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Abstract. This research deals with some theoretical and
numerical problems of the downward continuation of
mean Helmert gravity disturbances. We prove that the
downward continuation of the disturbing potential is
much smoother, as well as two orders of magnitude
smaller than that of the gravity anomaly, and we give
the expression in spectral form for calculating the
disturbing potential term. Numerical results show that
for calculating truncation errors the ®rst 180� of a global
potential model su�ce. We also discuss the theoretical
convergence problem of the iterative scheme. We prove
that the 50 � 50 mean iterative scheme is convergent and
the convergence speed depends on the topographic
height; for Canada, to achieve an accuracy of 0.01
mGal, at most 80 iterations are needed. The comparison
of the ``mean'' and ``point'' schemes shows that the
mean scheme should give a more reasonable and reliable
solution, while the point scheme brings a large error to
the solution.
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1 Introduction

The so-called downward continuation is usually de®ned
as a reduction of gravity values from the earth surface to
the geoid. It may be applied to observed gravity values,
gravity disturbances, disturbing potential or any com-
bination of these quantities.

Since the space between the earth surface and the
geoid contains topographical masses with an irregular
density distribution, the disturbing potential or gravity
values cannot be easily reduced because they are not
harmonic in this space. To overcome this di�culty, one
usually transforms the real space into a model space,
such as the free-air model or the Helmert model. The
former is employed in the context of solving the Mo-
lodenskij problem (Moritz 1980); one simply declares
the topographical masses to have a zero density while
leaving the gravity anomalies on the surface intact. This
results in all the high-frequency components being
present in the anomalies while the masses causing the
existence of these components are gone. We are inter-
ested in the Helmert model since it seems physically
reasonable to determine the geoid undulation. The
Helmert model uses Helmert's condensation of topog-
raphy onto the geoid by means of one of the conden-
sation techniques, that may preserve either the total
mass of the earth, or the location of the centre of mass,
or to be just an integral mean of topographical column
density (Wichiencharoen 1982; VanõÂ cÏ ek and Martinec
1994; Martinec and VanõÂ cÏ ek 1994). Helmert's disturbing
potential at the earth surface is thus made smoother
than the actual disturbing potential because the nearest
``disturbing masses'' are now located on the geoid.

For the Helmert model, the basic de®nition of the
downward continuation of Helmert gravity disturbance,
denoted by Ddgh, is (VanõÂ cÏ ek and Martinec, 1994):

Ddgh�r;X;R� � dgh
g�R;X� ÿ dgh

t �r;X� �1�
where

dgh
g�R;X� � ÿ

oT h�R;X�
or

����
g

�2�

dgh
t �r;X� � ÿ

oT h�r;X�
or

����
t

�3�

T h is Helmert's disturbing potential, R is the mean radius
of the earth, r is the radial distance from the centre of
the earth, X stands for a geocentric direction given by
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latitude / and longitude k, jg and jt denote that the
derivatives of T h are taken on the geoid and the
topography, respectively. The relation of the derivatives
can be expressed by the Poisson integral (Heiskanen and
Moritz 1967)

r
oT h�r;X�

or

����
t
� R
4p

Z
X0

oT h�R;X0�
or

����
g
K�r;w;R� dX0 �4�

where K is the Poisson kernel

K�r;w;R� �
X1
j�2
�2j� 1� R

r

� �j�1
Pj�cosw�

�R
r2 ÿ R2

�R2 � r2 ÿ 2Rr cosw�32
ÿ 1

r
ÿ 3R

r2
cosw

" #
�5�

and w is the angular distance between geocentric
directions X and X0, and Pj�cosw� is the Legendre
polynomial of degree j.

Then from the fundamental equation of physical
geodesy (Heiskanen and Moritz 1967, p.86)

Dgg � ÿoT
or

����
g
ÿ 2

R
Tg �6�

which is valid even for the Helmert model, we can obtain
the expression for Ddgh as

Ddgh�r;X;R� � DDgh�r;X;R� � DT h�r;X;R� �7�
where

DDgh�r;X;R�
� Dgh

g�X� ÿ
R
4pr

Z
X0

Dgh
g�X0�K�r;w;R� dX0 �8�

DT h�r;X;R�
� 2

R
T h

g �X� ÿ
1

2pr

Z
X0

T h
g �X0�K�r;w;R� dX0 �9�

are called the downward continuation of Helmert's
gravity anomaly and the downward continuation of
Helmert's disturbing potential 2T h=R.

