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Abstract 
 
After solving the geodetic boundary value problem in the Helmert space, the co-geoid has to be 
transformed back into the real space to obtain finally the geoid. For this transformation, the indirect 
topographical and atmospheric effects on the geoidal heights have to be evaluated. Martinec and 
Vaní�ek (1994) discussed theoretical aspects of the primary indirect topographical effect. In this 
paper, some aspects of the numerical evaluation are investigated.   
 
Resumen 
 
Después de resolver el problema de valor geodésico de frontera en el espacio de Helmert, el 
cogeoide tiene que ser llevado a espacio real para obtener finalmente el geoide. Para esta 
transformación, los efectos topográficos y atmosféricos indirectos tienen que ser evaluados. 
Martinec y Vaní�ek (1994) muestran los aspectos teóricos del efecto topográfico indirecto primario. 
En este artículo, se investigan algunos aspectos de su evaluación numérica. 
 
 
Introduction 
 
Solving the geodetic boundary value problem in the Helmert space, according to the Stokes-
Helmert approach, the co-geoid is obtained [Vaní�ek and Martinec, 1994; Vaní�ek et al., 1999]. To 
find the geoid in the real space, the primary indirect topographical effect is evaluated, while the 
primary indirect atmospheric effect is negligible due its small size. The primary indirect 
topographical effect is defined as a product of the residual gravitational potential of topographical 
masses referred to the geoid surface and the reciprocal value of the normal gravity referred to the 
surface of the geocentric reference ellipsoid. Considering Helmert’s second condensation method, 
the residual gravitational potential is specified as a difference between the gravitational potential of 
topographical masses and the gravitational potential of topographical masses condensed on the 
geoid surface.  
According to Martinec and Vaní�ek (1994), the planar approximation of the geoid is not adequate 
for the computation of the primary indirect topographical effect. Moreover, according to Martinec 
(1993), for precise geoid determination, the density of the topographical masses must be assumed 
to be at least laterally non-homogeneous.  
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Primary Indirect Topographical Effect 
 
According to Martinec (1993), the residual gravitational potential of topographical masses ( )Ωδ ,rV t  

is defined as the difference between the gravitational potential of topographical masses ( )Ω,rV t  and 

the gravitational potential of condensed topographical masses ( )Ω,rV ct . Referred to the geoid 

surface ( )ΩΩ∈Ω∀ gO r: , the residual gravitational potential reads  

 
:OΩ∈Ω∀         ( )[ ] ( )[ ] ( )[ ]Ω−Ω=Ωδ g

ct
g

t
g

t rVrVrV .               (1) 

 
The geocentric position is described by the geocentric spherical coordinates φ  and λ ; ( )λφ=Ω , , 

and the geocentric radius r ; )( )∞+∈ℜℜ∈ ++ ,0r . In equation (1), OΩ  denotes the total solid angle 

[ ]��� 2,0,2/,2/ ∈λ−∈φ . 

The gravitational potential of topographical masses ( )[ ]Ωg
t rV  is given by Newton’s volume integral 

[Martinec, 1993] 
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where G  is Newton’s gravitational constant, and ( )Ωρ ,r  is the actual density of topographical 
masses. The geocentric radius of the earth surface is approximately equal to the geocentric radius 
of the geoid surface plus the orthometric height ( )ΩOH , i.e., ( ) ( ) ( )Ω+Ω≅ΩΩ∈Ω∀ O

gtO Hrr: . 

The spatial distance ( )Ω′′Ω ,r;,r�  between two points ( )Ω,r  and ( )Ω′′,r  is given by [e.g., Heiskanen 
and Moritz, 1967, Eq. 1-79]  
 

:r,r;, O
+ℜ∈′Ω∈Ω′Ω∀                 ( ) ψ′−′+=Ω′′Ω cosrr2rr,r;,r 22

� ,                                                   (3) 

 
where the spherical distance ψ  is defined by the cosine theorem  

 
:�,0∈ψ∀                                   ( )λ−λ′φφ′+φφ′=ψ coscoscossinsincos .                          (4) 

 
The gravitational potential ( )[ ]Ωg

ct rV  of condensed topographical masses is defined by Newton’s 

surface integral [e.g., Martinec, 1998]. It reads 
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where ( )Ωσ  is the surface density of condensed topographical masses. 

The primary indirect topographical effect on the geoidal height ( )Ωδ ,rN g
t  is given by applying Bruns’ 

formula [Bruns, 1878] to the residual gravitational potential. Thereby 
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where ( )φγo  is the normal gravity referred to the surface of the geocentric reference ellipsoid 
[Somigliana, 1929; Heiskanen and Moritz, 1967]. 
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Spherical Approximation 
 
Approximating the geoid surface by a sphere of the mean radius of the earth R , i.e., 

( ) Rr: gO ≈ΩΩ∈Ω∀ , and the actual density of topographical masses ( )Ωρ ,r  by the laterally varying 

topographical density ( )Ωρ , 
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the gravitational potential ( )[ ]Ωg

t rV  in equation (2) becomes  
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According to the principle of conservation of topographical masses [Wichiencharoen, 1982], the 
surface density ( )Ωσ  is given by [Martinec and Vaní�ek, 1994] 
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 Ω+Ω+ΩΩρ=Ωσ  .                     (9) 

