
Introduction: The downward continuation (DC) can be considered as a ‘projection’ in which the gravity anomalies observed at a surface above the geoid are ‘mapped’ onto the geoid. 
There are primarily two DC methods: the Poisson DC and the Moritz analytical DC. The Poisson DC solves the Poisson integral equation which can be split into the near-zone and the 
far-zone contributions:

where the far-zone contribution can be evaluated  as

The Poisson integral equation has no closed-form solution, thus it has to be solved numerically. The following issues have to be considered in the discrete Poisson DC: Poisson’s kernel 
modification, evaluation of the far-zone contribution, selection of the radius for the near-zone cap size, discretization of Poisson’s integral (point and mean models) and method for 
solving the discrete Poisson linear system of equations. The Moritz analytical DC approximately expands the gravity anomaly into a Taylor series. Whether it can provide a DC result 
as good as the Poisson one is an open question.

Poisson’s kernel modification: The spheroidal Poisson kernel Kl, S (Martinec, 1996) and 
the modified spheroidal Poisson kernel Kl, MS (Vaníček et al., 1996) have been proposed in 
place of the standard Poisson kernel K. The former gives the ‘real’ far-zone contribution 
while the latter aims to reduce the real far-zone contribution. The three figures on the right 
side show that the real far-zone contribution given by Kl, S has been significantly reduced 
by adopting Kl, MS, while K may be used as an alternative to Kl, MS. Furthermore, the far-
zone contribution series displays a good convergence at lower degrees. After about degree 
180, it shows negligible changes suggesting that the far-zone contribution can be evaluated 
from a global geopotential model taken to degree 180. 

K, Kl, S and Kl,MS vs. ψ(1° - 180°).
H = 2 km.

The truncation error coefficients Qn
I. 

ψ0=1°. H= 2 km.
The far-zone contribution F∆g vs. degree n.
ψ0=1°. H= 2 km.

Cα(m, H, θ) vs. H.  Cα(m, H, θ) vs. m.

A fast algorithm for evaluation of the far-zone contribution: The far-zone contribution can be evaluated by the 
following expression

where

Instead of evaluating coefficients Cα and  Cβ at points of variable heights with the same latitude, we pre-tabulate them for 
a number of representative heights, then predict their values at the height of individual point by the linear interpolation 
with sufficient accuracy. 
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Qn vs. ψ0. F∆g vs. ψ0. mF vs. ψ0.

Selection of the radius for the near-zone cap: The criterion for the selection of the radius 
of the near-zone cap is that the far-zone contribution can be accurately evaluated or be small 
enough to be considered negligible. The far-zone contribution is routinely computed from a 
global geopotential model. Therefore, the radius must be determined in terms of the accuracy 
of the model, which is, in turn, represented by the accuracy of the model coefficients and the 
maximum degree and order of the model. 

The results on the right side demonstrate that one-half arc-degree can be selected as the 
radius of the near-zone cap even in mountainous areas where the maximum elevation does 
not exceed 2 km when the EGM96 is used.
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The error distributions of the 
Poisson DC and the Moritz DC 
against the GPM98a synthetic data.

The point-point Poisson DC effect on the geoid
from the GPM98a synthetic data. C.I.: 0.01 m.

The point-point Moritz DC effect on the geoid
from the GPM98a synthetic data. C.I.: 0.01 m.

The discrete models of the 
Poisson integral equation:
We evaluate the singular value 
spectra (see the right figure) of 
the coefficient matrices for the 
point-point, point-mean and 
mean-mean discrete models 
for three different regions. The 
results indicate that the mean-
mean model possesses the 
biggest condition number 
while the point-point model 
displays the smallest condition 
number. The differences 
among spectra show that the 
elevation rather than the 
relative relief is the dominant 
factor in determining the 
condition of the coefficient 
matrix.  

The Moritz analytical downward continuation: The Moritz ADC is compared to the Poisson DC using the 
synthetic data generated from degrees 21-1800 of GPM98a (Wenzel, 1998). The results show that the Moritz 
ADC introduces an error of about 10% of the total DC effect while the error of the Poisson DC is smaller 
than 1 cm (see figures below).  When both methods are used to evaluate the DC effects on the Helmert
gravity anomaly in the Canadian Rocky Mountains, the difference accounts for 10% of the total DC effect, 
which translates to 10 mgal in gravity and 10 cm in the geoid height at maximum (not shown here).

Conclusions: The modified spheroidal Poisson kernel (MSPK) significantly reduces the real far-zone contribution given by the unmodified spheroidal Poisson kernel, 
while the standard Poisson kernel works as efficiently as the MSPK. A fast algorithm is proposed to evaluate the far-zone contribution. The radius of the near-zone cap 
must be determined in terms of the accuracy of the global geopotential model. When the EGM96 is used, one-half arc-degree can be selected as the radius of the near-
zone cap in mountainous areas where the maximum elevation does not exceed 2 km. The Moritz DC causes a relative error of 10% of the total DC effect in the Canadian 
Rocky Mountains.

The singular value spectra of the coefficient matrices for 
the point-point model (solid lines), point-mean (dotdash
lines) and mean-mean model (dash lines) on the 5’ by 
5’ grid. 

Region Min. Max. Mean StdDev R.M.S.
A 459 2682 1599 431 1656
B 0 942 316 202 376
C 488 1122 684 122 694

Statistics of the mean 5’ by 5’ DTM for the test regions 
A, B and C. Unit: m.
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