The second term on the right-hand side of Eq. (8) is
nothing but the Helmert gravity anomaly on the to-
pography, i.e.

Dgh
t �X� �

R
4pr

Z
X0

Dgh
g�X0�K�r;w;R� dX0 �10�

which can be easily derived from the Poisson integrals
for T h and oT h=or and the fundamental Eq. (6) by
changing the subscript g to t. Now the problem of the
downward continuation is to determine DDgh�r;X;R�
and DT h�r;X;R� on the geoid from the known Helmert
gravity anomaly Dgh

t �X� and a global model of the
disturbing potential Tt�X�. Once DDgh�r;X;R� and
DT h�r;X;R� are known, the downward continuation of
the Helmert gravity disturbance can be simply obtained
from Eq. (7).

VanõÂ cÏ ek et al. (1996) have studied the downward
continuation of the 50 � 50 mean Helmert gravity

anomaly. They divided the gravity anomalies into two
parts: low frequency and high frequency. The former
was calculated from the satellite-determined potential
coe�cients and the latter was obtained from the ob-
served gravity on the earth surface. They truncated the
Poisson integration and modi®ed the Poisson kernel to
reduce the truncation error. They proposed an iterative
scheme to perform the downward continuation to ob-
tain the Helmert gravity anomalies. They claimed that
the determination of the downward continuation of the
mean 50 � 50 Helmert gravity anomalies is a well-posed
problem with a unique solution and can be carried out
routinely to any accuracy desired in the geoid compu-
tation. This proves that a discretized system of (Poisson)
integral equations can always be solved (Bjerhammar
1963, 1964, 1987) for the 50 � 50 discretization.

In this paper, we are going to investigate some theo-
retical and numerical problems of the downward con-
tinuation of the 50 � 50 mean Helmert gravity
disturbances by taking the disturbing potential into ac-
count. This research will answer the following questions:
how to calculate the downward continuation of the dis-
turbing potential term conveniently; how many degrees
of a global potential model should be considered for
calculating the truncation error; how fast does the iter-
ative scheme converge; and which scheme is better, that
based on block mean value or that based on point value.

2 Downward continuation of the potential term

In this section we discuss how to calculate the downward
continuation term of the potential DT h in Eq. (9). First,
we prove the conclusion given in VanõÂ cÏ ek et al. (1996),
i.e. for the degree n of the model equal to 180, the value
of T h drops by two orders of magnitude compared to
Dgh. Then we discuss how to calculate the downward
continuation of this term and give the expressions in
spectral form.

The disturbing potential and gravity anomaly on the
geoid can be expanded into spherical harmonics as

T �X� �
X1
j�2

Xj

m�ÿj

�T �jm�X� �11�

Dg�X� �
X1
j�2
�jÿ 1�

Xj

m�ÿj

�Dg�jm�X� �12�

where �T �jm�X� and �Dg�jm�X� are the harmonic compo-
nents of T �X� and Dg�X�, respectively

8jm : �T �jm�X� � GM
R

TjmYjm�X� �13�

8jm : �Dg�jm�X� � GM
R2
�jÿ 1�TjmYjm�X� �14�

Then, for each harmonic component, we have

8jm :
2

R
�T �jm�X� : �Dg�jm�X� � 2 : �jÿ 1� �15�

This indicates that while for low degrees (say, j < 10),
2
R �T �jm�X� and �Dg�jm�X� are of the same order, i.e. they
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give the same contribution to the result Ddg, for high
degrees, the latter becomes larger than the former.

On the other hand, if we solve the Poisson integral in
a local area by truncating it at w0 � 1� because of the
fact that the Poisson kernel drops very fast and the most
power distribution is within 1� (VanõÂ cÏ ek et al. 1996), the
local contribution to the downward continuation of
anomalous gravity only comes from about j > 180. In
this case, we know from Eq. (15) that the contribution
from the disturbing potential 2R �T �jm�X� is two orders of
magnitude smaller than that from the gravity anomaly
part �Dg�jm�X�.

