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Abstract. The aim of this contribution is to show that
mean Helmert’s gravity anomalies obtained at the earth
surface on a grid of a ‘reasonable’ step can be
transferred to corresponding mean Helmert’s anomalies
on the geoid. To demonstrate this, we take the 50 by 50

mean Helmert’s anomalies from a very rugged region,
the south-western corner of Canada which contains the
two main chains of the Canadian Rocky Mountains,
and formulate the problem of downward continuation
of Helmert’s anomalies for this region. This can be done
exactly because Helmert’s disturbing potential is har-
monic everywhere outside the geoid, therefore even
within the topography. Then we solve the problem
numerically by transforming the Poisson integral to a
system of 53,856 linear algebraic equations. Since the
matrix of this system is well conditioned, there is no
theoretical obstacle to the solution. The correctness of
the solution is then checked by back substitution and by
evaluating the contribution of the downward continua-
tion term to Helmert’s co-geoid. This contribution
comes out positive for all the points. We thus claim
that the determination of the downward continuation of
mean Helmert’s gravity anomalies on a grid of a
‘reasonable’ step is a well posed problem with a unique
solution and can be done routinely to any accuracy
desired in the geoid computaion.

1. Introduction

In the standard Stokes formulation of the geodetic
boundary value problem, the solution (the disturbing
potential T) is sought above the boundary, the geoid,
while the observations (gravity values g) are available on
the surface of the earth (Heiskanen and Moritz, 1967).
To obtain the boundary values, the observations thus
have to be reduced from the earth surface onto the
geoid. This reduction is in geodetic literature called the
downward continuation.

The downward continuation may be applied to
observed gravity values g, gravity disturbances dg,
disturbing potential T, or any combination of these
quantities. Once we know how to downward continue T,
the downward continuation of the other quantities can
be also derived. The main problem is that the space
through which we want to reduce the desired quantity
contains (topographical) masses with an irregular
density distribution. It is relatively easy to downward
continue a harmonic function, but it is very difficult to
do so with a non-harmonic one since we would have to
take into account the density of topographical masses.
While T is harmonic outside the earth surface (dis-
regarding the atmospheric density), it is certainly not
harmonic within the topography.

The way this problem is usually treated is to
transform it into a model space, where the disturbing
potential to be dealt with is harmonic between the earth
surface and the geoid. Two such models have been used
in geodesy: the free-air model and the Helmert model.
The former is employed in the context of solving the
Molodenskij problem (Moritz, 1980) and it consists of
‘‘moving’’ topographical masses inside the geoid so as
not to change the external potential. The downward
continuation performed by means of this model thus
constitutes the downward continuation of the external
field T inside the topography (Vanı́ček and Martinec
1994). The latter model uses Helmert’s ‘‘condensation’’
of topography onto the geoid by means of one of the
condensation techniques, that may preserve either the
total mass of the earth, or the location of the centre of
mass, or to be just an integral mean of topographical
column density – see, e.g., (Wichiencharoen 1982).

The open question in both these approaches is the
existence of the harmonic downward continuation of the
model field. In the free-air model, the model field
coincides with the real field on the earth surface and as
such is very complicated, because it is affected by the
density irregularities in the close proximity of the earth
surface, i.e., within the topography. It thus has
constituents of all spatial frequencies with possibly large
amplitudes. Yet, the physics the gravitational attraction
in a region of harmonicity requires that constituents of
different wave numbers n be suitably attenuated (by an
approximate factor of ��R � H�=R�n� when going from
the geoid to the earth surface of height H above theCorrespondence to: P. Vanı́ček
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geoid. In other words, there probably does not exist a
disturbing potential ‘‘corresponding to free-air anom-
aly’’ in the sense of eqn. (2), harmonic between the geoid
and the earth surface, which would have the value T at
the surface. This problem is usually overcome by some
smoothing of T such as the Residual Terrain Model
method (Forsberg 1984), called also ‘‘regularization’’, at
the earth surface, the physical interpretation of which is
unclear.

In the Helmert model, T is transformed to the
Helmert disturbing potential Th by the following
equation

Th
� T ÿ V ; �1�

where V is the difference between the potential of the
topography and the potential of the Helmert condensa-
tion layer (Vanı́ček and Martinec 1994; Martinec and
Vanı́ček, 1994). Helmert’s disturbing potential at the
earth surface is thus made smoother than the actual
disturbing potential because the nearest ‘‘disturbing
masses’’ are now located on the geoid. To illustrate this
point, we show in Figure 1 a profile of free-air anomaly,
defined to a spherical approximation as (Heiskanen and
Moritz, 1967)
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at the earth surface t taken across a particularly rugged
part of the Canadian Rocky Mountains and compare it
with the same profile depicting the Helmert anomaly
Vanı́ček and Martinec 1994)
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given again to a spherical approximation. Even for the
50 step the smoothing effect of the ‘‘Helmertization’’ is
already visible. The real difference would be seen at the
high frequency part of the respective spectra, from wave
number n � 6; 000 onwards. The investigation of this
difference is, however, not pertinent here.

