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Abstract 
 
Topography plays an important role in solving many geodetic and geophysical 
problems. In the evaluation of a topographical effect of one kind or another, one 
can use either a planar model, or a spherical model, or, perhaps an even more 
sophisticated model still. In most applications, the planar model is considered 
appropriate enough for the purpose: recall the evaluation of gravity reductions of 
the free-air, Poicaré-Pray, or Bouguer kind.  
 
For other applications, such as the evaluation of the direct topographical effect, or the 
primary indirect topographical effect in gravimetric geoid computations, it is necessary 
to use at least the spherical model of topography. In this contribution we will present the 
comparison of the two models and discuss the differences, including the apparent 
incongruencies.  

 
Introduction 

 
Periodically, people discover that planar and spherical models of topography give 
different results for Bouguer anomalies, as well as for direct and indirect topographical 
effects in the Stokes-Helmert technique for geoid computations.  As examples, let us 
cite Karl [1971] and Véronneau [1998], who both question the compatibility of the 
"Bouguer plate" and "Bouguer spherical shell" topographical models.  But there have 
been others: so what's going on? 
 
When looking into it we discovered an interesting story which we shall try to illuminate 
here.  To do so, we focus only on the "infinite plate" and "spherical shell" models, 
leaving out the terrain effects.  The difference of the planar and spherical models of 
terrain has been discussed in  [Novák and Vaníc̆ ek, 1998] and will be further 
investigated in [Novák and Vaníc̆ ek, 1999].   
 

The story of Bouguer plate reduction 



 
To show the pattern, let us show the gravitational potential, the gravitational attraction 
(negative first vertical derivative of the potential) and the vertical gradient of gravitational 
attraction (negative second derivative of the potential) of the topographical (Bouguer) 
plate and the topographical (Bouguer) shell side by side.  And, to keep things simple, 
let's assume a constant density  ρ  (say, 2.67 g cm-3) and the same thickness  H  for 
both the infinite plate and the shell of the inner radius  R. 
 
This is all done in Figure 1.  The three quantities of interest are computed at two points:  
 
 

Figure 1- Bouguer plate vs. Bouguer shell 
 
 

on the top and at the bottom of the plate/shell.  In addition, the second derivative which 
is discontinuous on the top (and also at the bottom) of the plate/shell is at this point 
computed both from above and from below.  The expressions for the plate are derived 
from eqns. (3.5 and 3.7) found in [Heiskanen and Moritz, 1967] by simply extending the 
finite plate to infinity.  The expressions for the shell are derived directly from eqns. (19, 
24 and 25) for the potential of a sphericall shell found in [Wichiencharoen, 1982]. 
 
Now, examining this figure, how different really are the results for the planar and 
spherical models?  Starting from the vertical gradient of attraction and neglecting the 
higher order terms (of the order of H/R and smaller) in the spherical model, the results 
are identical.  The attraction of the plate at its top is only one half of that of the shell (at 
its top and neglecting the higher order terms), while the attraction at the bottom of the 
plate is exactly opposite to that at the top.  The attraction at the downside of the shell is 
zero as it should be [Kellogg, 1929].  Note that the change in the attraction when 
vertically transiting the plate or shell is the same, except for higher order terms.  The 
situation for the potential is naturally different: as the potential of the infinite plate is 
infinite, one cannot make any direct comparison between the two models.  We can only 
note that in the spherical model, the difference between the potential at the top and on 
the downside of the shell differ only by the higher order terms. 
 
What does it all mean?  We wish to address here only the question of what this means 
in the context of the (incomplete, i.e., without the terrain correction) Bouguer gravity 
anomaly. The Bouguer anomaly is computed from the following formula 
 

�g = g + A + AB - γ ,     (1) 
 
where g is the observed gravity on the earh surface (at altitude  H),  A is the "free-air 
reduction" (to the geoid) due to the earth masses within the spherical shell (including 
the latitude and altitude terms),  AB  is the "Bouguer reduction" (to the geoid) due to the 
mass of the Bouguer plate and  γ  is the normal gravity (at the reference ellipsoid) 
[Heiskanen and Moritz, 1967, eqn.(3.19)].  Here, the Bouguer reduction is given by  



 
AB = 2�GρH.     (2) 

 
Clearly,  AB  is not the difference between the gravity values at the top and the bottom 
of the infinite plate!  It is not the difference between gravity values at the outside and 
downside of the spherical shell either!  This difference, in both cases is equal to  
 

APP = 4�GρH,     (3) 
 

known in geodesy as the Poincaré-Pray gravity reduction [Heiskanen and Moritz, 1967, 
eqn.(3.64)].  One arrives at this conclusion using either the attraction or the vertical 
gradient of attraction formulae as one should.  
 