We therefore conclude that the disturbing potential
part 2

R T h
g �X� is much smoother and smaller than the

gravity part Dgh
g�X�. We thus assume that Eq. (7) can be

simpli®ed as

Ddgh�r;X;R� � DDgh�r;X;R� � DT �r;X;R� �16�
and that the downward continuation of 2

R T h can be
numerically estimated from a global potential model,
neglecting the Helmert condensation operation, i.e. as

DT �r;X;R� � 2

R
Tg�X� ÿ 1

2pr

Z
X0

Tg�X0�K�r;w;R� dX0

�17�
To calculate DT �r;X;R� we have to transform Eq.

(17) into a spectral form because the global disturbing
potential model T is usually given in a spectral form.
Substituting the spectral form of potential Tg�X� and
Poisson kernel K�r;w;R� in Eq. (5) into the second term
on the right-hand side of Eq. (17), we have

1

2pr

Z
X0

Tg�X0�K�r;w;R� dX0

� 1

2pr

Z
X0

GM
R

X1
j1�2

Xj1

m1�ÿj1

Tj1m1
Yj1m1
�X0�

�
X1
j�2
�2j� 1� R

r

� �j�1
Pj�cosw� dX0 �18�

Considering the following formulae

4p
2j� 1

Xj

m�ÿj

Y �jm�X0�Yjm�X� � Pj�cosw� �19�Z
X

Y �j1m1
�X�Yj2m2

�X� dX � dj1j2dm1m2
�20�

Eq. (18) becomes

1

2pr

Z
X0

Tg�X0�K�r;w;R� dX0 � Rc
r

X1
j�2

2
R
r

� �j�1

�
Xj

m�ÿj

TjmYjm�X� �21�

Finally we obtain the spectral form of the downward
continuation of 2T=R by adding to Eq. (21) the ®rst term
on the right-hand side of Eq. (17) as

DT �r;X;R� � 2c
X1
j�2

Xj

m�ÿj

TjmYjm�X�

ÿ Rc
r

X1
j�2

2
R
r

� �j�1Xj

m�ÿj

TjmYjm�X�

�2c
X1
j�2

1ÿ R
r

� �j�2" # Xj

m�ÿj

TjmYjm�X�

�: 2Hc
R

X1
j�2
�j� 2�

Xj

m�ÿj

TjmYjm�X�

�22�

where H is the topographic height.

3 Truncated integration

In our ®rst paper (VanõÂ cÏ ek et al. 1996), following the
Molodenskij technique (Molodenskij et al. 1962; VanõÂ cÏ ek
and Sj�oberg 1991), we derived the truncation error of the
truncated Poisson integration in spectral form to be

DgT �X� � Rc
2r

X1
j�2
�jÿ 1�Qj�H ;w0�

Xj

m�ÿj

TjmYjm�X� �23�

where Qj�H ;w0� are the so-called Molodenskij coe�-
cients.

It is natural to study the summation in Eq. (23) at
some degree. To what degree the limited summation can
give results with su�cient accuracy is a question to be
answered. In the following we arrive at the answer
through numerical calculations.

Since we have chosen w0 � 1� as the truncation angle
(VanõÂ cÏ ek et al. 1996), the contribution to the truncation
error should come mostly from the ®rst 180� of the
global potential model. Also, most of the power of a
global potential model, e.g. GFZ93a, (Gruber and An-
zenhofer 1993) in Fig. 1, is at the ®rst 50� and becomes
almost constant after degree 180. We calculated the
truncation error with degree n for two typical points,
plotted in Fig. 2. The results indicate that the ®rst 50�
give results good to 0.02 mGal. Above degree 180 the
truncation error estimate reaches an accuracy of 0.01
mGal. Hence we only need to consider the ®rst 180� of a
global potential model for calculating the truncation
error.

