leveling and weight as a means for the computation of true sea level heights, Swiss 
Geodetic Commission, Berne, Switzerland, 76 pp. (in German).  
 
Novák P., 2000: Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value 
problem. Technical report, No. 207, UNB, Fredericton. 
 
Pick M., Pícha J., Vysko�il V., 1973: Theory of the Earth’s Gravity Field. Elsevier, Amsterdam.  
 
Pizzetti P., 1911: Sopra il calcolo teorico delle deviazioni del geoide dall` ellissoide. Atti R. Accad. Sci. 
Torino, V. 46. 
 
Santos M., Tenzer R., Vaní�ek P., 2003: Effect of terrain on the orthometric height. Annual scientific 
meeting, Canadian Geophysical Union, May 10-14, 2003, Banff, Canada. (oral presentation) 
 
Sjöberg L.E., 1998: The atmospheric geoid and gravity corrections. Bolletino di Geodesia e Scienze 
Affini, 57. 
 
Sjöberg L.E., 1999: The IAG approach to the atmospheric geoid correction in Stokes’ formula and a new 
strategy. Journal of Geodesy, Vol. 73, Springer. 
 
Somigliana C., 1929: Teoria Generale del Campo Gravitazionale dell’Ellisoide di Rotazione. Memoire 
della Societa Astronomica Italiana, IV. Milano.  
 
Rektorys K., 1968: Survey of Applicable Mathematics. SNTL, Prague (in Czech). 
 
Tenzer R., Vaní�ek P., Santos M., 2003: Corrections to Helmert’s Orthometric Heights. Proceedings of 
IUGG symposia, Sapporo. (submitted)   
 
Tenzer R., 2004: Discussion of Mean Gravity Along the Plumbline. Studia Geophysica et Geodaetica, Vol. 
48 (2), Academy of Science of the Czech Republic, Czech Geophysical Institute, Prague, pp. 309-330. 
 



 

 11 

Tenzer R., Vaní�ek P., Santos M.C., Featherstone W.E., Kuhn M., 2004: Discussion of the orthometric 
height. Journal of Geodesy, Springer. (submitted)   
 
Vaní�ek P., Krakiwsky E., 1986: Geodesy: the concepts (second edition). Elsevier Science B.V., 
Amsterdam. 
 
Vaní�ek P., Sun W., Ong P., Martinec Z., Najafi M., Vajda P., Horst B., 1996: Downward continuation of 
Helmert’s gravity. Journal of Geodesy, Vol. 71, Springer, pp. 21-34. 
 
Vaní�ek P., Tenzer R., Sjöberg L.E., Martinec Z., Featherstone W.E., 2004: New views of the spherical 
Bouguer gravity anomaly. Geophysical Journal International. (accepted) 
 