The problem with the Helmertization of the
disturbing potential is that the direct topographical
effect V cannot be evaluated exactly; the density
distribution within topography is not known very
accurately and some density model has to be assumed.
In the first approximation a constant topographical
density of 2.67 g/cm3 is normally used and this is the
density model we have used in the experiment reported
in this paper.

We note that eqn. (3) can be written also as (cf. eqn.
(1))
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where the second term on the right hand side is the direct
topographical effect on gravity at the earth surface and
the third term is called the secondary indirect to-
pographical effect on gravity at the earth surface. They
both are functions of topographical height H and
topographical density q (Vanı́ček and Martinec, 1994)
and can be evaluated numerically once a density model
is assumed and a condensation technique adopted.

Fig. 1. Profile of free-air (– � – �) and
Helmert (–)50 � 50 gravity anomalies for
latitude / � 50�:417
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2. Application of Poisson’s theorem

Let us now discuss the problem of ‘‘downward
continuation’’ from the mathematical point of view.
The standard mathematical apparatus used in studying
downward as well as upward continuation is the Poisson
theorem. The Poisson theorem states that from a
function f, known on a sphere of radius R and harmonic
outside this sphere, we can compute the functional value
f�r;X� anywhere outside the sphere, i.e., for r > R by
the following (Poisson) integral (Kellogg 1929; Mac-
Millan 1930)

f�r;X� �
1

4p

Z

X0

f�R;X0
�K�r;w;R�dX0

; �5�

where K is the Poisson’s kernel

K�r;w;R� �
X1

j�0

�2j � 1�
R
r

� �j�1

Pj�cos w�

� R
r2
ÿ R2

l3 ;

�6�

w is the angular distance between geocentric directions X
and X0 and l is the spatial distance between �r;X� and
�R;X0

�. This theorem can be directly applied to Th, if we
think the approximation of the geoid by the sphere of
radius R is admissible; it guarantees an accuracy better
than 1.3 * 10ÿ3 which seems reasonable here.

An expression similar to (5) can be derived also for
the radial derivative of a harmonic function f (Heiska-
nen and Moritz 1967)
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Again, to a spherical approximation of the geoid, this
expression can be directly applied to the radial
derivative of Th. But the radial derivative of Th is
nothing else but Helmert’s gravity disturbance (Heiska-
nen and Moritz 1967) dgh and we can write for the
unknown Helmert’s gravity anomaly on the geoid
(subscript g)

Dgh
g � Dgh

t � dgh
g ÿ dgh

t ÿ
2
R
�Th

g ÿ Th
t �

� Dgh
t ÿ Ddgh

ÿ DTh
;

�8�

where Ddh
g is the downward continuation of Helmert’s

gravity disturbance called Dgh in (Vanı́ček and
Martinec 1994) and DTh is the downward continuation
of 2Th

=R:
Denoting the difference Dgh

g ÿ Dgh
t by DDgh and

calling it the downward continuation of Helmert gravity
anomaly, we can write eqn. (8) as

DDgh
� ÿDdgh

ÿ DTh
: �9�

This equation shows that the only difference between the
downward continuation of gravity disturbance and that
of gravity anomaly is the term DTh. This term
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is of a much lower spatial frequency than the Ddgh term.
For the degree n of the model equal to 180, the
magnitude of Th drops by two orders compared to Dgh

:

It is also much smaller and can thus be adequately
evaluated from a global model. This can be seen on the
plot in Figure 2 showing the south-western corner of
Canada that includes several chains of the Rocky
Mountains.

3. Setting up the recursive formula

Since the (Helmert) gravity anomaly at the earth surface
is more readily obtained than the (Helmert) gravity
disturbance, we shall work with gravity anomalies rather
than gravity disturbances.

From the Poisson integrals for Th and @Th
=@r; and

eqn. (3) we can easily derive the following expression
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� I�Dgh
g�;

�11�

good to the usual spherical approximation. The problem
of downward continuation is then reduced to the
solution of the above integral equation of first kind:
Dgh

t is known and Dgh
g is to be determined.