Since satellite gravimetry provides a low-frequency
potential model with very high accuracy, we split the
gravity anomaly (on both the topography and the geoid)
into two parts: low-frequency part �Dgh�L and high-fre-
quency part �Dgh�L (see the Appendix in VanõÂ cÏ ek et al.
1996). The low-frequency part of gravity anomaly is
calculated from a global potential model. We focus our
study here on the high-frequency part: once we obtain
the high-frequency part of gravity anomaly �Dgh

g�L we
can get the whole gravity anomaly Dgh

g by adding to it
the low-frequency part �Dgh

g�L.
To obtain �Dgh

g�L, the integration in Eq. (10) can be
truncated to a spherical cap C0 so that
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�Dgh
t �L �

R
4pr

Z
C0

�Dgh
g�LKm�H ;w;w0� dX0 � DgT �24�

where w0 is the radius of C0 (truncation angle), DgT is
the truncation error (Eq. 23) and

Km�H ;w;w0� � K�H ;w� ÿ
XL

j�0

2j� 1

2
tj�H ;w0�Pj�cosw�

�25�
is the modi®ed Poisson kernel with unknown coe�cients
tj, which can be determined for a given H and w0 (see
Table 1) that the upper limit of the truncation error is
minimized.

The integration of the ®rst term of Eq. (24) over the
1� spherical cap must in practice be done numerically by
summing over geographical cells of speci®ed dimen-
sions. It is thus reasonable to use the same mean
anomalies on the same geographical grid as in Stokes's
integration. In Canada we use 50 � 50 cells after VanõÂ cÏ ek
and Kleusberg (1987). Then from Eq. (24) we may ob-
tain the mean anomaly in the i-th cell in the grid as

�Dgh
t �Li �

R
4pr

X
j

�Dgh
g�Lj

Km
ij � DgT i �26�

where

Km
ij �

1

Ai

Z
ci

Z
cj

Km�H�Xi�;Xi;X
0� dX0 dX �27�

is the doubly averaged (integrated) modi®ed Poisson
kernel for the i-th and j-th cells and the summation is
taken over all the cells contained within the integration
cap of radius w0, and Ai is the area of the i-th cell.

4 Convergence speed of the 50 � 50 iterative scheme

Equation (26) can be solved by setting up the iterative
scheme (VanõÂ cÏ ek et al. 1996), expressed in the vector-
matrix form as

q�n�1� � q�n� ÿ Bq�n� �28�
where the initial value q�0� is the di�erence of the high-
frequency part of the mean Helmert gravity anomaly on
the topography Dgh

t and the truncation error DgT

q�0� � �Dgh
t �L ÿDgT �29�

The coe�cient matrix B has a simple relation with the

integrated modi®ed Poisson kernel Km:

B � R
4pr

Km �30�

Equation (28) can be easily reformulated as a multipli-
cation of a matrix and the initial vector q�0�, i.e.

q�n� � �Iÿ B�nq�0� �31�
Fig. 2a, b. Estimates of truncation errors (mGal) of 1� truncated
integration for two points: a point of (38:71�; 241:5�, 2 km) and b
point of (38:96�; 244:5�, 2 km), plotted as function of n

Fig. 1. Power
Pn

m�ÿn�C2
nm � S2nm�

� �1=2
(where Cnm and Snm are the

harmonic coe�cients of the global potential model GFZ93a) for
individual degrees n
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where I is the unit matrix. Then the mean Helmert
gravity anomaly on the geoid has the following form

�Dgh
g�L �

X1
n�0
�Iÿ B�n

" #
q�0� �32�

and the downward continuation of mean Helmert
gravity disturbance (Eq. 7) can be rewritten as

�Ddgh�L�: ÿ
XN

n�1
�Iÿ B�n

" #
q�0� ÿDT �33�

The questions to be answered are whether or not the
given iterative scheme converges [i.e. can we take a ®nite
integer N in Eq. (33)] and if it does then how fast and
how to determine the number N?

First, we infer from Eqs. (31) and (32) that if the
norm of an individual iteration q�n� becomes smaller and
smaller as n increases, the iteration must converge in
that norm. Equation (31) indicates that whether or not
q�n� becomes smaller with n depends on the following
condition

lim
n!1�Iÿ B�n � 0 �34�

because the initial vector q�0� is constant. Since for any H
the elements of B based on the doubly averaged Poisson
kernel take values between 0 and 1, then
�Iÿ B�ij
��� ��� < 1 8i; j, therefore the condition given by
Eq. (34) must be satis®ed. This proves that the foregoing
iterative scheme converges.