 
Regarding equation (9), the gravitational potential of condensed topographical masses ( )[ ]Ωg

ct rV  in 

equation (5) takes the following form 
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Substituting equations (8) and (10) into equation (1), the residual gravitational potential of 
topographical masses ( )Ωδ ,RV t  becomes  
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The radial integral of the reciprocal spatial distance multiplied by 2r′  can be found in the following 
analytical form [Gradshteyn and Ryzhik, 1980; see also Martinec, 1998, eq. 3.52]  
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Singularity Of Newton’s Kernel  
 
The reciprocal spatial distance ( )Ω′Ω− ,R;,R1

�  grows to infinity when the integration point moves 

towards the computation point 
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To investigate the singularity of the Newton integral kernel, the surface integration domain OΩ  in 
equation (11) is described in the form of the polar spherical coordinates α  and  ψ , where α  stands 

for the spherical azimuth. The surface integration domain is then rewritten as 
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Consequently, the residual gravitational potential ( )Ωδ ,RV t  takes the form  
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Therefore, the Newton integral kernel is only weakly singular [Kellogg, 1929; Martinec, 1998] 
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Numerical Investigation 
 
Solving for the residual gravitational potential ( )Ωδ ,RV t  the integration domain OΩ  can be divided 

into two integration sub-domains: the near-zone NZΩ  and the far-zone FZΩ . The far-zone 
contribution can be solved either in the spectral form [Novák et al. 2001], or by methods of the 
numerical integration. In our computation area, which is a part of the Canadian Rocky Mountains, 
we have obtained the value of the far-zone contribution to the primary indirect topographical effect 
around –3 cm, using any of the two approaches. One-degree step-size of the numerical integration 
is used in the numerical integration of equation (11), while the TUG-87 [Wieser, 1987] global 
elevation model of degree and order 180 is used in the spectral approach. 
The near-zone contribution is usually evaluated by numerical integration [Martinec and Vaní�ek, 
1994; Sjöberg and Nahavandchi, 1998], in two or three dimensions. In this contribution, we used 
the three-dimensional integration in a local Cartesian coordinate system (�����), while 
approximating the earth surface by a piece-wise constant function ( ) Hy,xF = . This amounted to 
adopting a locally planar model for the geoid surface and for the topography referred to it. The 
Cartesian coordinate system was selected so that the � -axis coincides with the outer normal to the 
geoid (approximated by a sphere), and the x - and y -axes are in the horizontal plane, and point 
towards north and east, respectively. The integration step then divides the surface of the earth into 
two-dimensional cells and the topography can then be regarded as being composed of prisms 
delineated by the cells’ borders. These prisms are all flat at the top because of the approximation 
used for the earth surface. 
Under the planar approximation of the geoid surface the residual gravitational potential ( )Ωδ ,RV t  is 
approximated by a series of potentials of individual prisms with a surface area equal to the area of 



enero – diciembre 2003  On Some Numerical Aspects of Primary Indirect …     75 
�

the integration cell, a height equal to the orthometric height ( )y,xHO  of the integration dummy point, 

and a uniform density ( )y,xρ . The residual gravitational potential generated by each prism is given 
by 
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The complete near-zone contribution to the gravitational potential of topographical masses is given 
by the summation over the individual prisms, where the contribution of individual prism is computed 
from the following closed expression [Bronstein and Semendjajev, 1974; Nagy, et. al., 2000], which 
makes use of just only the first integral in equation(17) 
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In equation (18), φ′∆=′∆ Rx  and λ′∆φ′=′∆ cosRy  represents steps of the analytical integration. 

The spatial distance is equal to ( ) 222 zyxz,y,x ′+′+′=′′′� , and the co-ordinates x′ , y′ , z′  of the 

integration point are given by 
 

              ( )φ−φ′=′ Rx ,       ( )
2

cosRy
φ+φ′

λ−λ′=′ ,       ( ) Ry,xrz −′′=′ .                                        (19) 

 
Similarly, the near-zone contribution to the gravitational potential of condensed topographical 
masses is given by a summation over the contributions of individual condensation layers within the 
cells, where the contribution of each individual condensation layer cell of constant surface density 

( )y,xσ  can be expressed in the following analytical form [Kuhn, 2000]  
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The total value of primary indirect topographical effect, from both the near and far zones, in the 
computation area is shown in Figure 1. In this area the effect ranges between –3 cm and -36 cm. 
 
 
Conclusion 
 
The integration domain in the evaluation of the residual gravitational potential of topographical 
masses may be divided into the near and far integration sub-domains, where different 
computational techniques can be applied. One-degree grid for the numerical integration is sufficient 
for a few millimeters precision of the far-zone contribution to the primary indirect topographical 
effect. 
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The weak singularities of Newton’s volume and surface integrals at the computation point cause the 
computation to be numerically unstable. The existence of the weak singularity forces one to be very 
careful when dealing with the immediate neighborhood of the computation point. For this reason, 
the residual gravitational potential of topographical masses can be evaluated using the analytical 
solution for the potential of the prism with constant topographical density and its corresponding 
condensation layer. 
 

238 239 240 241 242 243 244

50
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Figure 1. The primary indirect topographical effect on geoidal height. 
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