Up to the sperical approximation, the integral
equation (11) is valid exactly since Th is harmonic above
the geoid. Hence a unique solution Dgh

g to eqn. (11)
exists if Th

g (on the geoid) is finite and Dgh
t is exact. From

the physics of the problem it should be obvious that
indeed Th

g is finite but it may have large amplitudes for
short wavelength components. As the solution of our
integral equation (of first kind) is inherently unstable,
any errors in Dgh

t may get amplified by the solution.
Generally, the shorter wavelength errors will get
amplified more than the longer wavelength ones. To
aleviate this problem, we apply a stabilizing procedure
consisting of using mean anomalies rather than point
anomalies. (The application of Stokes’s formula can be
regarded as another stabilization process, of course) We
shall return to this problem at the end of this section.
First, we set up a simple recurrence process to solve the
integral equation iteratively.

Let us begin by denoting

Dgh
t ÿ I�Dgh

g� � q; �12�

clearly, according to eqn. (11), this difference equals to 0.
We can define

q�k�1�
� Dgh

t ÿ I �Dgh
g�

�k�
h i

; �13�

where the superscript in brackets denotes the iteration
number, and start the iterative process with
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�Dgh
g�

�0�
� q�0� � Dgh

t : �14�

We note that this implies

q�1� � Dgh
t ÿ I�Dgh

t �: �15�

The sought quantity �Dgh
t � is given by

Dgh
g � Dgh

t �
X1

j�1

q�j� �
X1

j�0

q�j� �16�

and its iterative approximations are

�Dgh
g�
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�
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j�0

q�j�: �17�

The recursive formula for one point X then can be
written as
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�X� � Dgh
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This equation can be easily converted to an operational
recursive formula for the individual differences which
reads

q�k�1�
�X� � q�k��X� ÿ I�q�k��

� q�k��X� ÿ
R

4pr

Z

X0

q�k�K�r;w;R�dX0
:

�19�

When we want to solve for the Dgh
g�X� in a certain

area A, we start the process by taking the known
Helmert anomaly on the surface of the earth as the
zeroth iteration (eqn. (14)) for all the points X in A and
use eqn. (19) to compute the successive iterations, again,
for all the points in A, till even the largest difference
qk�1

�X� in A is in absolute value smaller than a
prescribed limit. This limit can be set up to perhaps
some 10lGal, which should ensure that the accuracy of
geoid computed from so determined anomalies would
not be affected above the magic 1cm level (Vanı́ček and
Martinec 1994). Let us note here, that there exist better,
i.e., faster converging schemes. A search for the best
suited scheme was not considered necessary in this initial
stage of our investigations. One such technique was
pointed to us ‘‘after the fact’’ by Vermeer (1995,
personal communication) and will be tested in sub-
sequent investigations.

There are two problems with the process described
above. The first one concerns the convergence of the
iterative process – none of the discussion in this section
gives us any hint as to the convergence of the process.
This means that based on the discussion above, we
cannot guarantee that the largest difference in A will
ever be smaller than the prescribed limit. The potential
non-convergence of the iterative process is related to the

Fig 2. The downward continuation of 2T/R (lGal). Contour interval = 10 lGal
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above mentioned lack of stability of the solution. We
will have more to say about it in sections 5 and 6.

The second problem is related to the integral
appearing in eqn. (19) – this integral is to be taken over
the whole earth and thus the differences q�k�1�

�X� have
to be computed over the whole earth. We shall discuss
the second problem in the next section.

4. Selecting integration limits

Fortunately, the Poisson kernel

K�r;w;R� � K�R � H ;w;R� � K
H
R
;w

� �

�20�

that dominates the behaviour of the sub-integral
function in eqn. (19), vanishes rather quickly with
growing angular distance w – see Figure 3. This means
that the integration in eqn. (19) can be taken only over a
spherical cap of a relatively small radius w0 (instead of
over the whole earth) and the error committed by doing
so – the integration truncation error which we will be
calling here simply the truncation error – remains
relatively small. This behaviour is governed by the
height H of the point X: the higher the point, the slower
the kernel vanishes.

We have tested different truncation radii w0 for their
truncation errors and determined that a truncation
radius of 1� gives a reasonably small error for our test
area in south-western Canada. Moreover, the truncation
error can be reduced by introducing a modification of
the Poisson kernel. The technique invented by Molo-
denskij, where the upper limit of the truncation error is
minimized (Molodenskij et al. 1960; Sjöberg 1984; eqn.
13), appears to be well suited to our purpose. We shall
now show, how this technique works in our context.