Next, let us discuss the speed of convergence. We can
see from Eq. (34) that the speed of convergence depends
on the Bij values: the larger the diagonal values Bii, the
smaller the o�-diagonal values Bij (because the sum of
the diagonal and o�-diagonal values in each row is ®xed

± see the next section for details) and the faster the
convergence. A closer look at B shows that B varies
mainly with height and slightly with latitude [since the
cell size is (50 � 50� sin h]. For any height the largest value
appears at the diagonal. Figure 3 gives a plot of the
diagonal values of B at the latitude of 72�N. It shows
that the larger the height, the smaller the Bii value. This
means that the convergence speed for larger height
should be slower than for smaller height.

In the following we investigate the convergence speed
in detail. Figure 4 shows the decrease in �1ÿ Bii�H��nj j
with n for four heights (100, 1000, 3000 and 4500 m) at a
latitude of 72�N.

Table 1 Coe�cients tj for some heights (w0 � 1�)

j H � 100 m H � 500 m H � 1000 m H � 2000 m H � 3000 m H � 4500 m

0 )0.19981E+01 )0.19907E+01 )0.19814E+01 )0.19628E+01 )0.19442E+01 )0.19163E+01
1 )0.19981E+01 )0.19907E+01 )0.19814E+01 )0.19628E+01 )0.19442E+01 )0.19163E+01
2 0.17688E)02 0.88436E)02 0.17685E)01 0.35360E)01 0.53021E)01 0.79475E)01
3 0.17383E)02 0.86907E)02 0.17379E)01 0.34749E)01 0.52104E)01 0.78100E)01
4 0.17080E)02 0.85391E)02 0.17076E)01 0.34143E)01 0.51195E)01 0.76737E)01
5 0.16779E)02 0.83889E)02 0.16776E)01 0.33542E)01 0.50294E)01 0.75386E)01
6 0.16481E)02 0.82401E)02 0.16478E)01 0.32947E)01 0.49402E)01 0.74048E)01
7 0.16186E)02 0.80926E)02 0.16183E)01 0.32357E)01 0.48517E)01 0.72721E)01
8 0.15894E)02 0.79465E)02 0.15891E)01 0.31773E)01 0.47641E)01 0.71407E)01
9 0.15604E)02 0.78017E)02 0.15602E)01 0.31194E)01 0.46772E)01 0.70105E)01
10 0.15318E)02 0.76582E)02 0.15315E)01 0.30620E)01 0.45912E)01 0.68815E)01
11 0.15033E)02 0.75161E)02 0.15030E)01 0.30052E)01 0.45060E)01 0.67537E)01
12 0.14752E)02 0.73754E)02 0.14749E)01 0.29489E)01 0.44216E)01 0.66271E)01
13 0.14473E)02 0.72359E)02 0.14470E)01 0.28932E)01 0.43380E)01 0.65018E)01
14 0.14197E)02 0.70979E)02 0.14194E)01 0.28379E)01 0.42552E)01 0.63776E)01
15 0.13923E)02 0.69611E)02 0.13921E)01 0.27833E)01 0.41732E)01 0.62547E)01
16 0.13652E)02 0.68257E)02 0.13650E)01 0.27291E)01 0.40920E)01 0.61329E)01
17 0.13384E)02 0.66917E)02 0.13382E)01 0.26755E)01 0.40116E)01 0.60124E)01
18 0.13119E)02 0.65590E)02 0.13116E)01 0.26224E)01 0.39320E)01 0.58931E)01
19 0.12856E)02 0.64276E)02 0.12854E)01 0.25699E)01 0.38532E)01 0.57749E)01
20 0.12596E)02 0.62975E)02 0.12594E)01 0.25179E)01 0.37752E)01 0.56580E)01

Fig. 3. Diagonal values of B for di�erent heights and latitude 72�
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We can see that �1ÿ Bii�H��nj j has rather di�erent
values for di�erent heights. In the case of H � 100 m,
�1ÿ Bii�H��nj j drops to about 10ÿ3 at n � 4, while in the
case of H � 4500 m, �1ÿ Bii�H��nj j decreases to 10ÿ3 at
about n � 64. Usually, the initial value q�0�i is at most a
few hundreds of mGals. For example, maxi