The inevitable conclusion is that the apparently incorrect Bouguer gravity reduction is 
NOT coming from the use of the (physically meaningless) planar model and that one 
should thus come up with the "correct" result by using the physically meaningful 
spherical model.  As a matter of fact, the Bouguer reduction can be equally easily 
derived from the spherical model as well, once one realises where the reduction is 
coming from.  The Bouguer reduction can be also written as  
 

AB = - �2V/�r2 H ,     (4) 
 
where the second derivative (negative attraction gradient) is evaluated at the top of the 
plate/shell.  But, according to the figure, the gradient has at this point two values, one 
for the outside and the other for the inside of the plate/shell.  Thus, strictly speaking, the 
gradient is at this point not defined!  The "Bouguer gradient" is taken to be the average 
of the outside and inside values, i.e., a mathematically and physically meaningless 
quantity [Vaníc̆ ek and Krakiwsky, 1986].   
 
Our conclusion is thus that the Bouguer gravity anomaly, useful as it is in many 
applications, is a artificial construction.  The Bouguer reduction numerically reduces the 
observed gravity from the surface of the earth to the mid-point of the infinite Bouguer 
plate, or mid-point of the spherical shell.  This is a result of a particular selection of the 
value of the vertical gradient of gravity rather than the selection of planar model.  The 
difference between using the planar and spherical model is of second order; it is the 
known spherical correction to Bouguer plate reduction: 
 

δABS =  4�GρH2/R     (5) 
 

  
The direct and primary indirect topographical effects 

 
Probably the most popular technique for solving the boundary value problem of 
geodesy (leading to geoid determination from observed gravity anomalies) is the one 
called Stokes-Helmert's technique.  The essence of this technique is that topographical 



masses are replaced by a condensed mass layer on the geoid surface, resulting in an 
introduction of an abstract space (Helmert's space) in which the solution is sought.  The 
main idea behind the introduction of the Helmert space is that the disturbing potential  
Th  sought in this space is harmonic everywhere above the geoid.  It is related to the 
real disturbing potential T  by the following equation: 
 

Th(r,�) = T(r,�) - V(r,�),     (6) 
 

where the residual topographical potential V is defined as 
 

V(r,�) = Vt(r,�) - Vc(r,�) ,     (7) 
 

where Vt denotes the potential of topographical masses and  Vc stands for the potential 
of the (condensed) mass layer.  The symbols  r  and  �  stand for geocentric distance 
and angle. 
 
The transformation of observed gravity (at the surface of the earth) in the real space to 
its counterpart (Helmert's gravity) in the abstract space is achieved by subtracting from 
it the "Direct Topographical Effect" (DTE) given by the following formula 
 

DTE(�) = - �V(r,�)/�r|r=rt ,              (8) 
 

where the partial derivative (in the units of acceleration) is evaluated at the surface of 
the earth, i.e., on the topography, for  r(�) = rt(�).  The transformation of the resulting 
geoidal height in Helmert's space to the real geoidal height (geoidal height in the real 
space) is realized by adding to it the "Primary Indirect Topographical Effect" (PITE) 
given by the following formula 
 

PITE(�) = V(rg,�) / γ (rg,�) ,    (9) 
 

where γ is the normal gravity.  We note that PITE is evaluated at the geoid (in Helmert's 
space), i.e., for  r(�) = rg(�), and is in length units.  There is also another, much smaller 
effect, called "Secondary Idirect Topographical Effect" (SITE), which we shall not 
discuss here as it can be neglected under most circumstances. 
 
Let us now concentrate on these two terms, DTE and PITE.  They can be evaluated by 
numerical integration over topography, considering the real topographical density 
ρ(r,�), and using one of many possible mass condensation schemes.  In this 
contribution, we shall deal with only an average topgraphical density  
 

ρ(r,�) = ρ0 = 2.67 g cm-3  ,    (10) 
 

although a better density model has to be used in accurate geoid determination.   
Finally, we shall show the models for three different mass condensation schemes:  
1) the mean density condensation, which gives the condensation layer density σ as 



 
σ(�) = ρ0 H(�)  ,     (11) 

 
where H is the orthometric height of the terrain; 
2) the mass conservation condensation, which preserves the total mass of the earth 
when transforming from the real to Helmert's spaces: 
 

σ(�) = ρ0 H(�) [1+ H(�)/R + H2(�)/(3 R2)]  ,   (12) 
 

where  R  is the mean radius of the earth [Wichiencharoen, 1982]; 
3) the mass-centre conservation condensation, which preserves the position of the 
centre of mass of the earth in the transformation into the Helmert space: 
 

σ(�) = ρ0 H(�) [1+ 3 H(�)/(2 R) + H2(�)/R2 + H3(�)/(4 R3) ]  ,  (13) 
 

[Wichiencharoen, 1982].  We shall consider both planar and spherical models here as 
the comparison of the two is our main objective.  Unfortunately, however, only the first 
condensation scheme can be used in conjunction with the planar model; the other two 
schemes do not make sense in their planar form - formulae (12) and (13) have been 
derived for a spherical model. 
 