We begin by rewriting the integral in eqn. (19) as
Z

X0

q�k�K�X;X0
�dX0

�

Z

C0

q�k�K�X;X0
�dX0

�

Z

X0
ÿC0

q�k�K�X;X0
�dX0

; �21�

where C0 denotes the spherical cap of radius w0. Clearly,
the second term in eqn. (21) is the truncation error to be
minimized and we shall denote it by DgT . The
minimization is carried out in the sense of minimizing
the upper bound of the absolute value of the truncation
error (Vanı́ček and Sjöberg 1991 eqn. (15)) by
subtracting from the Poisson’s kernel an appropriately
selected linear combination of spherical harmonic
functions taken to a degree and order L. We have
selected this upper limit to equal to 20. To be able to use
the Molodenskij modification, we have to subtract first
the low degree harmonics (� L) from the function to be
convolved with the modified Poisson kernel. The low
degree harmonics DgL have to be determined separately
from a global gravity model and added to the truncation
error DgT , which is also determined from a global
gravity model. The determination of the appropriate
coefficients of the modifying linear combination, some

Fig. 3. Poisson’s integration kernel for heights H � 1; 000 m and
H � 1 m. Note that the plots close to the computation point are in
log. scale
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properties of so modified Poisson’s kernel, the deriva-
tion of the mathematical expression for the minimized
truncation error and the expression for DgL are shown in
the Appendix. Here, we just denote the so modified
Poisson kernel by Km

�X;X0
;w0� and use it thus in our

further derivations. Figure 4 illustrates what the
modified Poisson kernel looks like so the interested
reader can compare it with Figure 3. There is no
discernible difference for w < 1�.

The truncation error DgT �w0�, which may still reach a
few hundreds of lGal, has to be, of course, taken into
account. But, the applicability of this approach is in that
the truncation error changes only insignificantly from
iteration to iteration and as such can be determined once
for all in the first iterative step. This is particularly true in
low terrain; in very high mountains the changes may be
more significant and thus they may have to be taken under
consideration, but this is unlikely. The correction for this
error is then used in the iterations together with the
correction DgL and the iterations are carried out only with
the truncated Poisson integral. The truncation error DgT
for our area of interest is plotted in Figure 5 (for GFZ93a
global model, Gruber and Anzenhofer, 1993). The error
in this area ranges from –0.14 mGal to 0.29 mGal.

5. Using mean Helmert’s anomalies

Even after truncating the integration in eqn. (19) to a
small spherical cap, we still have to integrate over each
spherical cap, different for each point of interest and
using the non-homogeneous modified Poisson kernel.
This integration has to be done numerically, replacing
the integration by summation over geographical cells of
specified dimensions. The final product of our work, the
Helmert anomaly on the geoid, is to be used in
producing the geoid by Stokes’s convolution integra-
tion, which is evaluated also by replacing the integration
by a summation over (suitably weighted) mean anoma-
lies on a grid of geographical cells (Heiskanen and
Moritz 1967). It is thus natural, to use the same
geographical grid for both tasks, i.e., to operate here
with the same mean anomalies that we want to use in the
Stokes convolution. In most applications these cells
would be between 2.50 by 2.50 and 100 by 100. In Canada,
we have been using 50 by 50 cells (Vanı́ček and Kleusberg
1987) and in our experiment here we use these as well.

We can now reformulate the equations derived above
for the mean Helmert anomalies. We begin with eqn. (11)
which we rewrite, for the mean anomaly in the i-th cell
in the grid, as follows

Dgh
t i �

R
4prAi
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Z
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0
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� Dg1i; �22�

Fig. 4. Modified Poisson’s integration kernel Km for H � 1; 000 m
and H � 1 m
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where ci denotes the i-th cell with area Ai and C0 denotes
again the spherical cap for the truncated integration.
Note that since we use the modified Poisson kernel
Km

�H ;w;w0�, the low frequency contribution is taken
away automatically from the first term of eqn. (22).
Then the second term Dg1 in eqn. (22) is the correction
combining the low frequency contribution DgL and the
truncation error DgT (see the Appendix for detail)
averaged for the cell ci. Interchanging the two
integrations and denoting the mean value of the
modified Poisson kernel by

Km
�H�Xi�;Xi;X

0
� �

1
Ai

Z

ci
Km

�H�X�;X;X0
;w0�dX

� Km
i �X;w0�;

�23�

we get
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Expressing the integral over the cap as
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�Dgh
g�j Km
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where

Km
ij �

1
Ai

Z

ci

Z

cj
Km

�H�Xi�;Xi;X
0
�dX0dX; �26�

is the doubly averaged modified Poisson kernel for the
i-th and j-th cells and the summation is taken over all
the cells contained within the integration cap of radius
w0. Then eqn. (22) can be rewritten as

8i : Dgh
t i �

R
4p�R � Hi�

X

j

Km
ij Dgh

gj � Dg1i ; �27�

which replaces the integral eqn. (11), valid for a point X,
by a system of linear equations valid for all mean values
of Helmert anomalies in the area of interest. It is this
system of equations that has to be solved iteratively.