��q�0�i

�� in the
Canadian Rocky Mountains (delimited by latitudes 41�
N and 62�N, and longitudes 223�E and 259�E) is 205
mGal. In this area, the maximum mean height for 50 � 50
is 3612 m and for this cell q�0�i � 152 mGal. We know
from Eq. (31) that jqij becomes less than 0.01 mGal
when �1ÿ Bii�H��nj j drops to 0:658� 10ÿ4. [This is what
we require to get a centimetre geoid (VanõÂ cÏ ek and
Martinec 1994)]. Figure 4 shows that 0:658� 10ÿ4 cor-
responds to an n between 40 and 50. Since the highest
mean height in Canada is less than 4500 m, we may learn
from Fig. 4 (taking q�0�i � 152 mGal) that at most 80
iterations are enough for Canada.

Let W � ln�1ÿ Bii�H��n be the convergence speed;
we can obtain from Fig. 4 an empirical formula

W �ÿ 3n
H

�35�

where H is the topographical height in km. Equation
(35) shows that the convergence speed is directly
proportional to n and inversely proportional to H . On
the other hand, when W is ®xed (to reach at an accuracy
requirement), then n and H have a linear proportional
relation.

We have to point out that the foregoing discussion is
a pessimistic convergence estimate because we only
considered the diagonal terms. As the geographical cells
become smaller (smaller than 50 � 50), the o�-diagonal
contributions will become larger. Even for the 50 � 50
scheme the o�-diagonal terms may have some e�ect on
the convergence speed even though they are not too
large. However, both the foregoing discussion and
Martinec (1996) have shown that the 50 � 50 scheme is
convergent.

5 Comparison of the ``mean'' and ``point'' schemes

To evaluate the downward continuation in practice, one
has to discretize the Poisson integral of Eq.(10) into a
system of linear equations. There are two ways to carry
this out. One way is to use mean values as already shown
(VanõÂ cÏ ek et al. 1996). The discrete Poisson integral gives
the following system of linear equations

Dght � BDghg �36�
where the matrix coe�cients Bij are de®ned (Eqs. 27 and
30) as

8ij;H : Bij � R
4prAi

Z
ci

Z
cj

Km�H�X�;X;X0�dX0 dX �37�

Actually this scheme uses integral means in cells,
evaluated from the Mean Value Theorem.

The other way was used by Martinec (1996), in which
the Poisson integral is simply discretized by using the
value of the Poisson kernel at the central point of each
cell. His results are on average about ®ve times smaller
than those obtained from the mean scheme. This rep-
resents a numerical quadrature of the crudest kind. The
corresponding system of linear equations is

Dght � CDghg �38�
where C is the matrix composed of

8ij;H : Cij � R
4pr

Km�H�X�;X;X0�Aj �39�

where Aj is the area of the j-th cell.
In the following we compare the two schemes to see

what di�erences exist between them, where the factor 5
(of the di�erence between the point and mean schemes)
comes from, and which scheme is more reasonable. We
®rst investigate the behaviour of the modi®ed Poisson
kernel Km given in Eq. (25), which can be rewritten as

Km�H ;w;w0� �
X1
j�2
�2j� 1� R

r

� �j�1"

ÿ
XL

j�0

2j� 1

2
tj�H ;w0�

#
Pj�cosw� �40�

Integrating Km over a unit sphere givesZ
X

Km�H ;w;w0�dX

�
X1
j�2
�2j� 1� R

r

� �j�1
ÿ
XL

j�0

2j� 1

2
tj�H ;w0�

" #

�
Z

X
Pj�cosw� dX

�
X1
j�2
�2j� 1� R

r

� �j�1
ÿ
XL

j�0

2j� 1
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Fig. 4. Convergence of �1ÿ Bii�Hi��n with n
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where the following property of Legendre's functions is
used

8j :

Z
X

Pj�cosw� dX �4pdj0 �42�

Table 1 gives

t0�H ; 1�� � ÿ2� O
H
R

� �
�43�

and the integral mean of the modi®ed Poisson kernel Km
over the unit sphere is

1

4p

Z
X

Km�H ;w;w0� dX �1ÿ O
H
R

� �
�44�

After truncation at 1� and modi®cation, the low-
frequency part of Poisson's kernel is removed (see Va-
nõÂ cÏ ek et al. 1996, Figs. 3 and 4). The modi®ed Poisson
kernel Km then has the following property

1

4p

Z p

1�
Km�H ;w; 1�� dw � 0 �45�

This implies that Eq. (44) can be expressed as

1

4p

Z
w<1�

Km�H ;w; 1�� dX � 1 �46�

i.e. the average of the modi®ed Poisson kernel Km over
the cap of 1� is equal to about 1.