For any of the condensation schemes, both DTE and PITE can be expressed as a sum 
of the contribution of the Bouguer spherical shell (or an infinite Bouguer plate, in the 
case of the planar model) of thickness H  plus the contribution of the real terrain on top 
of the shell/plate.  It turns out that the terrain contribution (called the topographical 
roughness term by Martinec and Vaníc̆ ek [1994a, 1994b]) is not too sensitive to the 
selection of the  mass condensation scheme.  The terrain contributions are going to be 
dealt with by [Novák and Vaníc̆ ek, 1999], and we will concentrate here only on the 
Bouguer shell/plate contributions and denote them by DTEB(�) and PITEB(�).  The 
following table gives the overview of the results for the three different condensation 
schemes and the two models: 
 
  Spherical model    Planar model 
 

MEAN DENSITY CONDENSATION 
 

 DTEB(�) = - 4�Gρ0H2(�)/R  DTEB(�) = 0 
 [Martinec and Vaníc̆ ek, 1994b]  [Vaníc̆ ek and Kleusberg,1987] 
 
 PITEB(�) = 2�Gρ0H2(�)/γ(�  PITEB(�) = -�Gρ0H2(�)/γ(�) 
 [Vaníc̆ ek and Martinec, 1994]  [Vaníc̆ ek and Kleusberg,1987] 
 

MASS CONSERVATION CONDENSATION 
 

 DTEB(�) = 0    Not defined 



 [Martinec, 1994]   
 
 PITEB(�) = - 2�Gρ0H2(�)/γ(�)  Not defined   
 [Martinec and Vaníc̆ ek, 1994a]   
 

MASS-CENTRE CONSERVATION CONDENSATION 
 

 DTEB(�) = - 2�Gρ0H2(�)/R  Not defined 
 [Martinec, 1994]   
 
 PITEB(�) = - 4�Gρ0H2(�)/γ(�)  Not defined   
 [Martinec , 1994]   
 
 
Now, what can we say about the individual contributions?  Is there any indication that 
one condensation scheme is better than the others?  To answer this question, we 
should evaluate the total topographical effect for each of the condensation schemes 
and compare them to establish if the results are identical or not.  To evaluate the total 
topographical effect, the DTE has to be first transferred from the earth surface to the 
geoid (downward continued, as it is usually referred to), then convolved with Stokes's 
kernel, and finally added to the PITE.  Symbolically, we can write the following algorithm 
for the total topographical effect on the geoid, δNB,total(�) : 
 

DTEB(�) = DTEB(rt,�)  ∅ DTEB(rg,�)   ∅ δNB(rg,�) = δNB(�)  (14) 
 

δNB,total(�) = δNB(�) + PITEB(�)  .    (15) 
 

 
The problem here is with the downward continuation  DTEB(rt,�)  ∅ DTEB(rg,�)  of 
DTE.  A harmonic function does have a uniquely defined downward continuation which 
can be obtained by means of solving a boundary value problem of a Dirichlet type, 
leading to the solution in the form of the Poisson integral.  But the downward 
continuation of a non-harmonic function is not defined!  It is easy to prove that the 
residual topographical potential  V  is not a harmonic function within the topography: 
1) the disturbing potential  T  satisfies the following Poisson equation within the 
topography 
 

� T(r,�) = - 4�Gρ(r,�)  ,     for  rg ε  r >rt  ,   (16) 
 

where  �  stands for the Laplacian operator; 
2) the Helmert disturbing potential  Th , on the other hand, satisfies the Laplace Laplace 
equation everywhere above the geoid 
 

� Th(r,�) = 0 ,     for  rg >  r  ;    (17) 



 
3) substituting for  Th  in eqn.(17) from eqn.(6) and considering eqn.(16), we get finally 
 

� V(r,�) =  4�Gρ(r,�)  ,     for  rg ε  r >rt  ,   (18) 
 

which concludes the proof.  As  V is not harmonic, there is no reason to believe that  VB 
is harmonic and the downward continuation of  VB , and therefore even of the DTEB is 
not defined. 
 
We thus have to conclude that there is no way of theoretically comparing the 
performance of the three condensation schemes.  All that can be ascertained is that the 
first scheme changes both the mass and the centre of mass, the second changes the 
centre of mass, while the third changes the mass of the earth in the Helmert space.  
Thus the resulting geoid in Helmert's space has to be corrected either for scale, by 
subtracting - 4.9 cm from all the geoidal heights [Martinec, 1994], or for the shift of the 
geoid with respect to the centre of mass (Hørmander's corrections), amounting to (- 0.6, 
- 1.5, 0.2) cm [ibid], or both (in the case of mean density condensation).  From the 
numerical point of view, the scheme that preserves the mass of the earth should be 
recommended. 
 
Is there any indication that the spherical model gives significantly better results than the 
planar model?  Not from the results above!  When investigating the relative 
performance of the planar and spherical models in the evaluation of DTE and PITE, we 
can no longer disregard the terrain effect.  Our numerical experiments where we had 
taken both the plate/shell and the terrain into account have shown [Novák et al., 1998] 
that significant differences are encountered when spherical and planar models are 
used.   
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