Fig. 5. Truncation error DgT (lGal). Contour interval = 50 lGal
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In order to get the recursive formulation that we need
for the iterations, we simply replace the point Helmert
anomalies in eqns. (12) to (15) by mean Helmert
anomalies, ending up with the ‘‘mean difference’’
recurrence equation

8i : q�k�1�
i � q�k�i ÿ

R
4p�R � Hi�

X

j

Km
ij q�k�j �28�

with the initial values

8i : q�0�i � Dgh
ti ÿ Dg1i : �29�

This is the final system that has to be iterated until all
mean values q in A are in absolute value smaller than the
prescribed limit. Note that both the gravity anomaly
Dgh

ti and the correction term Dg1i (the sum of the
truncation error and the low frequency contribution)
only goes to the initial value (i.e., eqn. (29)), while for
any k-th iteration �k 6� 0�; q�k� can be obtained from the
previous iteration q�kÿ1�

: The matrix of coefficients Km
ij is

not symmetrical. It remains constant in the iterations
and has a nice banded structure with the dominant
elements residing on the main diagonal. For small Hi the
i-th row is composed of small elements (that tend to zero
when Hi goes to zero) and 4p on the main diagonal. This
reflects the fact that for the height equals to zero, the
downward continuation does not apply and the
increments q�k� are, starting from k � 1 all equal to
zero. As the height Hi grows larger, the off-diagonal

elements grow larger and the Kronecker-like behaviour
gets weaker and weaker.

We note, that the replacement of point Helmert
anomalies by mean Helmert anomalies represents a
further smoothing of the anomaly field. Thus working
with mean Helmert anomalies increases the chances that
the iterative process will indeed converge. Let us recall
here that Bjerhammer (1962, 1976), in his famous
formulation of the geodetic boundary value problem,
proposed to carry out the downward continuation for
point gravity anomalies. In Bjerhammar’s approach, the
additional smoothing by averaging over geographical
cells employed here is absent.

Once all the individual ‘‘mean difference’’ q�k�i are
calculated, we can obtain the final mean gravity
anomalies Dgh

gi and the mean downward continutaion
of gravity anomalies DDgi as

8i : Dgh
gi �

Xk

l�0

q�l�i �30�

8i : DDgi �
Xk

l�1

q�l�i ÿ Dg1i : �31�

6. Results

In this section we report the results from our selected
area (covering the southern part of the Canadian Rocky

Fig. 6. Topographical heights in Canadian Rocky Mountains (m)
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Mountains, see Figure 6), delimited by latitudes 49� N
and 54� N, and longitudes 236� E and 246� E. The mean
50 by 50 heights in this area range between 0 and 2974
metres and the mean Helmert anomalies at the earth
surface are between –134.17 mGal and 185.63 mGal. To
reduce the effect of incomplete data coverage for
integration caps (of 1� radius) along the edges of the
area, we have increased the rectangular area by 6� in
each direction so that the area for which the downward
continuation is actually computed, is 17� by 22�, from
which only 5� by 10� is used at the end.

We have investigated numerically the convergence of
the iterative process in Tchebyshev’s norm; the process
converges, albeit fairly slowly. The iterations converge
also in the quadratic norm, but this behaviour is only of
an academic interest. In the 6� border area the solution
is questionable, however, depending on the heights of
the points outside the area of interest. (Experiments
conducted after the submission of this manuscript have
shown that the problematic border area is closer to 1�.)
For instance, if all the points outside the extended area
of interest have zero heights – think of an island at sea –
the q�1� and all the higher iterations will be also equal to
zero. In this case the errors made in the border area by
integrating only over partial spherical caps would
remain constant during the iterations and their effect
would not spread into the internal rectangle. On the
other hand, if points adjacent to the extended border
have large heights, the errors from using partial
integration areas (sections of the spherical caps) may
be significant. This behaviour can be observed in the
south-east corner of our area of interest.

In our inner rectangle of interest, the ratio of
Tchebyshev norms, max jqk�1

j=max jq�k�j, for any two

successive iterations k-th and �k � 1�st, is around 0.5.
We note that for other points this ratio may be even
larger than 1 but the number of points for which it is so
decreases from iteration to iteration. Figure 7 shows the
plot of q�1�, while Figure 8 displays q�10�, for the
interested reader to compare the results for himself.
The range of q�1� is < ÿ42:13 mGal; 56:21 mGal > and
that of q�10� is < ÿ2:71 mGal; 3:81 mGal >. In the
course of these 9 iterations, the Tchebyshev norm
decreases from 56.21 mGal to 3.81 mGal.