Equation (46) describes the behaviour of the modi®ed
Poisson kernel important in discussing the two discrete
schemes. According to Eq. (46), the sum of the matrix
coe�cents Bij in Eq. (37) and Cij in Eq. (39) should be

8i :
XM

j

Bij �: 1 �47�

8i :
XM

j

Cij �: 1 �48�

where M is the cell number over the cap of 1�. To test
this, we here calculated the two sums for di�erent
heights on latitude of 72�N. The results are plotted in
Fig. 5 they show that

XM
j

Bij�: 1 �49�

XM
j

Cij >1 �50�

The results also show that the lower the height, the
larger the sum

PM
j Cij, e.g. for H � 100 m,

PM
j Cij is

more than two orders of magnitude larger than 1. The
large di�erence between the two sums comes mainly
from the central 50 � 50 cell of the 1� cap, i.e. from the
diagonal values Bii and Cii. Figure 6 gives the diagonal
values Bii and Cii: it shows similar features to Fig. 5,
especially for the smaller heights. This could be easily
understood because the lower the height, the larger the

contribution from the central cell. In particular in the
case of H � 0, the Poisson kernel becomes a d-function
and the whole contribution of the Poisson kernel is in
the central point (cell). Note that in this case the mean
(integrated) value Bii is still equal to 1, while the point
value Cii�H � 0� grows to in®nity.

We now rewrite Eqs. (36) and (38) in a component
form

8ij : Dgh
t i �

X
j

BijDgh
gj �51�

8ij : Dgh
ti �

X
j

CijDgh
gj �52�

Both theoretical and numerical results show that for
smaller heights the diagonal terms (Bii and Cii) dominate
over the o�-diagonal terms (Bij and Cij, j 6� i), i.e.

Fig. 6. Diagonal elements Bii and Cii of matrices B and C as function
of heights for / � 72�

Fig. 5. Sums of matrix elements Bij and Cij for di�erent heights on a
cap of 1� radius for / � 72�
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8i; j 6� i : jBiij �jBijj �53�
8i; j 6� i : jCiij �jCijj �54�
For small heights, to estimate the e�ect of B and C on
the downward continuation of gravity, we may consider
only the diagonal terms, so that Eqs. (51) and (52) can
be simpli®ed as

8i : Dgh
t i �
: BiiDgh

g i
�55�

8i : Dgh
ti �: CiiDgh

gi �56�
since the other elements BijDgh

gj
of BiDghg would be much

smaller. Then the corresponding inverses are

8i : Dgh
gi �: Bÿ1ii Dgh

ti �57�
8i : Dgh

gi �: Cÿ1ii Dgh
ti �58�

Theoretically, the mean values are smaller than (in
absolute value) or equal to the point values:

8i : jDgh
tij � jDgh

tij �59�
To investigate the di�erence between the two schemes
we shall assume that the point and mean Helmert
gravity anomalies are the same, i.e.

8i : Dgh
ti � Dgh

ti �60�
This assumption is reasonable in practical calculation,
because in many cases we do not observe gravity at too
many points in each 50 � 50 cell. The di�erence of the
point and mean gravity depends on what method is used
in processing the observed gravity data and is usually
small or zero. Under the assumption of Eq. (60), the
relation between Dgh

g and Dgh
g depends only on the ratio

Qi, which is

8i : Qi � Bÿ1ii

Cÿ1ii
� Cii

Bii
�61�

Then we have

8i : Dgh
gi � QiDgh

g i �62�
Figure 7 gives the ratio Qi. It shows that the ratio varies
from 2 (H=4500 m) to several hundreds (for lower
height). Since the ratio Qi is always larger than 1, we
have

8i : Dgh
gi > Dgh

gi �63�
For example, for an area with the highest height of 1500
m, the ratio reaches 5. This means that Dgh

g is about ®ve
times smaller than Dgh

g. This explains why Martinec's
(1996) results are on average about ®ve times smaller
than ours. The preceding discussions show that the
mean scheme is more reasonable and reliable, and the
point scheme brings a large error to results because of its
simple discretization of the Poisson integral.