We have iterated the solution to k � 45, by which
time the Tchebyshev norm had decreased to 0.01 mGal.
We consider this sufficiently accurate even for accurate
geoid computations. The solution was tested by back
substitution, to make sure that accumulated round-off
numerical errors did not affect the results beyond the
required accuracy. The downward continuation of mean
Helmert anomaly that we have been looking for, DDgh,
i.e., the sum of the increments q�k� for k going from 1 to
45, is shown in Figure 9 for the internal rectangle of
interest. The values are surprisingly large, comparable
with the anomaly values themselves, but of predomi-
nantly short wavelength – it is thus impossible to display
them graphically in a meaningful fashion. The 3-D
display used here is not very useful but any other display
mode is even worse. After getting the downward
continuation, we finally obtain the Helmert’s gravity
anomaly on the geoid (see Figure 10). Since most of the
power of DDgh is of a very short wavelength, however,
the contribution to the Helmert co-geoid from this
source is smaller than one would expect from the
magnitude of the effect – see Figure 11. For our area of
interest, it ranges between 0.096 and 1.096 metres.

Fig. 7. First iteration q�1� of q (mGal)
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7. Conclusions

We had set out to investigate a specific question as to
whether mean Helmert’s anomalies on the geoid can be
derived from known mean Helmert’s anomalies at the
surface of the earth. In other words, we wanted to
establish if the so called ‘‘downward continuation’’ of
mean Helmert’s anomalies can be computed or not. Our
choice of mean anomalies was dictated by a practical
consideration stemming from the realization that mean

anomalies are the boundary values used in practice for
solving the geodetic boundary value problem. Our
choice of Helmert’s anomalies came from the fact that:
1) Helmert’s disturbing potential is harmonic outside the
geoid and thus also between the geoid and the earth
surface; 2) Helmert’s gravity anomalies at the earth
surface are by their nature smoother than the standard
free-air anomalies. We had also decided to use mean
anomalies for 50 by 50 geographical cells, because these
were the ones we had readily at our disposal.

Fig. 8. Tenth iteration q�10� of q (mGal)

Fig. 9. Downward continuation DDg
h

of 50 � 50 mean Helmert’s gravity anomalies (mGal)
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We have selected a particularly rugged part of
Canada, the Rocky Mountains, in which to carry out
our experiment. The reason for this choice should be
obvious: if it turns out that the downward continuation
can be computed in the Rockies, with mountains over
4,000 metres high, then there should be little trouble
computing it anywhere else in the world, with perhaps
the exception of the Himalayas.

When working with the Poisson problem, much like
working with the Newton and Stokes problems, (i.e., the
evaluation of the gravitational potential from Newton’s
integral and the evaluation of the geoid from Stokes’s
integral), one is supposed to evaluate a surface
convolution integral over the whole earth, which is an
impractical requirement. We have overcome this tech-
nical difficulty in much the same way as we overcome it
in solving the other two problems, by splitting the
integration area into a small spherical cap – we have
chosen a cap of radius equal to 1 arc-degree – around
the point of interest and the rest of the world. The
contribution from the rest of the world is sufficiently
small so that it can be evaluated to a sufficient accuracy
using one of the existing global gravity models. To
minimize this contribution further we also subtract the
low degree and order field – to degree and order 20, has
been our choice – from the observed mean Helmert’s
anomalies at the earth surface and downward continue
this long wavelength part separately. Both these
contributions (corrections) are evaluated in the spectral
domain from the global model GFZ93a and added to

the downward continuation of the higher degree and
order – above 20 – mean Helmert’s anomalies.

It turns out that the downward continuation of the
higher degree and order mean Helmert’s anomalies can
be obtained in a fairly simple manner. For our 17� by 22�

experimental area and the 50 by 50 mean anomalies, the
Poisson integral equation is represented by 53,856 linear
algebraic equations. We have evaluated the condition
number for the corresponding matrix assembled for
point values, rather than mean values. It is equal to 2,
showing that the matrix is very well conditioned. (Our
matrix, assembled for mean values, is probably some-
what less well conditioned, judging from the number of
iterations needed.) There is thus no theoretical problem
with getting the inverse of this matrix.

Because the size of the matrix is daunting, we had
elected to solve the system by a simple iterative scheme.
Table 1 shows how the iterations converge – to save
space, only every 5th iteration is shown – in both
Tchebyshev’s and quadratic norms. It took 45 iterations
to get the Tchebyshev norm under 10 lGal, i.e., to make
sure that the downward continuation is accurate to at
least 10 lGal for all the points in the area of interest.
Interestingly, the quadratic norm of the iterated ‘‘mean
differences’’ q decreases by almost 9 orders of magnitude
in the course of the 45 iterations. Some 22 iterations
would have sufficed if the mean threshold value of
10 lGal were used.

For physical reasons unknown to us the effect of the
downward continuation of Helmert’s anomalies (i.e., of

Fig. 10. Helmert mean gravity anomaly �Dgh
g� on the geoid (mGal)
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the difference between mean Helmert’s anomalies on the
earth surface and on the geoid) on Helmert’s co-geoid
(Vaniček and Martinec 1994) is everywhere positive –
see Fig. 11. This is caused, mathematically, by the slight
positive long wavelength bias of the downward con-
tinuation term. The high frequency variations of the
downward continuation do not seem to have much of an

effect on the co-geoid as Stokes’s integration effectively
dampens high frequency contributions.

We can thus claim that we have demonstrated that
mean Helmert’s anomalies can be successfully trans-
ferred from the surface of the earth to the geoid, i.e.,
that the downward continuation of mean Helmert’s
anomalies on a 50 by 50 grid is a well posed and therefore
solvable problem. The natural smoothing (regulariza-
tion) introduced by averaging the anomalies and the
Poisson kernel over 50 by 50 (and possibly even much
smaller) geographical cells is efficient enough to
guarantee a unique solution of the downward continua-
tion problem. Since in practical applications only mean
anomalies rather than point anomalies are used, we
believe that our results should put to rest the pervasive
uneasiness about the solvability of the downward
continuation problem. To be sure, there are still some
theoretical questions to be worked out, such as: For
what size of averaging cells will the solution show signs
of breaking down, if at all? For what heights (averaged
over the geographical cells) will the solution become
unstable, if at all? Can a similar process be used for the

Fig. 11. Contribution to the Helmert co-geoid from the downward continuation of Helmert anomalies (m). Contour interval = 0.1 m

Table 1 Ranges and norms for every 5th iteration

n Range of the effect Tcheby. norm quadratic norm
Pn

i�1 q�i� mGal of q�n� mGal of q�n� mGal2

1 () 42.13, 56.21) 56.21 0.2994E+2
5 () 94.60, 146.05) 13.49 0.5457E+0
10 ()118.68, 179.23) 3.81 0.2598E)1
15 ()124.99 189.09) 1.17 0.2187E)2
20 ()126.79, 192.16) 0.44 0.2566E)3
25 ()127.32, 193.13) 0.20 0.3853E)4
30 ()127.49, 193.44) 0.10 0.7013E)5
35 ()127.55 193.54) 0.05 0.1477E)5
40 ()127.56, 193.58) 0.03 0.3448E)6
45 ()127.57, 193.59) 0.01 0.8619E)7
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downward continuation of mean free-air anomalies
encountered in Molodenskij’s approach and under what
circumstances? How good is the Pellinen approxima-
tion, which is normally used in the Molodenskij
approach? But these questions are, of course, beyond
the scope of this paper.
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Appendix: Low frequency contribution
and truncation error

To estimate the truncation error of the downward
continuation of gravity anomalies, we split the gravity
anomaly on the geoid into two parts: low frequency part
�Dgh

g�L and high frequency part �Dgh
g�

L
:

Dgh
g � �Dgh

g�L � �Dgh
g�

L
: �32�

Eqn. (11) can then be written as

Dgh
t �

R
4pr

Z

X0

Dgh
gK�r;w;R�dX0

� DgL �
R

4pr

Z

X0

�Dgh
g�

LK�r;w;R�dX0
;

�33�

where

DgL �

R
4pr

Z

X0

�Dgh
g�LK�r;w;R�dX0

�34�

is the low frequency part of gravity anomaly on the
earth surface which can be calculated from a global
gravity model. To transform eqn. (34) into spectral
form, we use the following expression for gravity
anomaly as obtained from a global Helmert’s potential
model Th

jm

Dgh
g�X� � c

X1

j�2

�j ÿ 1�
Xj

m�ÿj

Th
jmYjm�X� �35�

and the orthogonality relations

4p
2j � 1

Xj

m�ÿj

Y �

jm�X
0
�Yjm�X� � Pj�cosw�; �36�

Z

X
Y �

j1m1
�X�Yj2m2�X�dX � dj1j2dm1m2 : �37�

Since the first term on the right hand side of eqn. (32)
can be obtained from eqn. (35) as