6 Calculations and discussions

We have calculated, using an iterative technique, the
downward continuation of 50 � 50 mean Helmert gravity
anomalies for our selected area of the Canadian Rocky
Mountains delimited by latitudes 41�N and 62�N, and
longitudes 223�E and 259�E (the same area as adopted
in VanõÂ cÏ ek et al., 1996). The mean 50 � 50 heights in this
area are between 0 and 3612 m. The mean Helmert
anomalies on topography (initial vector q�0�) have values
between ÿ131 and 205 mGal.

First, we have investigated the convergence of the
iterations in the sense of Tchebyshev norm. We judge
the convergence achieved when the following condition
is met

8i : q�n�i

��� ��� < 0:01mGal �64�

Figure 8 gives the plots of both �q�n�i �max and
���q�n�i �min

��
as functions of n. It indicates that �q�n�i �max and

���q�n�i �min
��

Fig. 7. The ratio Qi

Fig. 8. Values q�n�max and q�n�min
��� ��� decreasing with iteration numbers n
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converge almost at the same speed and that they satisfy
Eq. (64) at 45 iterations. This con®rms our theoretical
prediction of the number of necessary iterations being
40 < N < 50.

The pro®les of the high-frequency (higher than de-
gree 20) part of the mean Helmert gravity anomalies on
the topography and on the geoid show the same general
shape but di�erences in amplitudes (Fig. 9); the range of
the anomaly on the geoid is larger than that on the to-
pography. The peaks of the anomaly on the geoid are
always higher and the lows are lower than those of the
anomaly on the topography. This makes physical sense.
The mean values before and after the downward con-
tinuation over the selected area increase, i.e. the average
of Dgh

t is ÿ2:897 mGal and the average of Dgh
g is 0.387

mGal. This implies that the downward continuation
makes gravity increase in average.

Summing the downward continuation of the Helmert
gravity anomalies and the downward continuation of
2T h=R, we obtain the downward continuation of the
Helmert gravity disturbances (Fig. 10). Note that since
the downward continuation of 2T h=R is rather small
compared to the Helmert anomalies, the distribution of
the Helmert gravity disturbances is almost the same in
magnitude as that of the Helmert gravity anomalies.
This can be understood from Eq. (16), remembering that
the DT term is relatively small.

Finally, we summarize. This research dealt with some
theoretical and numerical problems of the downward
continuation of mean Helmert gravity disturbances. It
shows that the downward continuation of 50 � 50 mean
Helmert gravity anomalies or disturbances may be un-
dertaken to any desired accuracy without any di�culty.
We proved that the contribution from the downward
continuation of disturbing potential term is much
smoother than that from the gravity anomaly distur-
bance and is two orders of magnitude smaller, so that it
can be estimated from a global potential model. The
numerical results showed that for calculating the trun-

Fig. 9a, b. Comparison of the high-frequency part of the mean
Helmert's gravity anomalies (mGal) on topography (dashed line) and
on geoid (solid line) for a a pro®le at / � 54�:542, and b a pro®le at
/ � 46�:792

Fig. 10. Downward continuation of the high-
frequency part of the 50 � 50 mean Helmert
gravity disturbances �Ddgh�L (mGal)

419



cation error of the truncated Poisson integral, the ®rst
180� of a global potential model are su�cient. We dis-
cussed the convergence of the mean iterative scheme
(VanõÂ cÏ ek et al. 1996) for calculating the Poisson integral.
We proved that the mean iterative scheme is convergent.
The convergence speed depends on the topographical
heights and at most 80 iterations are enough anywhere
in Canada to reach an accuracy of 0.01 mGal in
Tchebyshev norm. As a numerical integration, the mean
iterative scheme gives a more reasonable and reliable
solution than the point scheme.
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