�Dgh
g�L � c

XL

j�2

�j ÿ 1�
Xj

m�ÿj

Th
jmYjm�X�; �38�

the low frequency contribution DgL becomes

DgL �

Rc
4pr

Z

X0

XL

ji�2

Xj1

m1�ÿj1

�j1 ÿ 1�Th
j1m1

Yj1m1�X
0
�

�

X1

j2�0

�2j2 � 1�
R
r

� �j2�1

�

4p
2j2 � 1

Xj2

m2�ÿj2

Y �

j2m2
�X0

�Yj2m2�X�dX0

� c
XL

j�2

�j ÿ 1�
R
r

� �j�2 Xj

m�ÿj

Th
jmYjm�X�: �39�

The integration in the second term on the right hand
side of eqn. (33) can be truncated at spherical cap C0 so
that

R
4pr

Z

X0

�Dgh
g�

LK�r;w;R�dX0

� �

R
4pr

Z

C0

�Dgh
g�

LKm
�H ;w;w0�dX0

�

R
4pr

Z

X0
ÿC0

�Dgh
g�

LKm
�H ;w;w0�dX0

�

R
4pr

Z

X0

�Dgh
g�

L
�K ÿ Km

�dX0
; �40�

where

Km
�H ;w;w0� �K�H ;w�

ÿ

XL

j�0

2j � 1
2

tj�H ;w0�Pj�cos w� �41�

is the modified Poisson kernel with unknown coefficients
tj. The second term on the right hand side of eqn. (41) is
the truncation error DgT to be minimized following the
Molodenskij technique to minimize potential errors
coming from the employed global model. The third
term on the right hand side of eqn. (41) is equal to zero,
because �Dgh

g�
L is the high frequency �j > L� part of

gravity anomaly and �K ÿ Km
� contains only the low

frequencies �j � L�. To get the unknown tj’s, we use
Schwarz’s inequality:
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Dg2
T �

R
4pr

Z

X0
ÿC0

�Dgh
g�

LKm
�H ;w;w0�dX0

� �2

<

R
4pr

� �2Z

X0
ÿC0

�Km
�H ;w;w0��

2dX0

�

Z

X0
ÿC0

��Dgh
g��

L
�
2dX0

: �42�

To minimize the upper bound of jDgT j we have to
minimize

R

X0
ÿC0

�Km
�H ;w;w0��

2dX0, i.e.,

@

@tj

Z p

w0

Z 2p

0
�Km

�H ;w;w0��
2sin wdwda

� 2p
@

@tj

Z p

w0

�Km
�H ;w;w0��

2sinwdw � 0: �43�

Then the coefficients tj can be obtained from the
following system of equations:

XL

j�0

2j � 1
2

tj�H ;w0�eij�w0� � Qi�H ;w0�;

i � 0; 1; � � � ; L;

�44�

where

eij�w0� �

Z p

w0

Pi�cos w�Pj�cos w�sin wdw;

Qj�H ;w0� �

Z p

w0

K�H ;w�Pj�cos w�sin wdw :

�45�

Writing the modified Poisson kernel in a spectral
form

Km
�H ;w;w0� �

X1

j�0

2j � 1
2

Qj�H ;w0�Pj�cos w�; �46�

where

Qj�H ;w0� �

Z p

w0

Km
�H ;w;w0�Pj�cos w�sin wdw; �47�

we obtain the truncation error DgT as

DgT �X� �

Rc
4pr

Z

X0

X1

j1�2

Xj1

m1�ÿj1

�j1 ÿ 1�Th
j1m1

Yj1m1�X
0
�

�

X1

j2�0

2j2 � 1
2

Qj2
�H ;w0�

�

4p
2j2 � 1

Xj2

m2�ÿj2

Y �

j2m2
�X0

�Yj2m2�X�dX0

�

Rc
2r

X1

j�2

�j ÿ 1�Qj�H ;w0�

�

Xj

m�ÿj

Th
jmYjm�X�: �48�

Finally, eqn. (33) can be rewritten as

Dgh
t �

R
4pr

Z

C0

�Dgh
g�

LKm
�H ;w;w0�dX0

� Dg1; �49�

where

Dg1 � DgL � DgT �50�

is the term to be used in eqns. (22)–(29) in the text. We
note that it is only the higher frequency part of Dgh

g, i.e.,
�Dgh

g�
L, that is used in the solution of the Poisson

integral equation.
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Sjöberg, L.E., 1984, Least squares modification of Stokes’ and
Vening Meinesz’ formulas by accounting for truncation and
potential coefficient errors, Manuscripta Geodaetica, 9, 209–
229.
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Vanı́ček, P. and L.E. Sjöberg, 1991, Reformulation of Stokes’s
Theory for Higher than Second-Degree Reference Field and
a Modification of Integration Kernels, JGR 96 (B4), 6529–
6539.
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